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Throughout this paper all rings are assumed commutative with identity. Among
integral domains, Dedekind domains are characterized by the property that every ideal is
a product of prime ideals. For a history and proof of this result the reader is referred to
Cohen [2, pp. 31-32]. More generally, Mori [5] has shown that a ring has the property
that every ideal is a product of prime ideals if and only if it is a finite direct product of
Dedekind domains and special principal ideal rings (SPIRS). Rings with this property are
called general Z.P.I.-rings.

Since in a Dedekind domain every nonzero ideal is a finite intersection of powers of
maximal ideals, it follows that in a general Z.P.I.-ring every ideal is a finite intersection of
powers of prime ideals. Butts and Gilmer [1] proved the converse.

The purpose of this paper is to generalize and unify the results of Mori and Butts and
Gilmer. Hence, if R is a ring, we denote by <£(R) the set of ideals of R, by @(R) the set
of prime ideals of R and by &(R) the closure of $>(/?) under products and finite
intersections. For convenience we set R = P° for any prime ideal P, so that R e $(R). We
show that R is a general Z.P.I.-ring if and only if £(R) = &(R).

We note three elementary but useful facts. If A e @(R), Aj=R, then there are only
finitely many prime ideals minimal over A. If A e @(R) and 5 is a multiplicatively closed
subset of R, then As e &(RS)- And if A and B are ideals with / i c B a n d f l e &(R), then
B/A e &(RIA). In particular, the property g(R) = &(R) carries over to Rs and to RIA.

LEMMA 1. Let R be an integral domain satisfying Z£{R) = &(R). Let P be a prime
ideal of R minimal over a nonzero principal ideal. Then RP is a DVR and hence
rank P = 1.

Proof. Let P be minimal over (a). Then RP satisfies Z£{RP) = &(RP) and PP is
minimal over (a)P. Thus we can assume that (R, M) is a quasilocal domain satisfying
<S?(i?) = &{R) and that M is minimal over (a). We must show that R is a discrete valuation
ring (DVR). Since M is the only prime ideal containing (a), (a) must be a power of M.

Hence M is invertible. Since R is quasilocal, M is principal, say M = (p). If p | (/?") = 0,
n = \

then (p) is the only nonzero prime ideal of R, so R is a DVR. Hence we may assume that
oo

0 =f b e 0 ip")- Since each prime Q £ (p) satisfies Q =pQ and since for A and B with
n = l

pA=A and pB = B, we have p(AB) = AB and p(A nB)=pAC\pB = AC\B, it follows
from (b) e &(R) that (b)=p(b). Thus by Nakayama's Lemma, (b) = 0. Thus R must be a
DVR.

LEMMA 2. Let (R, M) be a quasilocal ring satisfying ££{R) = &{R). Then either
M = A/2 or M is principal.
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Proof. Suppose that Mj=M2. Let x e M - M2. Let yeM, then since (JC, y2) e & and
(jt, y2) c£ M2, (x, y2) must be an intersection of prime ideals. Hence (x, y) c V(*, y2), so
(x, y) = (x, y2). By Nakayama's Lemma, (x, y) = (x). Since y was arbitrary, M = (x).

THEOREM 3. Let R be an integral domain. Then R satisfies Z£{R) = &(R) if and only if
R is a Dedekind domain.

Proof. Since every ideal in a Dedekind domain is a product of prime ideals, a
Dedekind domain satisfies %(R) = &(R). Conversely, suppose that %(R) = &(R) and
that R is not a field. It suffices to show that every rank one prime ideal of R is maximal.
For then by Lemma 1, RM will be a DVR for each maximal ideal M of R. Also, for
0 =f b e R, (b)e $>(R) and hence V(b) is a finite intersection of prime ideals, so (b) is
contained in only finitely many maximal ideals of R. Then by [3, Theorem 37.2], R will be
a Dedekind domain. Let P be a rank one prime ideal of R. Assume that P is not maximal,
say P ̂  M, a maximal ideal. Let 0 =f a e P. Let the other rank one prime ideals containing
(a) be Pu . . . , Pn. Choose b e M - (P U Px U . . . U Pn). Hence (a, b) c M, but (a, b) is
contained in no rank one prime ideal. Shrink M to a prime ideal Q minimal over (a, b).
Pass to RQ. Then 2!(RQ) = @(RQ) and QQ is minimal over (a, b)Q, so (a, b)Q = QS

Q for
some s 2= 1. Hence by Nakayama's Lemma, we must have QQ =f Q2

Q. By Lemma 2, QQ is
principal. But then by Lemma 1, RQ is a DVR, so rank Q = 1. This contradiction shows
that P must be maximal.

It may be of interest to note that to this point we have used only that for all x, y e R
(an integral domain), (JC) e &(R), (y) e @(R) and (x) + {y)e &(R).

THEOREM 4. A ring R has the property that every proper ideal is in &(R) if and only if
R is a general Z.P.I.-ring.

Proof. If R is a general Z.P.I.-ring, then every proper ideal is a product of prime
ideals and hence is in $(R). Conversely, suppose that every proper ideal of R is in &(R).
If P is a prime ideal of R, then ££(R/P) = &(R/P) and hence by Theorem 3 RIP is a
Dedekind domain. It follows that dimi? =s 1. Let M be a maximal ideal of R. We show
that RM is either a SPIR or a DVR. Then since (0) is a product of prime ideals of R and
since for each maximal ideal M of R, RM is a SPIR or a DVR, it easily follows that R is a
finite direct product of SPIRs and Dedekind domains. (See, for example, the proof of [3,
Theorem 46.11].) Thus we are reduced to proving that a quasilocal ring (R, M) with
dim R =£ 1 satisfying g(R) = &(R) is either a SPIR or a DVR. If dim R = 0, then every
principal ideal of R is a power of M and hence R is a SPIR. Suppose that dim R = l. Since
R has only finitely many minimal prime ideals, M is minimal over a principal ideal (a).
Thus (a) is a power of M, so M =f M2. Hence by Lemma 2, M is principal. Hence

oo

P = f] M" = MP is the unique minimal prime ideal of R. Since every principal ideal of R
n = l

is a power of M or of P it easily follows that P is principal. Hence P = 0. So R is a DVR.

Along the lines of the note following Theorem 3, we note here that Theorem 4 remains
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valid under the assumption that every element of !£{R) is the sum (not necessarily finite)
of elements of &(R) and that A,B e &{R) implies A + Be &(R).
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