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Coretraction-fibrations are retractions

E. Chislett and C.S. Hoo

We prove that if C is an abelian category and M is the class

of all coretractions, then the class of M-fibrations is the

class of all retractions. As a corollary we prove that the

class of all retractions is contained in the class of

M-fibrations for any M .

1. Introduction

Let C be a fixed abelian category. For a morphism f : A -*• B in

C , let us write K~, C-. and i\, for the kernel of / , the cokernel of

/ and the image of / , respectively. In Theorem 3.3 we prove the result

asserted in the title of this paper. Using this theorem and a result of

Ringel [5], we show that the class of retractions is the smallest possible

class of fibrations. In Theorem 3.6 we characterize the p-fibrations of

Hilton [3] in the language of Bauer and Dugundji [7].

2. Obstructions to liftings in commutative squares

We recall some definitions and results from [4], using the same

notation. The commutative square
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is said to have a lifting if there is a morphism X : A2 ~* B\ with

<t>\ = a and X\p = $ • This square induces the following diagram:

v2

B2

J

1-2

82

A lifting v exists iff k = 0 , and a lifting n exists iff c = 0 .

Suppose k = 0 and c = 0 . Then <7 = iTiV = rU2 a n d t n e diagram

may be rewritten as
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I
J

s2

•+ J,

The middle commutative square with i2 a monomorphism and TTJ an

epimorphism is termed a co-special square.

Assume the commutative square

is co-special and consider the following diagram
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X = K.

The two short exact sequences above give

E'g : 0

E' : 0

* 0

E" : 0

fE" : 0 * 0 ,

where P is the pullback of g via d and Q is the pushout of / via

a . Then {g, -d ) : B © Y •* Z is an epimorphism with kernel {v, y] and

{a, f) : A •* B ® 7 is a monomorphism with cokernel <3, -q > .

(g, -d){a, /} = 0 implies that there exists unique morphisms e and w

as shown below,
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where P = kernel (g, -d) and eA - image {a, f} •

H = kernel (g, -d) | image {a, /} = P/eA is termed the homology of the

given square. It follows that in the above diagram all the squares commute

and all the rows and columns are exact.

Consider the following diagram
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fE" : 0 0

Again all the squares commute and all the rows and columns are exact. The

following lemma and theorem are proved in Pressman [4]:

LEMMA 2.1. The short exact sequence G splits if and only if there

is a lifting for the given co-speeial square.

THEOREM 2.2. The commutative square

has a lifting if and only if

(i) k : K, •*• Kx is zero,
<l> 9

(ii) c : C, -*• C, is zero, and
* 9

(iii) H ~ K ® C' , where H is the homology of the square.

We shall also require the following

https://doi.org/10.1017/S0004972700047341 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047341


Coretrac+ion-fibrat ions 369

LEMMA 2.3. If E' and E" split, then so does G .

Proof. If E" splits, then so does fE" . Let q be a left inverse

of q in fE" and let a be a left inverse of a in E' . Then

cqk : H -*• X and

(-eqk)(hu) = - {cq{zv-qy)u)

= - eqzvu + aqqyu

= 0 © ayu

Thus G splits.

3. Fibrations

We shall now consider some ideas introduced in [/]. There, Bauer and

Dugundji defined a concept of fibration so that each class M of morphisms

in C determines a concept of fibration in C .

DEFINITION. A morphism p : A + X in C is called an M-fibration

if for each diagram

-+ B
u a

with p3p = au and \i € M , t he r e i s a morphism &' : B -*• A in C with

p&' = a and B'u = 6u .

The fol lowing r e s u l t s may be deduced from r e s u l t s in [ / ] .

THEOREM 3.1. Let M be a fixed class of morphiams in C . Then:

(i) the composition of two M-fibrations is an M-fibration;

(ii) the pullback of an M-fibration via any morphism is an

M-fibration;

(Hi) the product of two M-fibrations is an M-fibration;

(iv) all isomorphisms are M-fibrations;

(v) all trivial morphisms p : A •* * are U-fibrations.
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We denote the class of a l l M-fibrations by {M-Fib} for each class

M of morphisms in C . Clearly i f M c W , we have {N-Fib} c {M-Fib} .

LEMMA 3.2. Let M be any one of the following classes of morphisms

in C : identities, isomorphisms, retractions, strong epimorphisms,

epimorphisms. Then {M-Fib} consists of all the morphisms in C .

THEOREM 3.3. Let M be the class of all coretractions. Then

{M-Fib} is the class of all retractions.

Proof. Let p : A -*• X be an M-fibration and consider the diagram

-*• X

Then pOO = 0 = 10 and 0 Z M . Thus there exists a j : X •*• A with

pj = ly . Thus p is a retraction.

Conversely let p : A •*• X be a retraction and consider the diagram

-*• B

with p£u = au and u a coretraction. This diagram determines the

following diagram
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-<- A

•* X

in which the square commutes and both columns are exact. Furthermore,

since u is a coretraction and p a retraction, both columns split. By

Lemma 2.3 and Theorem 2.2 the square has a lifting. There exists a

morphism 3' : B -*• A with pB1 = a and f3'u = &\i . Thus p is an

M-fibration and the theorem is proved.

COROLLARY 3.4. Let M be any arbitrary class of morphisms in C .

Then every retraction is an M-fibration.

Proof. According to Ringel [5], pages 222-223, {M-Fib} = {L n Q.-Filj}

where Q, is the class of all pushouts in M via arbitrary morphisms, and

L is the class- of all coretractions of C . Hence since L n Q_c L , we

have U-Fib} c {M-Fib} . This is true in arbitrary categories. Hence in

our category we have {retractions} c {M-Fib} , since in the above theorem

{L-Fib} = {retractions} .

REMARK. If M is the class of all morphisms in C , then {M-Fib}
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is the smallest class of fibrations. By the above corollary, we have

{M-Fib} = {retractions} . Thus the class of all retractions is the

smallest class of fibrations.

We now restrict ourselves to an abelian category C with sufficient

projectives. In [3] the following definition is made. We follow the

terminology and notation used there.

DEFINITION. A morphism p : A •* X is called a p-fibration if for

all B , and for all a, a' : B •* X with a = a' , and for all g : S -»• A

with pg = a , there exists a g' : B •* A with pg' = a' and g1 = B .

LEMMA 3.5.. For p : A •*• X the following are equivalent:

(i) p is a p-fibration;

(ii) for all protective objects P and morphisms a : P •* X , there

exists a morphism g : P -*• A with pg = a ;

(Hi) p is an epimorphism.

I f w e w r i t e u : D - > - B a s U = I T T , that i s , i n its c a n o n i c a l

f a c t o r i z a t i o n

l
H—«. I> !i—• B

then in

- B • X

we have f\x = gv iff f\ = g\

Let M = {y : D -*• B such that B/I is projective} . Then we have

the following result.

THEOREM 3.6. {M-Fib} = {p-fibrations} .

Proof. Let p : A •*• X be an M-fibration and consider the following

diagram
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->• P -*• X
0 " a

with P projective. Thus there exists a 3 : P •* A with p3 = a . Thus

p is a p-fibration.

Conversely let p : A ->• X be a p-fibration and consider the diagram

A

-*• B •* X

with pf3u = ap and y € M . Thus p6l = ai and this gives the

following commutative square

This is a cospecial square and B/I = C = C^ is projective. Thus the

short exact sequence

0 - * - ^ •+ H -* C ->• 0 ,

P l

which is defined in §2, splits. So by Lemma 2.1, there is a lifting for

the square. Thus there exists a &' : B -»• A with pa = 8' and

3'l = Bl . Thus pa = 3' and 3'u = 8\i , and hence p is an

M-fibration.

COROLLARY 3.7. Let M be the class of all coretractions with

projeetive cokernel, then {M-Fib} = {p-fibrations} .
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