Coretraction-fibrations are retractions

E. Chislett and C.S. Hoo

We prove that if C is an abelian category and M is the class of all coretractions, then the class of M-fibrations is the class of all retractions. As a corollary we prove that the class of all retractions is contained in the class of M-fibrations for any M.

1. Introduction

Let \mathcal{C} be a fixed abelian category. For a morphism $f: A \rightarrow B$ in C, let us write K_{f}, C_{f} and I_{f} for the kernel of f, the cokernel of f and the image of f, respectively. In Theorem 3.3 we prove the result asserted in the title of this paper. Using this theorem and a result of Ringel [5], we show that the class of retractions is the smallest possible class of fibrations. In Theorem 3.6 we characterize the p-fibrations of Hilton [3] in the language of Bauer and Dugundji [1].
2. Obstructions to liftings in commutative squares

We recall some definitions and results from [4], using the same notation. The commutative square

[^0]is said to have a lifting if there is a morphism $\lambda: A_{2} \rightarrow B_{1}$ with $\phi \lambda=\alpha$ and $\lambda \psi=\beta$. This square induces the following diagram:

A lifting v exists iff $k=0$, and a lifting η exists iff $c=0$.
Suppose $k=0$ and $c=0$. Then $J=\pi_{1} v=\eta l_{2}$ and the diagram may be rewritten as

The middle commutative square with l_{2} a monomorphism and π_{1} an epimorphism is termed a co-special square.

Assume the commutative square

is co-special and consider the following diagram

The two short exact sequences above give

where P is the pullback of g via d and Q is the pushout of f via a. Then $\langle g,-d\rangle: B \oplus Y \rightarrow Z$ is an epimorphism with kernel $\{v, y\}$ and $\{a, f\}: A \rightarrow B \oplus Y$ is a monomorphism with cokernel $\langle z,-q\rangle$. $(g,-d\rangle\{a, f\}=0$ implies that there exists unique morphisms e and ω as shown below,

where $P=$ kernel $\langle g,-d\rangle$ and $e A=\operatorname{image}\{a, f\}$. $H=\operatorname{kernel}\langle g,-d\rangle \mid$ image $\{a, f\}=P / e A$ is termed the homology of the given square. It follows that in the above diagram all the squares commute and all the rows and columns are exact.

Consider the following diagram

Again all the squares commute and all the rows and columns are exact. The following lemma and theorem are proved in Pressman [4]:

LEMMA 2.1. The short exact sequence G splits if and only if there is a lifting for the given co-special square.

THEOREM 2.2. The conmutative square

has a lifting if and only if
(i) $k: K_{\psi} \rightarrow K_{\phi}$ is zero,
(ii) $c: C_{\psi}+C_{\phi}$ is zero, and
(iii) $H \simeq K_{\phi} \oplus C_{\psi}$, where H is the homology of the square.

We shall also require the following

LEMMA 2.3. If E^{\prime} and $E^{\prime \prime}$ split, then so does G.
Proof. If $E^{\prime \prime}$ splits, then so does $f E^{\prime \prime}$. Let \bar{q} be a left inverse of q in $f E^{\prime \prime}$ and let \bar{c} be a left inverse of c in E^{\prime}. Then $\bar{c} \bar{q} k: H \rightarrow X$ and

$$
\begin{aligned}
(-\bar{c} \bar{q} k)(h u) & =-(\bar{c} \bar{q}(z v-q y) u) \\
& =-\bar{c} \bar{q} z v u+\bar{c} \bar{q} q y u \\
& =0 \oplus \bar{c} y u \\
& =1_{X} .
\end{aligned}
$$

Thus G splits.

3. Fibrations

We shall now consider some ideas introduced in [1]. There, Bauer and Dugundji defined a concept of fibration so that each class M of morphisms in C determines a concept of fibration in \mathcal{C}.

DEFINITION. A morphism $p: A \rightarrow X$ in C is called an M-fibration if for each diagram

with $p \beta \mu=\alpha \mu$ and $\mu \in M$, there is a morphism $\beta^{\prime}: B \rightarrow A$ in C with $p \beta^{\prime}=\alpha$ and $\beta^{\prime} \mu=\beta \mu$.

The following results may be deduced from results in [1].
THEOREM 3.1. Let M be a fixed class of morphisms in C. Then:
(i) the composition of two M-fibrations is an M-fibration;
(ii) the pullback of an M-fibration via any morphism is an M-fibration;
(iii) the product of two M-fibrations is an M-fibration;
(iv) all isomorphisms are M-fibrations;
(v) all trivial morphisms $p: A \rightarrow *$ are M-fibrations.

We denote the class of all M-fibrations by $\{M-F i b\}$ for each class M of morphisms in C. Clearly if $M \subset N$, we have $\{N-F i b\} \subset\{M-F i b\}$.

LEMMA 3.2. Let M be any one of the following classes of morphisms in C : identities, isomorphisms, retractions, strong epimorphisms, epimorphisms. Then $\{M-F i b\}$ consists of all the morphisms in \mathcal{C}.

THEOREM 3.3. Let M be the class of all coretractions. Then \{M-Fib\} is the class of all retractions.

Proof. Let $p: A \rightarrow X$ be an M-fibration and consider the diagram

Then $p 00=0=10$ and $0 \in M$. Thus there exists a $j: X \rightarrow A$ with $p j=1_{X}$. Thus p is a retraction.

Conversely let $p: A \rightarrow X$ be a retraction and consider the diagram

with $p \beta \mu=\alpha \mu$ and μ a coretraction. This diagram determines the following diagram

in which the square commutes and both columns are exact. Furthermore, since μ is a coretraction and p a retraction, both columns split. By Lemma 2.3 and Theorem 2.2 the square has a lifting. There exists a morphism $\beta^{\prime}: B \rightarrow A$ with $p \beta^{\prime}=\alpha$ and $\beta^{\prime} \mu=\beta \mu$. Thus p is an M-fibration and the theorem is proved.

COROLLARY 3.4. Let M be any arbitrary class of morphisms in \mathcal{C}. Then every retraction is an M-fibration.

Proof. According to Ringel [5], pages 222-223, $\{M-$ Fib $\}=\{L \cap$ 2-Fib $\}$ where 2 is the class of all pushouts in M via arbitrary morphisms, and L is the class of all coretractions of C. Hence since $L \cap Q \subset L$, we have $\{L-F i b\} \subset\{M-F i b\}$. This is true in arbitrary categories. Hence in our category we have \{retractions\} $\subset\{M-F i b\}$, since in the above theorem $\{$ L-Fib $\}=$ \{retractions $\}$.

REMARK. If M is the class of all morphisms in C, then $\{M-F i b\}$
is the smallest class of fibrations. By the above corollary, we have $\{M-F i b\}=$ \{retractions $\}$. Thus the class of all retractions is the smallest class of fibrations.

We now restrict ourselves to an abelian category \mathcal{C} with sufficient projectives. In [3] the following definition is made. We follow the terminology and notation used there.

DEFINITION. A morphism $p: A \rightarrow X$ is called a p-fibration if for all B, and for all $\alpha, \alpha^{\prime}: B \rightarrow X$ with $\alpha{\underset{p}{p}}^{\alpha^{\prime}}$, and for all $\beta: B \rightarrow A$ with $p \beta=\alpha$, there exists a $\beta^{\prime}: B \rightarrow A$ with $p B^{\prime}=\alpha^{\prime}$ and $\beta^{\prime} \simeq{ }_{p} \beta$.

LEMMA 3.5. For $p: A \rightarrow X$ the following are equivalent:
(i) p is a p-fibration;
(ii) for all projective objects P and morphisms $\alpha: P \rightarrow X$, there exists a morphism $\beta: P \rightarrow A$ with $p \beta=\alpha$;
(iii) p is an epimorphism.

If we write $\mu: D \rightarrow B$ as $\mu=l_{\mu} \pi_{\mu}$, that is, in its canonical
factorization

then in

we have $f \mu=g \mu$ iff $f l_{\mu}=g l_{\mu}$.
Let $M=\left\{\mu: D \rightarrow B\right.$ such that B / I_{μ} is projective $\}$. Then we have the following result.

THEOREM 3.6. $\{M-F i b\}=\{p$-fibrations $\}$.
Proof. Let $P: A \rightarrow X$ be an M-fibration and consider the following diagram

with P projective. Thus there exists a $\beta: P \rightarrow A$ with $p \beta=\alpha$. Thus p is a p-fibration.

Conversely let $p: A \rightarrow X$ be a p-fibration and consider the diagram

with $p \beta \mu=\alpha \mu$ and $\mu \in M$. Thus $p B l_{\mu}=\alpha l_{\mu}$ and this gives the following commutative square

This is a cospecial square and $B / I_{\mu}=C_{\mu}=C_{1}$ is projective. Thus the short exact sequence

$$
0 \rightarrow K_{p} \rightarrow H \rightarrow C_{1} \rightarrow 0
$$

which is defined in $\S 2$, splits. So by Lemma 2.1, there is a lifting for the square. Thus there exists a $\beta^{\prime}: B \rightarrow A$ with $p \alpha=\beta^{\prime}$ and $\beta^{\prime} i=\beta i$. Thus $p \alpha=\beta^{\prime}$ and $\beta^{\prime} \mu=\beta \mu$, and hence p is an M-fibration.

COROLLARY 3.7. Let M be the class of all coretractions with projective cokernel, then $\{M-F i b\}=\{p$-fibrations $\}$.

References

[1] F.-W. Bauer and J. Dugundji, "Categorical homotopy and fibrations", Trans. Amer. Math. Soc. 140 (1969), 239-256.
[2] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[3] Peter Hilton, Homotopy theory and duality (Gordon and Breach, New York, London, 1965).
[4] Irwin S. Pressman, "Obstructions to liftings in commutative squares", (Preprint, Ohio State University, 1970).
[5] Claus Michael Ringel, "Faserungen und Homotopie in Kategorien", Math. Ann. 190 (1971), 215-230.

University of Alberta,
Edmonton,
Alberta, Canada.

[^0]: Received 23 June 1971: This research was supported by a National Research Council of Canada grant.

