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BOUNDARY VALUE PROBLEMS IN
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Communicated by James M. Hill

The techniques for solving boundary value problems in plasticity-

theory are reviewed. In illustration, three application areas

are discussed

(a) to the mechanics of glaciers,

(b) to the analysis of strip rolling processes, and

(c) to computing the collapse of isotroplc plates.

1. Introduction

The mathematical theory of plasticity is concerned with the permanent

deformations of solids. It has found applications in many branches of

engineering including structural mechanics, metal forming processes, soil -

and geo-mechanics, fracture mechanics and tribology. The type of boundary

values problems encountered in plasticity theory have a number of unusual

features. For example the governing equations in the plastic regions are

usually hyperbolic, but unlike most areas of application of such equations,

solutions have to be found in finite regions of space rather than in semi-

infinite space-time domains. In addition, as will be seen, there is seldom

enough boundary data to formulate a Cauchy problem. Another problem arises
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122 Ian F. C o I I i n s

from the fact that it is only rarely that the entire body will deform

plastically so that the boundary of the plastically deforming region has to

be found as part of the solution.

In this paper I will attempt to amplify these difficulties and to

review the methods which have been successfully employed to overcome them.

In illustration three problems will be discussed in some detail:

(a) the modelling of a glacier;

(b) the analysis of the deformation in the roll gap of the hot

strip-rolling process;

(c) the collapse mechanisms of isotropically reinforced concrete

slabs.

As will be seen the solution to these problems all contain a strong element

of trial and error, and to solve them it is first necessary to build up a

good physical feeling for the nature of plastic deformations.

2. Elements of plasticity theory

Two idealised models commonly used to describe the stress-strain

behaviour of a ductile solid in a simple tension test are illustrated in

Figure 1. in the first, elastic-plastic, model the material behaves as a

a-

(a) (b)

FIGURE 1. Stress-strain relation in tensile test

(a) Elastic/plastic model
(b) Rigid perfectly plastic model.
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linear elastic solid until the stress reaches a critical yield value Y

after which it hardens plastically. If the applied stress is removed

during the elastic phase of the loading, the strain returns to zero.

However if the stress is removed after it has exceeded the critical value

Y , only the elastic part of the strain is recovered. In the second,

simplified, rigid/perfectly plastic model the elastic strains are ignored

and the material remains rigid until the stress reaches the yield value

after which it deforms plastically but at the same stress level. Because

of the relative simplicity of this latter model it is possible to develop a

theory in which semi-analytical solutions can be obtained without resort to

too expensive and time-consuming computations. Such simplified solutions

frequently lead to a good understanding of the basic mechanics of the

phenomena or process involved, even if they give no information on

secondary effects such as "elastic springback or recovery". The extra

information yielded by using the more accurate but computationally

expensive models is frequently only of marginal practical value - see for

example the recent review by Johnson [//].

In a general three-dimensional situation the concept of yield is

described by a yield function f[o..) . If f(o..) < 0 the behaviour is

elastic (or rigid) and only when f{o. .) = 0 can the material deform

plastically. The equation f[o. .) = 0 defines a (convex) yield-surface in

6 dimensional stress space. The plastic deformation is such that the

(plastic) strain-rate tensor e.. is proportional to df/do.. and can
1-3 VQ

hence be represented by a 6-dimensional "vector;r directed along the

outward normal to the yeild surface. If the material is isotropic this

geometric interpretation can be formulated in 3-dimensional principal

stress space. If the stress state is further restricted as in plane stress

or plate theory the yield surface can be given a 2-dimensional

representation (see Figure 6, p. ). As is explained in the next

section, under plane strain conditions the theory is particularly simple,

since the governing equations for the stress and velocity fields turn out

to be always hyperbolic. The analysis of problems with axial symmetry or

under plane stress conditions, such as small deformation plate theory, is

more complicated because the governing equations are variously elliptic,

hyperbolic or parabolic depending on the position of the current stress
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point on the yield locus. Problems of this type are discussed in Section

U.

3. Plane strain theory

Under plane strain conditions both the commonly employed yield

conditions of von Mises and Tresca reduce to the statement that the

material yields when the maximum shear stress reaches a maximum value k

say. Elementary stress analysis shows that this maximum shear stress is

attained on line segments whose directions bisect the two principal axes.

The trajectories of these maximum shear stress directions form two mutually

orthogonal families of curves - called sliplines, and labelled a- and

3- quadrant. When referred to the curvilinear co-ordinate slipline net-

work it is found that the (quasi-static) equilibrium equations reduce to a

pair of ordinary differential equations, showing that the sliplines are the

characteristics of the equilibrium equations, which integrate to give the

invariant Hencky relations:

(l) p ± 2k\p = constant on a- /3- lines

where p is the in-plane mean pressure (first stress invariant) and ty is

the anticlockwise rotation from an arbitrary chosen reference axis to the

a-slipline. Once the slipline network has been found and provided the

pressure is known at one point of the network, the Hencky relations can be

used to find the pressure and hence the complete stress state at all points

in the plastically deforming region. A simple geometrical consequence of

(l), known as Hencky's first theorem, is illustrated in Figure 2. This

states that the angle turned through in going along a slipline from A to

B is equal to that in going from C to D , that is, ty_ - ty. = 4>n - tyn •

D A U Lr

The same is true for the other family of sliplines since

ip_ - IJJB = ty- - ip. . Two simple examples of orthogonal networks possessing

this so called "Henchy's-Prandtl property" which occur frequently in

solutions are

(a) a constant state region in which both families of sliplines

consist of parallel straight lines and in which the stress

state is uniform, and

(b) a centred fan region consisting of radial straight lines and
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concentric circular arcs.

D

A

FIGURE 2. Hencky's first theorem.

The complete slipline field solution to a given problem will consist

of a number of subregions in each of which the solution is analytic. The

solution in any such subregion can be constructed using one of the three

basic constructions for second order quasilinear hyperbolic systems [9]:

(a) the Cauchy problem in which two pieces of information (for

example two traction components) are given on a non-

characteristic curve,

(b) the Riemann or Characteristic Initial Value Problem where

two sliplines, one from each family are given, and

(c) the Goursat or Mixed Problem where one piece of information

is given on a non-characteristic curve together with the

shape of one slipline.

These constructions can occasionally be formulated analytically but usually

one has to resort to numerical procedures. The traditional method has been

to use finite-difference approximations [J0] but recently more powerful

methods have been developed using a double-power series form of solution of

the governing equations [6]. There are several possible geometrical

quantities which can be used to define a slipline. One of the most

convenient is the radius of curvature, for if p and p. are the radii
a a
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of curvature of the a- and f3-lines they are found to satisfy the

telegraph equation system

( 2 ) pa,f3 " pe = ° • pf3,a + pa = ° '

where a and B are the angles turned through along the a- and (5-lines

respectively. As shown by Ewing [6] this sytem has the double-power series

solution

m,n=Q

(where a = a /ml , and so on) which reduce to

OO 00

(4) p (a, 0) = Y, a a and Pg(°» ^) = Y, b 2
n=0 " n=0 n n

on the two base characteristics 3 = 0 and a = 0 . Thus if the two sets

of coefficients {a } and \b } are known, (3) gives the solution at any

point. This is hence the solution to the Characteristics Initial Value

Problem. That for the Cauchy and Mixed Problems can be formulated

similarly. Collins [7] has shown that if a slipline is thought of as being

represented by the column vector of coefficients in the series expansions

in (U), then most of the basic constructions met with in computing complete

solutions can be represented by a handful of basic matrix operators. These

ideas have been incorporated in a systematic computational package of sub-

routines by Dewhurst and Col I ins [5],

The straight forward "marching in" procedure for solving Cauchy

problems can really only be used when the plastically deforming region

spreads to a stress free surface where the normal and tangential traction

components are specified zero. This is a common situation in geomechanics

problems but occurs only rarely in metal forming analyses, where the

typical boundary condition at a tool/workpiece interface involves both

velocity and traction components.

An unusual example of the application of slipline theory in
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geomechanics is Nye's [74] rigid/plastic model of a valley glacier.

Although this model is highly simplified it introduced many basic ideas and

was the first serious attempt at understanding the mechanics of glaciers.

Nye took as his model a parallel sided slab of rigid/plastic material

deforming under plane strain conditions and resting on a slope inclined at

an angle a to the horizontal (Figure 3, p. 128). On a long time scale

the constitutive law appropriate for ice deformation is a power creep law

(Norton's law or Glen's law as it is known in the glaciological

literature). The strain-rate and stress deviator tensors are proportional:

(5) ^ = Aa: .

and the proportionality constant A is determined by the power law

relation e = {o/A) between the second invariants of the strain-rate

e = [%e..e..)2 and of the stress deviator a = (%o'..a'..)2 . The power n

is one for a linear viscous fluid but is in the range 3-^ for ice. The

rigid/perfectly plastic material is obtained in the limit as n -*• °° . The

real behaviour of ice is hence intermediate between that of these two

idealised model materials.

The motion of a glacier is due to gravity which was ignored in the

derivation of the basic slipline equations (l). However since the material

behaviour is unaffected by the hydrostatic part of the stress, the

influence of gravity is easily accounted for by superposing a hydrostatic

stress equal to pg times the vertical height, where p is the ice

density. This has the effect only of adding a linearly varying normal

traction on the top free surface of the ice, which can now be treated as

weightless. The solution to the Cauchy problem of finding the slipline

field adjacent to a rectilinear surface with zero shear traction and

linearly varying normal traction can be found analytically. It occurs in

the solution for compression between long rough plates [70].

The slipline field consists of two families of cycloids, the curves

of one family running together to form a straight line envelope on the

glacier bed where the shear traction is maximal. The ice thickness is

predicted to be

(6) h = h cosec a = h /a
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(a)

(b)

FIGURE 3. Slip solution for glacier

(a) Extending flow
(t>) Compressive flow.
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where h = k/pg is a characteristic length (̂  11 metres) . This model

hence predicts that the ice thickness is independent of the rate of snow

accumulation and is inversely proportional to the bed slope. Both these

predictions are largely borne out in practice [75].

There are in fact two slipline solutions as shown in Figure 3. The

correct solution is the one which leads to a positive dissipation-rate

prediction when associated with a velocity field. Here it is found that

the ''active" solution in Figure 3 (a) is applicable when the normal

velocity on the free surface is directed inwards corresponding to

conditions on the upper parts of a glacier in the accumulation zone where

there is a net gain in material over the year. The ''passive" solution of

Figure 3 (b) corresponds to the ablation zone on the lower slopes of the

glacier. It is of interest to note that the longitudinal stress component

Oxx is everywhere compressive in the "passive" solution, but is tensile to

a depth of approximately 2h- (= 23 metres) below the surface in the

"active'1 solution. This explains the observation that crevasses occur most

frequently in the accumulation zone and provides a reasonably accurate

estimate of their depth. Since in hyperbolic systems small disturbances

are propagated along the characteristics, it follows that disturbances

caused by small protuberances on the bed will be transmitted along the

sliplines and appear on the surface somewhat displaced from the position of

the protuberance.

Since this early paper by Nye many other theoretical studies have been

made with improved and more complicated models. None of them however have

made such significant advances to our basic understanding of glacier

mechanics. For a recent review see Paterson [75].

As remarked above, in the analysis of metal forming problems, it is

necessary to consider the velocity field as well as the stress field,

because of the presence of boundary conditions on velocity components. A

velocity solution has to satisfy two conditions:

(a) as a consequence of isotropy (or flow rule) it follows that

the principal axes of stress and strain-rate coincide, so

that the slipline directions are the directions of maximum

shear strain-rate; and
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(b) since the material is incompressible the velocity field is

isochoric.

An analysis of these two conditions [70] shows that the slipline

directions are

(a) the characteristics of the velocity equations (as well as of

the stress equilibrium equations), and

(b) the directions of zero extension rate.

This latter condition, when formulated mathematically, gives the ordinary

differential equations along the slipline characteristics (Geiringer's

equations) :

(7) du - vdty = 0 on 3-lines and dv + udty = 0 on 6-lines

or equivalently

(8) u, - v = 0 and u,g + u = 0

where (u, v) are the velocity components in the (a, 3) directions.

Two simple consequences of these equations are of particular

importance.

(A) In a constant state region, where 4> is uniform, it follows that

both velocity components can be constant so that the material is undergoing

a rigid translation.

(B) In a centred fan, with straight a-lines say, it follows that u

is constant along each a-line and the change in v between any two a-

lines is constant along their lengths. Thus if the material is undergoing

a rigid translation on one side of a fan, the resulting velocity field is

compatible with a rigid translation at the other extreme of the fan.

In order to illustrate the type of argument used to construct the

slipline solution to metal forming processes consider the bar drawing

process illustrated in Figure k. The boundary conditions on the smooth die

face are that the tangential traction and the normal velocity components

are both zero. There is hence insufficient boundary data to formulate a

Cauchy problem for the stress or for the velocity fields. Since the shear

traction on AB face is zero, all sliplines must intersect this line at

U50 . If the normal traction were known to be uniform, on AB , then we
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a, b, e

(b)

FIGURE 4. Slipline solution for bar drawing

(a) Slipline solution
(b) Hodograph.
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would have a Cauchy problem for stress and in fact ABE would have to be a

constant state region. The regions ADE and BFE would then have to be

centred fans and EFCD would be the field between the two circular arcs

ED and EF . Now from lemma (B) above it follows that the rigid motion at

entry is "communicated" through the fan ADE so that the material in the

constant state triangle ABE slides rigidly over the die face, and

furthermore that this rigid motion is further "communicated" through the

exit fan BEF and is compatible with the rigid motion of the drawn strip.

It is thus for these kinematic reasons that the pressure distribution on

the die face must be uniform. Any other distribution would lead to curved

sliplines and the resulting velocity distribution on the exit slipline

would not be consistent with the rigid motion of the drawn strip. This

semi-inverse solution procedure is typical of plasticity theory. There is

a uniqueness theorem, though a rather weak one, which guarantees the

correctness of solutions obtained in this way. One further feature of this

velocity solution is worthy of comment. There are tangential velocity

discontinuities across the sliplines ADC and BFC . It is easily shown

from Geiringer's equations that the magnitude of such a discontinuity must

be constant along the length of the slipline. In real materials such

discontinuities correspond to narrow bands of finite thickness through

which the velocity is continuous but changes rapidly.

Many similar solutions based on the use of centred fans and constant

change regions can be found in the literature [10], [72]. The rigid

regions in these solutions are always either at rest or translating

rigidly. New problems appear if the rigid region is rotating as in strip

rolling processes (Figure 5). The shape of the starting slipline cannot

now be straight and has to be determined by solving an integral equation

(usually of Fredholm type) and requires the simultaneous consideration of

the stress and velocity distributions. In order to discuss this latter

class of solutions it is necessary to introduce the concept of a hodograph

diagram.

There is a strong duality between the stress and velocity fields as is

made evident by the fact that the sliplines are the characteristics of

both. This duality is most strikingly demonstrated by the introduction of

the hodograph or velocity diagram. As a point P traces out a slipline

field in the physical plane, its image point p , with position vector
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a-'dU a' b

(b)

FIGURE 5. Slipline solution for hot rolling of strip

(a) slipline solution
(b) Hodograph
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V - the velocity at P - traces out an image network in the velocity

plane. Since the extension rate is zero in a slipline direction it follows

that as P traces out an a- (or (3- ) line, p traces out an image a'-

(or 3'- ) line which is everywhere orthogonal to the original slipline at

corresponding points. It follows therefore that the hodograph network also

forms a Hencky-Prandtl net. The hodograph of the deformation associated

with the bar drawing solution is shown in Figure h (b). As can be seen it

closely resembles the original slipline field - this is a common feature of

solutions.

The mapping between the physical and hodograph planes is not (l-l) .

For example a rigid translating region in the physical plane is mapped into

a single point in the hodograph diagram (for example, the image points

U, V and abe of the rigid regions at entry, exit and in ABE

respectively). Similarly since the magnitude of a velocity discontinuity

is constant along its length, such a discontinuity will be represented by

two parallel curves in the hodograph diagram. If the material on one side

of such a discontinuity is translating rigidly, its image will be a single

point. The image of the velocity field on the other side of the

discontinuity will hence have to be arcs of circles, for example cd and

of in Figure k (b).

Consider now the strip rolling solution shown in Figure 5- Only the

upper half of the solution is illustrated, DC lies on the central line of

symmetry on which the shear stress must be zero, so that all sliplines meet

this line of symmetry at U50 . In AECB the material rotates rigidly

attached to the roll face and then crosses the circular arc velocity

discontinuity CB at exit. This velocity discontinuity is reflected back

up CEA from the line of symmetry. The material deforms continuously

through the singular field AED and through DEC . Note that the entry

slipline AD cannot be straight since otherwise the material when it

emerges from AE would have to translate rather than rotate as explained

above.

Assuming for the moment that the shape of AD is known, then the

singular field ADE is uniquely determined as it is a degenerate case of

the characteristic initial value problem where one of the base sliplines

has degenerated into a point, namely A . The remainder of the network
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DEC can then be determined as a mixed problem. Thus a slipline field of

this general form can be found for an arbitrary choice of starting slipline

AD . However only one such field will lead to a velocity solution which is

compatible with a rigid rotation in AECB . Consider now the associated

hodograph shown in Figure 5 (t>). The images of the rigid strip at entry

and exit are the points U and V . The image of the rotating rigid

region AECBA is a geometrically similar region aecba , scaled up by a

factor of to , the angular speed of the rolls, and turned through 90° in

the direction of rotation. This result follows immediately from the

expression V = u) x r for the velocity of a rigidly rotating body. The

tramline region aeoo'e'a' represents the velocity discontinuity across

AEC . Since the normal velocity on CD is zero by symmetry, the velocity

solution in CED can be constructed as the solution to a mixed problem.

In other words the region a'e'd can be constructed in the hodograph

diagram. The field between e'a at e'd can now be determined as a

characteristics initial value problem. In general the resulting field will

not have a singular point at d . However this must be so since the

velocity distribution on AD is a horizontal rigid translation. It is

this final "consistency condition" in the hodograph diagram which

determines the shape of the initial slipline AD in the physical plane.

When formulated analytically this class of problems lead to Fredholm

integral equations. The matrix operator formulation of slipline

constructions mentioned earlier [7, 5] was devised to compute such

solutions. A large number of problems, with an essentially similar

mathematical structure, have been successfully solved using this method

including applications to machining, symmetrical and unsymmetrical

extrusion, indenting, cutting and forging, rolling friction as well as to

symmetrical and unsymmetrical strip rolling. A recent general review of

the procedure has been given by Col I ins [4], This matrix procedure is

limited to linear problems however and there is at present no corresponding

universally applicable procedure for problems involving non-linear integral

equations which are encountered in problems involving Coulomb friction

boundary conditions, such as cold rolling, and in the axisymmetric

extension of the above theory.

The solutions obtained from rigid/plastic analyses have yielded much

information of practical value. They would be even more useful if work
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hardening could be incorporated. This is not easy to do however due to the

difficulty of understanding how the velocity discontinuities "open-up" in

the presence of hardening [4].

4. Rigid/plastic plate theory

The problems encountered in plane strain are compounded when it comes

to other two-dimensional situations such as axial symmetry, plane stress or

plate theory, since the governing equations are now variously hyperbolic,

elliptic or parabolic depending on the position of the stress point on the

yield locus. As a representative class of problems consider the

deformation of isotropically reinforced concrete plates which are most

frequently modelled by a rigid/plastic material with a square yield

criterion in principal moment space - see Figure 6 (a). The material

remains rigid as long as the principal bending moments M , M^ satisfy

-M < M , Mo < M . The corresponding yield locus for an isotropic metal
a p

plate is a hexagon [Figure 6 (b)J assuming the Tresca yield condition or an

ellipse if the Mises criterion is employed. When the plate yields, the

ratio of the local principal curvature rates [K , KR) is given by the

direction of the outward normal to the yield surface.

Referred to the a- and $- principal moment trajectories or "yield

lines" the (quasi-static) equilibrium equations are

3s
a

= o ,

(9)

where [Q , §.) is the shear force vector, q is the applied load/unit

area and p^ = -3IJJ/9S and pQ = 3IJJ/8SO are the in plane radii of
u ex p p

curvature of the yield lines, which just as for sliplines are inclined at

the angles \p and ^ + TI/2 to an arbitrarily chosen x-axis.

For the square yield condition there are three basic plastic regimes.
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FIGURE 6. Yield loci for plates

(a) Square locus
(t>) Tresca locus.

FIGURE 7. Yield line solution for collapse of simply supported

rectangular plate with central point load (upper right quadrant

illustrated).
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Regime A. Since the two principal moments are now equal, the

equilibrium equations require that Q = Qr, = q = 0 . This "isotropic"

regime occurs only rarely in solutions and then only at isolated points.

Regime AB. From the normality rule it follows that K is zero. The

plate is hence deforming instantaneously into a developable surface. The

a-trajectories are straight lines and p is infinite. With these

simplifications, the equilibrium equations, which are parabolic, can be

integrated explicitly. Massonet [7 3] and others have derived a large

number of solutions for simply supported plates under a variety of loading

conditions in which the plastic region is entirely in this regime; the

collapse mechanisms consisting of fans with one family of yield lines

straight.

Regime B. At this point M = -M , Mr, = M so that the first two

equilibrium equations imply that Q = -2M/po and Q = 2M/po , which on
Ot p Ot p

substitution in the third equation (9) gives a purely geometrical

restriction on the shape of the yield line network. In the special case

where q = 0 , so that the only applied loads are point or edge loads, it

can be shown [2], [7], [76] that this relation implies that the yield-line

network forms a Hencky-Prandtl network. There is hence a precise analogy

between plate solutions in this regime and the classical theory of slip-

line fields. An example of a solution which exhibits this analogy is

shown in Figure 7 (page ). The deforming region consists of a centred

fan OAB and its extension into ABC , where the simply supported boundary

AC plays the role of a shear stress free surface. The governing equations

are still hyperbolic when q £ 0 and much the same solution techniques are

applicable [3], [&].

In addition to the above static analogy there is a kinematic analogy

between plate and plane strain problems [2], The analogue of the plane

strain velocity vector in plate theory is the angular velocity vector

w = (wa, (»)gj . It is readily shown [2] that since the yield line

directions are principal curvature-rate trajectories they are also the

directions of zero twist rate, so that

(10) dw - biod\\> = 0 on a - l i n e s , <2wo + to ctti = 0 on 3 - l ines ,ot p ' p ot
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which are precise analogues of Geiringer's equations (?)• The concept of a

hodograph diagram carries over to plate problems as well and several

examples are given by Collins [2],

For a Tresca material there is an additional plastic regime

corresponding to the side BC of the yield locus (Figure 6 (b)J on which

K = -K- and the yield line network forms an isometric net [.162. The

governing equations in this regime are elliptic.

In order to show that a postulated rigid/plastic solution is the

unique exact solution and not just an upper bound collapse mechanism, it is

necessary to find at least one statically admissible stress field in the

postulated rigid regions. If these regions are unbounded, as is frequently

the case in forming operations, such stress fields can usually be found

without much difficulty. The problem is very much harder if the rigid

regions are finite as in plate problems. The search for exact solutions in

plastic plate theory is hence difficult and full of frustration, which has

led Wood [J7] to postulate the non-existence of solutions to a certain

class of plate problems, typified by the uniformly loaded, clamped, square

plate. The exact solution to this problem was eventually demonstrated by

Fox [S], after much computational effort, who showed that the deforming

zones contained both parabolic (AB) and hyperbolic (B) regions.

5. Conclusions

This paper has attempted to outline some of the difficulties inherent

in constructing solutions in plasticity theory. Attention has been limited

to the classical approach to boundary value problems by attempting to solve

the governing partial differential equations rather than by setting up a

variational formulation and using finite element techniques. Whilst these

latter techniques clearly have much to offer they do not give the same

physical feeling for the nature of the solutions which is inherent in the

intimate connection between the mathematical structure of the governing

equations (that is the characteristics) and the associated stress and

deformation fields. To the author it is this intertwining of the

mathematics and the mechanics which provides the chief fascination of the

subject.
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