THE BISECTION WIDTH OF CUBIC GRAPHS

L.H. Clark and R.C. Entringer

For a graph G, define the bisection width $b w(G)$ of G as $\min \left\{e_{G}(A, B):\{A, B\}\right.$ partitions $V(G)$ with $\| A|-|B|| \leqslant 1\}$ where $e_{G}(A, B)$ denotes the number of edges in G with one end in A and one end in B. We show almost every cubic graph G of order n has $b w(G) \geqslant n / 11$ while every such graph has $b w(G) \leqslant(n+138) / 3$. We also show that almost every r-regular graph G of order n has $b w(G) \geqslant c_{r} n$ where $c_{r} \rightarrow r / 4$ as $r \rightarrow \infty$. Our last result is asymtotically correct.

1. Introduction

For a graph G, define the bisection width $b w(G)$ of G by

$$
b w(G)=\min \left\{e_{G}(A, B):\{A, B\} \text { partitions } V(G) \text { with }| | A|-|B|| \leqslant 1\right\}
$$

where $e_{G}(A, B)$ denotes the number of edges in G with one end in A and one end in B.

The problem of finding the bisection width of a graph is of fundamental importance in many divide-and-conquer stratagems and, as such, is the subject of an extensive literature. (See $[\mathbf{4}, \boldsymbol{9}, 10,13,15,18]$ for general results and $[6,11]$ for results regarding VLSI design.)

Unfortunately, the bisection problem for graphs, in general, is NP-complete [12] and remains so for r-regular graphs [θ]. Polynomial-time algorithms which give exact solutions are known only for trees and bounded-width planar graphs [0] while polynomial-time algorithms which give approximate solutions may give solutions which are far from exact [18]. Consequently, heuristic algorithms which hopefully give nearly exact solutions most of the time have been developed in $[9,13,14,16,18]$.

In [9] a method was given for transforming a regular graph G of order n into a cubic graph G^{*} of order $\Theta\left(n^{6}\right)$ so that any minimum bisection of G^{*} uses only edges of G. As a result, we content ourselves mainly with an examination of cubic graphs. As usual, we say that almost every graph has a property Q provided the probability that a graph of order n has property Q tends to 1 as $n \rightarrow \infty$.

We show that almost every cubic graph G of order n has $b w(G) \geqslant n / 11$ while every such graph has $b w(G) \leqslant(n+138) / 3$. We also show that almost every r-regular

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.
graph G of order n has $b w(G) \geqslant c_{r} n$ where $c_{r} \rightarrow r / 4$ as $r \rightarrow \infty$. (Note that absolute lower bounds for the bisection width of a graph are not particularly informative, since they must be nearly zero.)

Our notation and terminology follows Bollobás [7].

2. An Upper Bound for the Bisection Width of a Cubic Graph

We give now an upper bound for the bisection width of a cubic graph.
Theorem 1. Every cubic graph G of order n has $b w(G) \leqslant(n+138) / 3$.
Proof: Let $\{A, B\}$ be an equisized partition of $V(G)$ with $b w(G)=e_{G}(A, B)$. Set $A_{i}=\left\{v \in A: e_{G}(v, B)=i\right\}$ for $0 \leqslant i \leqslant 3$ and $A_{1 i}=\left\{v \in A_{1}: e_{G}\left(v, A-A_{1}\right)=i\right\}$ for $0 \leqslant i \leqslant 2$. (Define B_{i} and $B_{1 i}$ similarly.)

Suppose $x \in A_{3}$ and $y \in B_{1} \cup B_{2} \cup B_{3}$ with $x y \notin E(G)$; exchanging x with y shows $\{A, B\}$ is not an optimal partition, which is a contradiction. Consequently, $\left|B_{1} \cup B_{2} \cup B_{3}\right| \leqslant 3$ and $b w(G) \leqslant 9 \leqslant(n+138) / 3$. We assume $\left|A_{3}\right|=\left|B_{3}\right|=0$.

Suppose $\left|B_{2}\right| \geqslant 4$. When $\left|A_{2}\right| \neq 0$, there exists $x \in A_{2}$ and $y \in B_{2}$ with $x y \notin$ $E(G)$; exchanging x with y shows $\{A, B\}$ is not an optimal partition. Consequently, $\left|A_{2}\right|=0$. When $G\left[A_{10} \cup A_{11}\right]$ is empty, we have $\left|A_{10} \cup A_{11}\right| \leqslant 1$. Then

$$
3\left|A_{0}\right| \geqslant e_{G}\left(A_{0}, A_{1}\right) \geqslant 2\left|A_{1}\right|-2
$$

so that

$$
n / 2=\left|A_{0}\right|+\left|A_{1}\right| \geqslant\left(5\left|A_{1}\right|-2\right) / 3
$$

and

$$
b w(G) \leqslant(3 n+4) / 10 \leqslant(n+138) / 3 .
$$

When $G\left[A_{10} \cup A_{11}\right]$ is nonempty, there exist an edge $x_{1} x_{2}$ in $G\left[A_{10} \cup A_{11}\right]$ and $y_{1}, y_{2} \in$ B_{2} with $e_{G}\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=0$; exchanging $\left\{x_{1}, x_{2}\right\}$ with $\left\{y_{1}, y_{2}\right\}$ shows $\{A, B\}$ is not an optimal partition. We assume $\left|A_{2}\right|,\left|B_{2}\right| \leqslant 3$.

Denote a path (cycle) of order n by $P_{n}\left(C_{n}\right)$. Let
$a=\max \left|\left\{E_{1}, \ldots, E_{t}\right\}\right|$ where $\left\{E_{1}, \ldots, E_{t}\right\}$ is a set of vertex-disjoint subgraphs of $G[A]$ and each

$$
E_{i} \cong P_{3} \subseteq G\left[A_{10} \cup A_{11}\right] \text { or }
$$

$\cong C_{3} \subseteq G\left[A_{0} \cup A_{11}\right]$ with precisely one vertex in A_{0} or
$\cong C_{4} \subseteq G\left[A_{0} \cup A_{10} \cup A_{11}\right]$ with precisely one vertex in
A_{0} and precisely one vertex in A_{10} or
$\cong P_{5} \subseteq G\left[A_{0} \cup A_{10} \cup A_{11}\right]$ with only the centre vertex in A_{0} and
let $A_{j}^{*}=\bigcup\left\{V\left(E_{i}\right) \cap A_{j}: 1 \leqslant i \leqslant a\right\}$ for $0 \leqslant j \leqslant 1$. (Define $b,\left\{F_{1}, \ldots, F_{t}\right\}, B_{j}^{*}$ for $0 \leqslant j \leqslant 1$ similarly.)

Claim. $\min \{a, b\} \leqslant 5$.
Suppose $a, b \geqslant 6$. Choose $e_{G}\left(E_{i}, F_{j}\right)=0$ with $\left|\left|E_{i}\right|-\left|F_{j}\right|\right|$ as large as possible, say $\left|E_{i}\right| \geqslant\left|F_{j}\right|$. When $\left|E_{i}\right|=\left|F_{j}\right|$; exchanging E_{i} with F_{j} shows $\{A, B\}$ is not an optimal partition. When $\left|E_{i}\right|=\left|F_{j}\right|+1$; exchanging E_{i}^{\prime} with F_{j}, where E_{i}^{\prime} is the subgraph of E_{i} contained in $G\left[A_{1}\right]$, shows $\{A, B\}$ is not an optimal partition. When $\left|E_{i}\right|=\left|F_{j}\right|+2$ then $\left|E_{i}\right|=5$ and $\left|F_{j}\right|=3$. Since $b \geqslant 6$, there exist $F_{k} \neq F_{j}$ with $e_{G}\left(E_{i}, F_{k}\right)=0$. By the above, $\left|F_{k}\right|=3$; exchanging E_{i} with $F_{j} \cup F_{k}^{\prime}$, where $F_{k}^{\prime \prime}$ is a subpath of order 2 contained in $G\left[B_{1}\right]$, shows $\{A, B\}$ is not an optimal partition.

We assume $a \leqslant 5$ so that $\left|A_{0}^{*}\right| \leqslant 5$ and $\left|A_{1}^{*}\right| \leqslant 20$.
Claim. $\left|A_{10}\right| \leqslant 25$.
Note that $G\left[A_{10} \cup A_{11}\right]$ is a vertex-disjoint set of paths and cycles when $\mid A_{10} \cup$ $A_{11} \mid \neq 0$, since $\delta\left(G\left[A_{10} \cup A_{11}\right]\right)=1$ and $\Delta\left(G\left[A_{10} \cup A_{11}\right]\right)=2$. Consequently, $\left|A_{10}\right| \leqslant$ 25 since $a \leqslant 5$ (after breaking paths and cycles apart if necessary).

Let $A_{1}^{\prime}=\left\{w \in A_{1}-A_{1}^{*}: v w \in E(G)\right.$ for some $\left.v \in A_{1}^{*}\right\}$. Clearly, $\left|A_{1}^{\prime}\right| \leqslant 2 \cdot 5=10$. Set $\left|A_{12}\right|=c\left|A_{1}\right|$ where $c \in[0,1]$.

Then

$$
\left|A_{11}\right|+\left|A_{12}\right| \geqslant\left|A_{1}\right|-25
$$

so that

$$
\left|A_{11}\right| \geqslant(1-c)\left|A_{1}\right|-25
$$

Now

$$
3\left|A_{0}\right| \geqslant e_{G}\left(A_{0}, A_{1}\right) \geqslant\left|A_{11}\right|+2\left|A_{12}\right|-3
$$

so that

$$
\left|A_{0}\right| \geqslant\left[(1+c)\left|A_{1}\right|-28\right] / 3 .
$$

Then

$$
n / 2 \geqslant\left|A_{0}\right|+\left|A_{1}\right| \geqslant\left[(4+c)\left|A_{1}\right|-28\right] / 3
$$

so that

$$
\left|A_{1}\right| \leqslant(3 n+56) / 2(4+c)
$$

and

$$
b w(G) \leqslant 6+\left|A_{1}\right| \leqslant 6+(3 n+56) / 2(4+c)
$$

Also

$$
\begin{aligned}
\left|A_{11}\right|-\left|A_{1}^{*}\right|-\left|A_{1}^{\prime}\right|-5 & \leqslant\left|A_{11}-\left(A_{1}^{*} \cup A_{1}^{\prime}\right)\right|-5 \\
& \leqslant\left|A_{0}-A_{0}^{*}\right|=\left|A_{0}\right|-\left|A_{0}^{*}\right|
\end{aligned}
$$

by the maximality of a, so that

$$
\left|A_{0}\right| \geqslant\left|A_{11}\right|-35 \geqslant(1-c)\left|A_{1}\right|-60 .
$$

Then

$$
n / 2 \geqslant\left|A_{0}\right|+\left|A_{1}\right| \geqslant(2-c)\left|A_{1}\right|-60
$$

so that

$$
\left|A_{1}\right| \leqslant(n+120) / 2(2-c)
$$

and

$$
b w(G) \leqslant 6+\left|A_{1}\right| \leqslant 6+(n+120) / 2(2-c) .
$$

Consequently,

$$
\begin{aligned}
b w(G) & \leqslant \min \{6+(3 n+56) / 2(4+c), 6+(n+120) / 2(2-c)\} \\
& \leqslant(n+138) / 3
\end{aligned}
$$

since the above minimum is at most $(n+138) / 3$ for $n \geqslant 184$ and at most $6+$ $(3 n+56) / 8 \leqslant(n+138) / 3$ for $n \leqslant 182$.

Remark. In general, if $\{A, B\}$ is a partition of the vertices of an r-regular graph G of order n with $b w(G)=e_{G}(A, B)$, one would hope that either $G[A]$ or $G[B]$ contains a small number of forbidden subgraphs (see definition of a, b in Theorem 1) which, in turn, impose structure on $G[A]$ or $G[B]$ and give $b w(G) \leqslant c_{r} n+O(1)$ for some $c_{r}<r / 4$. At present we have only the result of Goldberg and Gardner [13] that, for any such graph $G, b w(G) \leqslant r\left(n+\varepsilon_{n}\right) / 4$ where $\varepsilon_{n}=1$ for odd n and $\varepsilon_{n}=n /(n-1)$ for even n. There are, however, limitations on how small the ratio $b w(G) / n$ can be made for r-regular graphs G of order n.

An r-regular graph G of order n is an (n, r, c)-expander if $|N(X)-X| \geqslant c|X|$ for all $X \subseteq V(G)$ with $|X| \leqslant n / 2$. (These and similar graphs have an extensive literature; see the references in [1].) Clearly, any (n, r, c)-expander G has $b w(G) \geqslant c\lfloor n / 2\rfloor$.

Let $\lambda_{1}(G)$ denote the second largest eigenvalue of the adjacency matrix of G in absolute value. Note that $0<\lambda_{1}(G)<r$ when G is connected. Alon and Milman [3] have shown that any r-regular graph G of order n is an $\left(n, r,\left(r-\lambda_{1}(G)\right) / 2 r\right)$ expander while Alon and Boppana [2] (see also [17]) have shown that $\underset{n \rightarrow \infty}{\lim } \lambda_{1}\left(G_{n}\right) \geqslant$ $2 \sqrt{r-1}$ for any sequence $\left\{G_{n}\right\}$ of such graphs. Lubotzky, Phillips and Sarnak [17] have shown this last result asymptotically correct by constructing infinite families of r-regular graphs G with $\lambda_{1}(G) \leqslant 2 \sqrt{r-1}$ for all primes $r-1 \equiv 1(\bmod 4)$.

The above results imply that any r-regular graph G of large order n has $b w(G) \geqslant$ $c n$ where c, unfortunately, is rather small. We improve this by showing that almost every r-regular graph G of order n has $b w(G) \geqslant c_{r} n$ where $c_{r} \rightarrow r / 4$ as $r \rightarrow \infty$.

3. A Lower Bound for the Bisection Width of Almost Every Cubic Graph

Bender and Canfield [5] gave the first formula for the asymptotic number of labelled r-regular graphs of order n. Bollobás [8] gave a simpler proof of the same formula that, more importantly, contained a model for the set of regular graphs which can be used to study labelled random regular graphs. We describe now this model.

Let $r n$ be even and $q=r n / 2$. Let $V=V_{1} \cup \cdots \cup V_{n}$ be a disjoint union of $r n$ labelled vertices where $\left|V_{i}\right|=r$ for $1 \leqslant i \leqslant n$. A configuration is a 1-regular graph with vertex set V. Denote the set of configurations by $\Phi=\Phi(n, r)$. Clearly,

$$
|\Phi|=(r n)!/ 2^{q} q!.
$$

A configuration is good if when we shrink each set V_{i} to a vertex v_{i} we obtain a simple graph. Denote the set of good configurations by $\Omega=\Omega(n, r)$ and the set of simple r-regular graphs with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ by $\mathcal{G}_{n}^{(r)}$. Clearly,

$$
|\Omega|=(r!)^{n}\left|\mathcal{G}_{n}^{(r)}\right| .
$$

Now regard Φ as a probability space where $P(F)=|\Phi|^{-1}$ for any configuration F. Bollobás [8] showed that

$$
P(\text { configuration } F \text { is good }) \rightarrow e^{\left(1-r^{2}\right) / 4} \quad(n \rightarrow \infty)
$$

and, hence,

$$
\left|\mathcal{G}_{n}^{(r)}\right| \sim e^{\left(1-r^{2}\right) / 4}|\Phi| /(r!)^{n} \quad(n \rightarrow \infty)
$$

Finally regard $\mathcal{G}_{n}^{(r)}$ as a probability space where $P(G)=\left|\mathcal{G}_{n}^{(r)}\right|^{-1}$ for any r-regular graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. An immediate consequence of the preceding is that if the probability that a configuration has a certain property tends to 1 as $n \rightarrow \infty$ then the probability that an r-regular graph has the corresponding property also tends to 1 as $n \rightarrow \infty$.

For $r \geqslant 3$, let $c=c_{r}$ be the unique real number in $(0, r / 4)$ with $2^{(2-r) r^{r}}=$ $(2 c)^{2 c}(r-2 c)^{(r-2 c)}$. (The constant exists since $x^{x}(r-x)^{r-x}$ monotonically decreases on $[0, r / 2]$.$) Note that c_{3}=.0922357 \cdots \in(1 / 11,1 / 10)$. We denote $t(t-1) \cdots$ $(t-k+1)$ by $(t)_{k}$.

We give now
Theorem 2. Almost every cubic graph G of order n has $b w(G) \geqslant n / 11$.
Proof: Let $n=2 m$. Fix a partition $\{A, B\}$ of $\{1, \ldots, n\}$ with $|A|=|B|=m$. Let $V_{A}=\bigcup\left\{V_{i}: i \in A\right\}$ (Define V_{B} similarly). Note that the event $e_{F}\left(V_{A}, V_{B}\right)=j$
is a nonempty subset of Φ if and only if $3 m$ and j have the same parity. Put $p_{j}=$ $(3 m-j) / 2$. Then

$$
\begin{align*}
P\left(e_{F}\left(V_{A}, V_{B}\right)=j\right) & =\frac{(3 m)_{j}^{2}}{j!}\left[\frac{(3 m-j)!}{2^{p_{j}} p_{j}!}\right]^{2}|\Phi|^{-1} \\
& =\frac{[(3 m)!]^{3} 2^{j}}{j!\left[p_{j}!\right]^{2}(r n)!} \tag{1}
\end{align*}
$$

where the left factor of (1) is the number of ways of labelling the ends of the j edges between V_{A} and V_{B} and the middle factor of (1) is the number of ways of completing the 1 -factor in both V_{A} and V_{B}.

For $j \geqslant 2$, we have

$$
P\left(e_{F}\left(V_{A}, V_{B}\right)=j-2\right)=\frac{j(j-1)}{(3 m-j+2)^{2}} P\left(e_{F}\left(V_{A}, V_{B}\right)=j\right)
$$

where $j(j-1) /(3 m-j+2)^{2}$ increases with j. For even $3 m$ and $2 k \leqslant\left\lfloor c_{3} n\right\rfloor$, we have

$$
\begin{aligned}
P\left(e_{F}\left(V_{A}, V_{B}\right) \leqslant 2 k\right) & =\sum_{\text {even } j \leqslant 2 k} P\left(e_{F}\left(V_{A}, V_{B}\right)=j\right) \\
& \leqslant P\left(e_{F}\left(V_{A}, V_{B}\right)=2 k\right)\left(1+\alpha+\cdots+\alpha^{k}\right)
\end{aligned}
$$

where $\alpha=2 k(2 k-1) /(3 m-2 k+2)^{2}$. Since $\alpha \leqslant\left(2 c_{3} / 3-2 c_{3}\right)^{2} \leqslant 1 / 2$, we have

$$
P\left(e_{F}\left(V_{A}, V_{B}\right) \leqslant 2 k\right) \leqslant 2 P\left(e_{F}\left(V_{A}, V_{B}\right)=2 k\right)
$$

Then

$$
\begin{aligned}
P(b w(F) \leqslant 2 k) & =P\left(e_{F}\left(V_{A}, V_{B}\right) \leqslant 2 k \text { for some }\{A, B\}\right) \\
& \leqslant \sum_{\{A, B\}} P\left(e_{F}\left(V_{A}, V_{B}\right) \leqslant 2 k\right) \\
& \leqslant\binom{ n}{m} \frac{[(3 m)!]^{3} 2^{2 k}}{(2 k)!\left[p_{2 k}!\right]^{2}(3 n)!}
\end{aligned}
$$

From $\binom{n}{m}=O\left(2^{n} m^{-1 / 2}\right)$ and Stirling's Formula, we obtain

$$
P(b w(F) \leqslant 2 k)=O\left(\frac{2^{-m} 3^{3 m} m^{3 m+1 / 2}}{(2 k)^{2 k+1 / 2}(3 m-2 k)^{3 m-2 k+1}}\right)
$$

Now write $2 k=2 c m \leqslant\left\lfloor c_{3} n\right\rfloor$ and we have

$$
P(b w(F) \leqslant c n)=O\left(n^{-1}\right) .
$$

For odd $3 m$, a similar calculation with $2 k$ replaced by $2 k+1$ gives the same result. Then

$$
P\left(b w(F) \leqslant\left\lfloor c_{3} n\right\rfloor\right) \rightarrow 0 \quad(n \rightarrow \infty)
$$

and, consequently,

$$
P\left(b w\left(G \in \mathcal{G}_{n}^{(3)}\right) \geqslant c_{3} n\right) \rightarrow 1 \quad(n \rightarrow \infty)
$$

Remark. In general, a similar calculation shows that

$$
P\left(b w\left(G \in \mathcal{G}_{n}^{(r)}\right) \geqslant c_{r} n\right) \rightarrow 1 \quad(n \rightarrow \infty)
$$

Since $(2 d)^{2 d}(1-2 d)^{(1-2 d)}$ monotonoically decreases to $1 / 2$ on $[0,1 / 4]$, we have $(2 d)^{2 d}(1-2 d)^{(1-2 d)} \geqslant 2^{2 / r} / 2$ for fixed $d \in(0,1 / 4)$ and all sufficiently large r. Consequently, $c_{r} \geqslant r d$ so that $c_{r} \rightarrow r / 4$ as $r \rightarrow \infty$. We summarize this now.

Theorem 3. Almost every r-regular graph G of order n has $b w(G) \geqslant c_{r} n$. Moreover, $c_{r} \rightarrow r / 4$ as $r \rightarrow \infty$.

In view of the upper bound for the bisection width given by Goldberg and Gardner [13], this last result is asymptotically correct.

References

[1] N. Alon, 'Eigenvalues and expanders', Combinatorica 6 (1986), 83-96.
[2] N. Alon and R. Boppana (preprint).
[3] N. Alon and V.D. Milman, ' λ_{1}, Isoperimetric inequalities for graphs, and superconcentrators', J. Combin. Theory Ser. B 38 (1985), 73-88.
[4] E.R. Barnes, 'Partitioning the nodes of a graph', in Graph Theory with Applications to Algorithms and Computer Science, ed. Y. Alavi, et al, pp. 57-72 (Wiley Interscience, New York, 1985).
[5] E.A. Bender and E.R. Canfield, 'The asymptotic number of labelled graphs with given degree sequence', J. Combin. Theory Ser. A 24 (1978), 296-307.
[日] S.N. Bhatt and F.T. Leighton, 'A framework for solving VLSI graph layout problems', J. Comput. System Sci. 28 (1984), 300-343.
[7] B. Bollobás, Graph Theory, An Introductory Course (Springer-Verlag, Berlin, Heidelberg, New York, 1979).
[8] B. Bollobas, 'A probabilistic proof of an asymptotic formula for the number of labelled regular graphs', European J. Combin. 1 (1980), 311-316.
[日] T.N. Bui, S. Chaudhuri, F.T. Leighton and M. Sipser, 'Graph bisection algorithms with good average case behaviour', Combinatorica 7 (1987), 171-191.
[10] W.E. Donath and A.J. Hoffman, 'Lower bounds for the partitioning of graphs', IBM J. Res. Develop. 17 (1973), 420-425.
[11] A.E. Dunlop and B.W. Kernighan, 'A procedure for placement of standard-cell VLSI circuits', IEEE Transactions on Computer-Aided Design CAD-4 (1985), 92-98.
[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the thoery of $N P$-completeness (W.M. Freeman, New York, 1979).
[13] M.K. Goldberg and R. Gardner, 'On the minimal cut problem', in Progress in Graph Theory, ed. J.A. Bondy et al, pp. 295-305 (Academic Press, New York, 1984).
[14] M.K. Goldberg, S. Lath and J.W. Roberts, 'Heuristics for the graph bisection problem', (preprint).
[15] M.K. Goldberg and J.F. Lynch, 'Lower and upper bounds for the bisection width of a random graph', Congress. Numer. 4θ (1985), 19-25.
[16] B.W. Kernighan and S. Lin, 'An efficient heuristic procedure for partitioning graphs', Bell System Technical J. 49 (1970), 291-307.
[17] A. Lubotzky, R. Phillips and P. Sarnak, 'Ramanujan graphs', Combinatorica (to appear).
[18] R.M. MacGregor, On partitioning a graph: a theoretical and empirical study. (Ph.D thesis, University of California, Berkeley, 1978).

[^1]R. Entringer,

Department of Mathematics,

The University of New Mexico, Albuquerque, NM. 87131
United States of America.

[^0]: Received 22 July, 1988

[^1]: L.H. Clark,

 Department of Mathematics, The University of New Mexico, Albuquerque, NM. 87131
 United States of America.

