Appendix D: Cross sections and probability

Consider a flux I_{0} of collimated, monoenergetic particles impinging upon a target. The number of atoms per unit volume in the target material is

$$
\begin{equation*}
n_{\mathrm{a}}=\frac{N_{\mathrm{A}}(\text { atoms } / \mathrm{mol}) \times \rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)}{A(\mathrm{~g} / \mathrm{mol})} \tag{D.1}
\end{equation*}
$$

where ρ is the target density, A is its atomic weight, and N_{A} is Avogadro's number.

In an infinitesimal thickness $d x$ of the target there will be $n_{\mathrm{a}} d x$ atoms/ cm^{2} in the path of the beam. As the beam traverses the target, interactions take place, and the beam intensity is reduced. Let $d I$ refer to the change in flux. This quantity will be proportional to both the incident flux of beam particles and the number of target atoms $/ \mathrm{cm}^{2}$ in the beam's path.

$$
d I=-\sigma I n_{\mathrm{a}} d x
$$

The constant of proportionality σ is referred to as the total cross section and has the units of area. A convenient unit for nuclear work is the barn, where

$$
1 \text { barn }=10^{-24} \mathrm{~cm}^{2}
$$

Let us assume that the material is homogeneous and that the target is thin enough so that the particle's velocity is not significantly reduced. Then σ is not a function of x, and if we integrate over the target thickness, we find that

$$
\begin{equation*}
I(x)=I_{0} \exp \left(-\sigma n_{\mathrm{a}} x\right) \tag{D.2}
\end{equation*}
$$

Thus, the intensity of particles satisfying the initial conditions drops off exponentially as the beam traverses the target.

If we define Pr to be the probability that a particle interacts in the target, then the probability that the particle does not interact after crossing a
thickness L is

$$
\begin{equation*}
1-\operatorname{Pr}=I(L) / I_{0}=\exp \left(-\sigma n_{\mathrm{a}} L\right) \tag{D.3}
\end{equation*}
$$

The quantity

$$
\begin{equation*}
\lambda_{\mathrm{I}}=\left(\sigma n_{\mathrm{a}}\right)^{-1} \tag{D.4}
\end{equation*}
$$

is called the interaction length. When $x=\lambda_{\mathrm{I}}$, the beam intensity in Eq. D. 2 drops to I_{0} / e, so λ_{I} represents the mean free path between interactions. When the target thickness $L \ll \lambda_{\mathrm{I}}$, we can expand the exponential in Eq. D. 3 to get

$$
\begin{equation*}
\operatorname{Pr}=\sigma n_{\mathrm{a}} L=L / \lambda_{\mathrm{I}} \tag{D.5}
\end{equation*}
$$

The inverse of the interaction length

$$
\begin{equation*}
\mu=1 / \lambda_{\mathrm{I}}=\sigma n_{\mathrm{a}} \tag{D.6}
\end{equation*}
$$

is called the attenuation coefficient.
Intuitively, we may consider each atom to present a circular target of area σ to the beam particle. If we assume that the beam particles are randomly distributed overa $1-\mathrm{cm}^{2}$ area and that an interaction takes place whenever a beam particle hits one of the circular areas, then $n_{2} \sigma d x$ represents the fraction of the total area in which an interaction will take place, or equivalently the probability of an intersection.
Now consider a scattering experiment using a short target of length $L \ll \lambda_{\mathrm{I}}$ where the scattered particles are only detected in a small solid angle $\Delta \Omega$ around the direction (θ, ϕ). The detected intensity is then given by

$$
\begin{equation*}
I(\theta, \phi)=I_{0} n_{\mathbf{a}} L \frac{d \sigma}{d \Omega}(\theta, \phi) \Delta \Omega \tag{D.7}
\end{equation*}
$$

The constant of proportionality $d \sigma / d \Omega$ is called the differential cross section. The form of the functions σ and $d \sigma / d \Omega$ depends on the dynamics of the scattering process. The probability of an interaction is

$$
\begin{equation*}
\operatorname{Pr}=n_{\mathrm{a}} L \frac{d \sigma}{d \Omega} \Delta \Omega \tag{D.8}
\end{equation*}
$$

