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Abstract

We survey the role played by optimization in the choice of parameters for Tikhonov
regularization of first-kind integral equations. Asymptotic analyses are presented for a
selection of practical optimizing methods applied to a model deconvolution problem.
These methods include the discrepancy principle, cross-validation and maximum likeli-
hood. The relationship between optimality and regularity is emphasized. New bounds on
the constants appearing in asymptotic estimates are presented.

1. Introduction

Optimization plays a crucial role in the regularization of ill-posed problems, in a
variety of ways. For example, it does so in the choice of parameters appearing in
the Tikhonov regularization of first-kind integral equations, in the computation of
constrained regularized solutions to such equations when the solutions are known
a priori to be in some closed convex set such as the S3t of non-negative functions
or the set of monotonic functions, and in a large number of image reconstruction
problems where a function is to be estimated given only partial information about
its Fourier transform or some similar set of observable linear functionals of it.

In this paper we examine one of these areas; we study the role of optimization
in the Tikhonov regularization of first-kind integral equations. We develop our
analysis for a model problem, that of inverting a Fredholm convolution equation
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[2 ] Optimal regularisation of ill-posed problems 115

with periodic kernel. It has been shown by Anderssen and Prenter [2] that such a
model serves as a useful framework for comparing different regularization tech-
niques; in the present study we use our model to compare the performance of a
selection of practical methods for estimating optimal parameters in Tikhonov
regularization. Most of our results carry over to the general case of first-kind
operator equations, and it is within this general setting that we introduce our
discussion.

1.1 Tikhonov regularization
Consider an operator equation of the form

*/=g, (1.1)
where A" is a mapping from a topological space A' to a topological space Y. We
assume that K is invertible but that the inverse mapping K~1 is not continuous.
Thus, for a given data function g e y , there exists a unique solution / e l , but
small perturbations (measured in the 7-topology) of the data can yield un-
bounded perturbations (measured in the A'-topology) of the solution. The prob-
lem of inverting (1.1) is therefore ill-posed.

In the broadest sense, to regularize such a problem is simply to define a
modified problem for which the inverse map is continuous and the solution of the
modified problem (called the regularized solution) is an approximation to the
solution of the original problem. A particular regularization method usually
defines a family or sequence of modified problems parametrized in terms of one
or more control variables, a say. In practice, a major consideration is how to
select an optimal parameter set oto, which in turn defines an optimal regularized
solution fa, say, among the family of possible regularized solutions {/„}.
Existing methods for selecting a on the whole attempt to optimize some estimated
measure of the signal error Kfa - g.

In Tikhonov regularization (a detailed description may be found in Groetsch
[10] and Tikhonov and Arsenin [16]) (1.1) is replaced by a well-posed problem of
the form

*«/« = *«• (1-2)
For simplicity, let us assume K: L2 -» L2, where L2 — L2[0,1]; also let K be
linear and compact. The regularized solution fa is defined variationally as the
minimizer of a functional of the form

* . ( / ) H I * / - gf + X 0 , ( / ) , a = (p,\). (1.3)
Here £lp is some non-negative stabilizing functional depending on a parameter
p -&• 0 (called the order of regularization), and X > 0 is a constant (called the
regularization parameter). A simple choice of £lp is

I/ ( / ) l | 2 . (1.4)
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where the norm in both (1.3) and (1.4) is L2. In this case, the minimizer of (1.3)
satisfies

K*g, (1.5)

where K denotes the restriction of K to the domain H c L2, where H is the
completion of

{<#>: tfJ'1 e L2, j = 0,. . . , p - 2; <^P~1) absolutely continuous}

under the inner product

where I<J>] denotes <f>(l) — </>(0), and K* denotes the adjoint of K. Equation (1.5)
is of the form (1.2) where Ka: H -* H is linear, invertible, and has a continuous
inverse for X > 0.

The order of regularization, p, dictates the smoothness of the subspace H in
which the regularized solution fa is sought, and also controls the sensitivity of /„
to perturbations in g. The regularization parameter X, on the other hand, controls
the trade-off in (1.3) between minimizing the residual and stabilizing the solution.
If X is too small, the original ill-posed problem (1.1) will tend to dominate, and
therefore numerical errors will be catastrophically amplified; if X is too large, the
regularized solution will not adequately satisfy (1.1). We therefore seek to
optimize a = (p, X).

1.2 Optimizing a
In theory we might define an absolutely optimal a as that which minimizes the

error

II/ . - /II- (1-6)
Let us first consider the choice of p. An absolutely optimal p should depend on
the smoothness of the true solution / and the decay-rate of the spectrum of K.
(For theoretical studies in support of this, see for example Cullum [5] and Lukas
[13, 14].) In practice, however, the smoothness of / is usually unknown, and the
optimization of p using a practical method which attempts to minimize an
estimate of (1.6) is not possible. One is forced instead to attempt to minimize
estimates of the signal error

\\Kfa-g\\ (1.7)

with respect to p and X. An interesting pragmatic approach was studied by Lukas
[13]; others have used generalized cross-validation and maximum likelihood
estimation in this context (Baart [3], Davies et al [8] and Gamber [9]). In each
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case a certain function of a is minimized with respect to X for a sequence of
/^-values and hence a minimizing pair (p, X) is found. Observations on the
efficacy of such procedures are made in the sequel.

Consider now the choice of X for fixed p. When the data function is inexact,
which is always the case in practical situations, the choice of X is often critical. In
the numerical experiments of de Hoog [11] it is shown that the best choice of X
can depend quite crucially on the actual errors present in the data rather than just
their statistical properties. Any method of optimizing X should therefore take
account of the data being analyzed.

Again, it is difficult in practice to find an absolutely optimal value of X (in the
sense of minimizing (1.6) for fixed p), and we rely on optimizing estimates of
(1.7). Practical methods fall into two classes, those which require a priori
estimates of the variances of the noise in the data, and those which do not. In
what follows we study two methods in the former class, based on the discrepancy
principle [10, 16] much favoured by Soviet workers, and two methods in the latter
class, namely cross-validation and maximum likelihood. In each case we examine
the optimality properties of the estimated regularization parameters and compare
them with the true minimizer of (1.7).

Most of the detailed asymptotic results presented in this paper appear here for
the first time, although the associated rates of convergence are on the whole
well-known. A note on proof techniques is given in an appendix, and illustrated
by sketch proofs of Theorems 3.1 and 3.2.

2. The model problem

Consider the Fredholm convolution integral equation of the first kind given by

(Kf)(x) - f k(x - y)f(y) dy = g(x), 0 < x < 1, (2.1)
•'o

where g is measured discretely with random errors. For simplicity we assume
(a) / , g and k e L2, and each is periodic with period 1;
(b) the Fourier coefficients of k, defined by

~kq = f k(x)exp(-iuqx)dx, uq=2irq, (2.2)

satisfy

kq±Q, q = 0,±l,±2,... .

This means that K is invertible but K~l is not continuous since k -» 0 as
q -* ±oo.
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(c) The sampled data are
yn = g(xn) + en, it = O , l , . . . , t f - l , (2.3)

with uniform sample points xa = n/N;
(d) the errors satisfy

Een = 0, EElen = a2Sln, l,n = 0 , . . . , N - 1 , (2.4)

where E denotes expectation with respect to the error distribution. This model
problem can be treated very simply in terms of the discrete Fourier transform
(DFT), while it incorporates all the intrinsic difficulties of more general operator
equations of the first kind.

For convenience let AT be even and M = \N. The DFT of any discrete set
{4>n )n-o i s t h e n defined by

T7 L *nexp(/W < ?xn), -M < ? < M, (2.5)
n = 0

and has the property

+».-,= **.,. 0<t f < M , (2.6)
whenever the <j>n are real-valued. The coefficients in (2.5) give rise to the
real-valued trigonometric interpolant

M

< M * ) = E " * * . , e * p ( ' « , * ) . 0 < J C < 1 , (2.7)
q=-M

where the interpolation takes place at the sample points xn, i.e.
** (*») = *.. n = 0,...,N-l. (2.8)

(The notation E" denotes half-weighting of the first and last terms in the sum.) In
the sequel, when <f> = <i>(x) we denote </>(*„) by <j>n, so that <f>N given by (2.7)
interpolates <t>. The vector $N e RNdenotes(<p0,...,4>N-i)T.

Let TM denote the space of real-valued trigonometric polynomials of degree at
most M and period 1. We shall study regularized solutions in this space. We note
the following elementary results:

LEMMA 2.1 (i) / / <j> e TM then K<j> e TM and

(K*)(x) = (K<j>N)(x) = L " kqiN<qexp(iUqx). (2.9)
q=-M

(ii) / / <f> G L1 is the solution of
K* = gN, (2.10)

then <j> G TM and

= I " fc-^,,exp(i«,x). (2.11)
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(iii) The solution <f> of (2.10) interpolates $N which satisfies

(212)
where KN is the N X N circulant matrix

* = (•„), %s = exp(2irirs/N), r, s = 0,..., N - 1.

In the above setting, the unregulanzed model problem can be written: find

IN G TM s u c h t n a t

K N * N = ys> w h e r e y s = ( y < » y ^ - - - > y s
Under pth-order Tikhonov regularization we seek

n n n f l l ' [ ( # ) ( * „ ) - * , ] 2 + X||/<'>|a), (2.15)

or equivalently

min I " l\kqfN,q - yNJ + A

where f;, e C " has elements

\Jo>fN,i>---'JN,M> /N,-M+I>- • - ' / A T - I ) (2-16)

which satisfy (2.6), and yN is the DFT of y^. It is easily shown that the minimizer
fN.a of (2.15) may be written (cf. (1.5))

/ * ; « ( * ) = I" /«r . , : - exp( i« , Jc) , 0 < * < l , (2.17)
q~-M

where
/AT.,!. = Z,..^yfc,, -M^q^M, (2.18)

with

Z ^ - f l + Xw^/;/^,!2)'1, - M < 9 < M . (2.19)

The numbers Z9 o in (2.18)-(2.19) constitute a discrete regularization filter
depending on the parameter set a = (/?, X) which is to be optimized. The
stabilizing effect results from the properties

(i) 0 < Zq.a < 1, and (ii) Zq.a -+0&sq-* ± oo, X > 0.
Using Lemma 2.1 we can show that fN.a interpolates the solution of the

discrete problem (cf. (1.2))
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where

KN;a = ^ ^ i - H c t ) * " (2.21)

and
i ( a ) = diag(l,Zl a ) . . . ,ZW a, ZM_ha,...,Zha). (2.22)

The predictive signal gN.a = KfN.a can be seen to interpolate the vector

gtf;a = ^(«)V*. (2.23)

where

) * " . (2.24)

is known as the influence matrix of the regularized problem.

3. Optimality and regularity

An absolutely optimal a minimizes the predictive mean-square error

1 n = 0

but, as we have pointed out previously, it is difficult to obtain a practical estimate
of this minimizer in the absence of detailed information concerning / . Consider
instead the predictive mean-square signal error

S(«) = ^Nt\gNJx,,)-g(xn)]2- (3-2)
1 n = 0

The minimizer of S(a) is estimated quite closely by several practical statistical
methods, at least when p, the order of regularization, is fixed. We shall study the
asymptotic nature of these estimates as N -» oo.

For the present, let p be fixed. We emphasize this by writing X wherever
previously we have used a. Let \ 0 denote the minimizer of S(X). Following
Davies and Anderssen [7] we say that a value of X is

(i) S-optimal if S(X)/5(X0) = 1 + o(l) as N -» oo, (3.3a)

where o(l) -> 0 as N -» oo;

(ii) weakly S-optimal if S(X)/S(X0) = 0(1) as N -> oo; (3.3b)

(iii) S-suboptimalifS(X)/S(X0) -> oo as N -» oo. (3.3c)

(In [7] a stricter form of (3.3a) is also introduced. This strong optimality will not
be discussed in the present paper.)
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The definitions (3.3) can, of course, be extended to loss functions other than
(3.2), for example (3.1). It is important to realize that a X which is 5-optimal will
not, in general, be absolutely optimal; indeed, an S-optimal X is normally
absolutely suboptimal (see [7]). Nevertheless, both S-optimal and weakly S-opti-
mal estimates of X have been used extensively in practice with some success, at
least when the problems under study are not too severely ill-posed (see, for
example, [8]).

Let Xo denote the minimizer of ES(X). We maintain the definitions (3.3) if
S(X) is replaced by ES{X) and Ao by Xo. In the problem of spline smoothing
(K = / in (1.3)), a number of authors have studied the asymptotic properties of
Xo and ES{\0) (see Wahba [21]) under a variety of regularity conditions on the
data. In the present problem we must also take account of the spectral decay of
the kernel.

Following Wahba [20] and Lukas [14] we will assume an algebraic decay:

AXIOM A: There exists a number m > 1 such that

where c and C are constants.

Moreover, let v = m + p, and consider the Fourier coefficients gq (cf. (2.2)) of
the underlying data function. We will consider two alternative regularity condi-
tions on the data:

AXIOM B {strong regularity).

V 4" - 2

q-0

AXIOM C {weak regularity):
00

Uq \8q\ < °°- (3-6)

<7-0

We also introduce the ratio

p = C/c> 1, (3.7)

and the measures
r < * 2 ' \ 2 ( a ) \ 2 d U , r > 0 , (3.8)

IT JQ

whenever the integrals converge, where

£(«)= f1 g(x)exp(-iux)dx. (3.9)
•'o
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We can now state the following (cf. Theorem 3.1 in [7]):

THEOREM 3.1 Under Axioms A and B, and gN.x e TM, the value of X which
minimizes ES(\) may be written

as T V - oo, (3.10)
L""" Illglll2>. •" J

where

< 6Q ^ p4,/(4,+ l)c-25 (3

Ka is the constant

and o{\) -* 0 as N -* oo. The minimizing value ofES(\) as N -» oo «

^ • ^ j Illglll^^'U + o(l)], (3.13)

where

THEOREM 3.2 Under Axioms A and C,

[ „ n2 -i "121-/(21. +1)

4 J ' k J

( fy ^ j (3.17)

where

2vR-x^R-lv^^^2vR^R2\
R2v = p(8i.+ l ) / (2F+l)_ *• " ^

The expressions (3.13) and (3.17) give some theoretical indication of how the
minimizing value of S(X) depends on p, a2, m (the smoothness of the kernel),
and the regularity of g. In particular, we may make deductions concerning the
existence of an optimal p. Under strong regularity, a brief examination of (3.13)
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shows that, as p is increased, the value of ES(X0) is determined essentially by the
term IHglH^41"1"1'. This will become divergent for p sufficiently large, unless g is
infinitely regular (i.e. |||g|||r < oo for all r > 0), and so an optimal value of p
clearly exists which minimizes ES(a). On the other hand if g is infinitely regular
then we can distinguish two possibilities. Either IHgllb* increases with p at a rate
greater than (constant)4"+1, in which case ES(X0) must eventually increase with
p and so an optimal p must exist, or HlgHUr increases with p at a rate not
exceeding (constant)4"*1, in which case the dependence of ES(X0) on p may be
only marginal.

When g is only weakly regular, then increasing p must quickly lead to the
divergence of IHgllL, and hence that of the upper bound in (3.17). Thus, if the
rates in this bound are achieved, an optimal p must exist.

4. Practical optimizing methods for X when o 2 is known

In practice S(X) cannot be computed directly without knowing the exact data
function, and so alternative means of estimating its minimizer are needed. Let p
be fixed, and consider the predictive mean-square error

D{X; yN) = jr "L [KfN]X(xn) - y n } \ (4.1)
" n = 0

sometimes called the (squared) discrepancy in the approximate solution fN.x. It is
easy to show that, on average, D(X; yN) is an overestimate of S(X) as N -* oo.
Moreover, (4.1) is directly computable in the form

D(X; yN) = 1 | | ( / - A(X))yN\\2 = \\(l - A(\))yN\\2. (4.2)

A simple calculation shows that

ED(X;yN)= £" (l - ZqJ\gNJ + £ £" (l - ZqJ, (4.3)
q=-M q=-M

whereas, from (3.2),

ES(X)= £"( l -z , ; X )V/ + ^ £"Zlx-
q~-M q--M

It is then not difficult to deduce that under Axiom A

ED(X; yN) = ES(X) + a2 - O^NX1'™]-1) (4.5)

provided NX1A2r) -» oo as TV -» oo. This is certainly true for any fixed X > 0.
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4.1 The discrepancy principle
When the variance a2 is known, Soviet mathematicians have widely favoured

choosing X = X(a2) SO that the discrepancy should be in agreement with the
errors in the data, i.e.,

D(X;yN) = a2. (4.6)

(There is no point in minimizing D with respect to X since the minimizer is
X = 0, which corresponds to an unregularized problem.) The discrepancy princi-
ple embodied in (4.6) is an easily implemented a posteriori strategy for choosing
X. It was first clearly enunciated by Morozov [15], although it had been used
earlier in an intuitive way by others. See [10,16] for a detailed description.

We can see that (4.6) has a unique solution for given y^ since, from (4.2), D(X;
yN) is an increasing function of X with £>(0; y^) = 0 and D(X; yN) -* ivlljvll2 as
X -* oo, this limit clearly exceeding a2 unless the data is totally dominated by
noise. We now state

THEOREM 4.1 Under Axioms A and B the solution of the nonlinear equation

ED(X;yN) = o2 (4.7)

may be written

T n2

where o(l) -> 0 and

C~2[KV + ( l + p~2)/i,,2j * * ^ @D ^ c~2[Ki ' + ( l "*• P2)M^2J * >

(4.9)

T T ^ - («0)

Under strong regularity, therefore, XD has the same rate of convergence as Xo.
This means that XD is weakly 5-optimal. In particular we may deduce

where
12"/(4'+l)

[[ I U.

4FJ1 + ^In the case p = 1, which describes the problem of numerical differentiation, we
have

X0[4r(l + 2 M V«J] W ( 4 ' + 1 ) [1 + o(l)]. (4.12)

https://doi.org/10.1017/S0334270000005221 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005221


[12] Optimal regularisation of ill-posed problems 125

This means that XD considerably oversmooths relative to Xo, particularly as p is
increased. This result generalizes an earlier result in Wahba [19].

THEOREM 4.2 Under Axioms A and C, the solution of (4.7) satisfies

asN-+ao, (4.13)

where

C~2[KI/ + (l + p"2)/*,^] " " < 0D < C~2[K,, + (l + p2)/*,^]

If the rates in (3.15) and (4.13) are achieved by Xo and XD, respectively, then
we may again deduce that \D is weakly 5-optimal under weak regularity. The
actual ratio XD/X0 is, however, more difficult to estimate in this case.

4.2 A Bayesian approach
A different way of exploiting the discrepancy principle which leads to slightly

improved estimates of A 0 is to replace D in (4.6) by its expectation with respect
to an a posteriori distribution. Such an approach was proposed by Turchin [17,
18]. Consider an a priori conditional distribution for y^ with density function

N-\ i

n=o
where J is the Jacobian of the transformation from (KNlN)n to /„, assumed
independent of n. If we define an a priori distribution for f̂  by means of the
parametrized density function

*«('*)= T l {N\o>2
q>>/o2)exp\-N\U

2/\fN,q\
2/o2},

q= — M
q*0

then the a posteriori conditional distribution for f N has the density function

P(fN\yN) = constant, n ^ e ^ - ^{\*kJN,q - yNJ + \»lP\fN.qf}\.

If we denote expectation with respect to P(iN\yN) by S it can be shown that
(using techniques similar to those found in[17])

**N =

where the matrix ^ is defined in (2.13) and the elements of f̂ .,, are given by
(2.18)-(2.19). The interpolant of SlN in TM is therefore the regularized solution
(2.17). The expectation of the discrepancy is

https://doi.org/10.1017/S0334270000005221 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005221


126 A. R. Davies and R. S. Anderssen [13]

which, after some calculation, reduces to

&(«: y*) = jf{\\(I " ^(«))y^H2 +(<>2/N) Trace,4(a)} > D(a; yN).

(4.14)

We now state the following interesting result:

THEOREM 4.3 Under Axioms A and B, the solution of the nonlinear equation

ED(\; yN) = a2 (4.15)

may be written

[ 2 I ]2^/(4i.+ l)

C^^J [l + o(l)] asN^co, (4.16)
where

Under Axioms A and C, we Aaue instead

02

fX r > ^ [ M ' 2 ' iiifiiH
where

p-2»/(2, + l)C-2 < ^ ^ p2,/(2,+ l)c-2 (4 1 9)

We may deduce from (3.10) and (4.16) that under strong regularity of g,

p-2(4,^2/»c,)2 ' / ( 4 l ' + 1 )[ l + o(l)] < Xr/X0 < p2(4 ,M,Aj2 ' / ( 4 ' + 1 ) [ l + o(l)] .

Clearly \T is weakly S-optimal. When p = 1 we have

X r = ( 4 ^ 2 / ' c J 2 ' / ( 4 ' + 1 ) X o [ l + 0 ( l ) ] (4.20)
which again oversmooths relative to Xo, but not so much as XD. Again, under
weak regularity we have weak S-optimality if the rates in (3.10) and (4.18) are
achieved.

The above two methods suffer from the drawback that a knowledge of a2 is
necessary before they can be implemented. Even when a2 is known exactly, which
is rare in practical situations, the methods are no better than weakly S-optimal.
Another disadvantage is that they cannot be used to optimize p. One way of
overcoming this difficulty is simply to minimize D(a; yN) with respect to o, but
this does not appear to have been tried. Such an approach would inevitably lead
to

min D(a; yN) < a2
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so that the basic philosophy of the discrepancy principle would have to be
abandoned. (See also the method of Klein [12].)

5. Practical optimizing methods for a when a2 is unknown

5.1 Cross-validation
Suppose we ignore the jih data point y} and define the regularized solution

/}oi G TM as the minimizer of

The 7'th element of the predictive signal vector g .̂1,, = KNl\j)a predicts the
missing datum y}. We may thus choose an a which minimizes a weighted
mean-square prediction error over all j :

J

y-o
Wahba [20] has shown, in a general context, that if A(a) is the influence matrix of
the regularized problem, then the choice of weights

1 ~ Ajj(

N

enables (5.1) to be expressed very simply in the form
1 ll/ T Af—\\..

V (n} =cv\ / —
- A(a))]

(5.2)

In our model problem the matrix A(a) is circulant and the weights in (5.1) all
unity. From (2.22) and (2.24) we have

(5-3)

In principle it is an easy matter to minimize Vcy(\) for fixed p, and to repeat the
process for a sequence of p-values until a minimizing pair (/>, \) of Vcv(a) is
found. In practice the method can work spectacularly well provided there is
sufficient data, the problem is not too severely ill-posed, and the noise level is
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moderate. (See [8].) The minimization of (5.3) does not require an a priori
knowledge of a 2.

When p is fixed the following result may be found in [20] (for the case of
strong regularity) and in [4] (for weak regularity):

THEOREM 5.1 Under Axioms A and B or A and C the minimizer \ c v of
EVcy(\) satisfies

^cy^'Ki1 + o(l)) asN->oo (5.4)
and

ES(\Cy)

ES(\0)
oo. (5.5)

This means that \ c v is S-optimal under both strong and weak regularity of g.
Even stronger results than (5.4)-(5.5) are possible under sufficient regularity [7].

Our comments at the end of §3 on the existence of an optimal p which
minimizes ES(a) are also relevant for the minimization of EVcv(a).

5.2 Maximum likelihood
This idea was first used to estimate regularization parameters for ill-posed

problems by Anderssen and Bloomfield [1] in the case of numerical differenta-
tion. Extensions to numerical deconvolution were made by Anderssen and
Prenter [2] and by Davies [6]. More recently Wahba [21] has suggested a
generalization which can treat more general integral equations of the first kind.

For our model problem it is sufficient to assume that the data function and the
errors are independent stationary stochastic processes with spectral density func-
tions Pg(£) and Pe(!!), respectively. The regularization filter in (2.19) can be
formally equivalenced with a Wiener filter parametrized by a:

«' 'M + W q N' [ }

In terms of the unknown variance a 2 we may write
'«(*,) = °2 ' -M^q^M, (5.7)

and

Py(Q = PM + PM = °2(1 - Z,:.)-1. (5-8)
The unknown values of a2 and a can be estimated from the data by maximizing
the likelihood function proposed by Whittle [22] for parameters in a stochastic
model. The estimates are

a2 - a2(d) = — ^ £" (1 - Zq;a)\yNJ (5.9)
q= — M
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and a = a where a is the minimizer of

q- -M

M

n ( i -
q~-M

. (5.10)

When p is fixed we announce the following (cf. Theorem 5.1 in [7]):

THEOREM 5.2. Under Axioms A and B or A and C, the minimizer of EVML(\)
may be written

where

C-2^6ML<c-2. (5.12)

[ 2 ]2»/(2» + l)
K,-^j l lgl i r+ 1 ) [ l + o(l)], (5.13)

where

R-l(l + R-2*)^<l>ML<R(l + R2"),
R = pV(2» + l)#

 l " ;

We may deduce that, under strong regularity

Wo ( ) as iV - oo,

and

ES(\ML)/ES(\0) = 0(jv2,/(2,+ix4r+i)) as iV ̂  oo,

which means that \ML undersmooths relative to Xo
 a n ^ is S-suboptimal. Under

weak regularity, however,

where

This means that XMt can oversmooth relative to \0. If the rates in (3.10) are
achieved then \ML is weakly 5-optimal.

There is some numerical evidence to suggest that maximum likelihood can
equal the performance of cross-validation when Â  is small (~ 32) and the degree
of ill-posedness of the problem is not great [8, 21]. There is also some suggestion
that VML(a) may, on occaison, be less sensitive to changes in p than Vcy(a).
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Davies and Anderssen [7] have shown that XML is optimal (in the sense of
(3.3)) with respect to the innovation variance of the data. This means that when
the data constitute a stationary stochastic process, X ML minimizes the approxima-
tion error in a least-squares regression on past data.
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Appendix: A note on proofs

The techniques of proof of the theorems in this paper are natural extensions of
the techniques in [7]. From (2.19) and Axiom A it can be seen that the
regularization filters satisfy

Z,.B=(l +Xcyq')~
l (Al)

and

1 - Zq.a = \Cyq'Zq.a. (A2)

In [7], asymptotic estimates are obtained for the moment functions
M

flrj(X) = 2/ 'w, / /( l + X«^"j , (A3)
-M

G,,(X) = i"<l*wjV(i + H"Y (A4)
-M

for numbers r > 0 and s > 0. These can be used to obtain asymptotic estimates
for the moments

M

-M

L"c2y/\g»Jzq]a = Y,"(X)Grl(Xr(X)), (A6)
-M

/ > 0, r > 0, s > 0, where ft"(X), y[s(\), TJ"(X) and f"(M are bounded
continuous functions of X satisfying

c21 < /?,", Y," < C2/, (A7)

c2 < ij", f" <S C2. (A8)
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The expressions (A5)-(A6) arise from elementary applications of the mean-value
theorem, using the form of Zqa in (Al) and the constraints on cq in Axiom A.
Finally, the bounds on the constants 9 and <j> in all theorems come from the
representations (A5)-(A6) which are subject to (A7)-(A8).

We illustrate these techniques by sketching the proofs of Theorems 3.1 and 3.2.
All other theorems are proved in similar fashion, with the exception of Theorem
5.1 for which the reader should consult [20] and [4].

PROOF OF THEOREM 3.1. Differentiating (Al) with respect to X gives

±Zq;X= -cyq>Zlx. (A9)

Thus, using (4.4), and setting 3£S(A)/3X = 0, we find that the minimizer of
ES(\) satisfies the nonlinear equation

A 2 - CqUq \&N,q\ *q;\ ~ Jf L CqUq Zq;\>
1 1

or, using (A3)-(A4),

, ff3(M £! Or,(Xij"(X))

Under Axiom B, Lemmas 3.1 and 3.2 in [7] imply that
Q-3(X) = 4; " X-(2'+1)/(2l/)[l - O([N\l/W]-*'+1)] as N -> 00, (All)

and

G2.j(\) = IllgllUl + o(l)] a s i V - o o , (A12)
where o(l) -> 0. Equations (A11)-(A12) are valid provided A^A1/(2l>) -» 00 as
N -» 00. Under this condition, rearrangement of (A10) yields

^ ^ [1 +

or alternatively, (3.10), with

The bounds (3.11) follow from (A7)-(A8). It is a simple matter to confirm that
NX1^2"^ —» oo as N —» oo.

Equation (3.13) and inequality (3.14) arise similarly by direct substitution of
(3.10) and (A13) into (4.4).

PROOF OF THEOREM 3.2. Here we replace (4.4) by the inequality

ES(X) < ^ Z " Z 2
X + I" ( l - Zq;X)\gNJ, (A14)

<7 1
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since 0 < 1 — Zg.x < 1. By differentiation, the right hand side of (A14) is

minimized when

Using Lemmas 3.1 and 3.2 in [7] we may deduce as before that the solution of

(A15) satisfies

where

from which (3.17)-(3.18) follow. Finally, inequality (3.15) may be deduced from

(A10) by observing that XGlv3(\) < G,2(X).
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