BULL. AUSTRAL. MATH. SOC. Vol. 48 (1993) [31-34]

DENSENESS OF OPERATORS WHICH ATTAIN THEIR NUMERICAL RADIUS

WANG JIA-PING AND YU XIN TAI

We show that a bounded linear operator on a dual Banach space X may be perturbed by a compact operator of arbitrarily small norm to yield an operator which attains its numerical radius provided the weak star and norm topologies coincide on the unit sphere of X.

Let X be a Banach space, X^* its dual space and L(X) the algebra of bounded linear operators on X. Let

$$\begin{aligned} \pi(X, X^*) &= \{ (x, x^*) \in X \times X^*; x^*(x) = \|x\| = \|x^*\| = 1 \}, \\ \pi(X^*, X) &= \{ (x^*, x) \in X^* \times X; x^*(x) = \|x\| = \|x^*\| = 1 \}. \end{aligned}$$

Define the numerical radius of $T \in L(X)$ by

$$\nu(T) = \sup\{|x^*(Tx)|; (x, x^*) \in \pi(X, X^*)\}$$

and say T attains its numerical radius if there exists $(x_0, x_0^*) \in \pi(X, X^*)$ with $\nu(T) = |x_0^*(Tx_0)|$. Denote

 $NRA(X) = \{T \in L(X); T \text{ attains its numerical radius}\}.$

Say a Banach space X has property (P) if every $T \in L(X)$ may be perturbed by a compact operator of arbitrarily small norm to obtain an operator in NRA(X) in L(X).

In [2], Berg and Sims proved that uniformly convex Banach spaces have property (P) and asked how far this result may be extended. In [1], Acosta and Paya proved that every reflexive Banach space has property (P). Recall that a dual Banach space X has property (**) if it satisfies: whenever (x_{α}) is a net in X, x_{α} converges to x in the weak topology and $||x_{\alpha}||$ converges to ||x||, then x_{α} converges to x in norm. We show that every dual Banach space with property (**) has property (P).

Received 20 June 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

[2]

THEOREM. For X a dual Banach space with property (**), given $T \in L(X)$ and $\varepsilon > 0$, there exists a compact operator C with $||C|| < \varepsilon$ such that T + C belongs to NRA(X).

PROOF: Assume $X = Y^*$. For $\varepsilon > 0$, define $a_n = \varepsilon/8^n$ and $b_n = \varepsilon/2^n$. Given an arbitrary $T \in L(Y^*)$, we shall construct an operator $T_{\infty} \in B(Y^*)$ such that $T_{\infty} \in NRA(Y^*)$, $T_{\infty} - T$ is compact and $||T_{\infty} - T|| < \varepsilon$. This will complete our proof.

For this purpose, we need

LEMMA. There exist $(T_n)_{n=1}^{\infty}$ in $L(Y^*)$ with $T_1 = T$, $(y_n^*, y_n) \in \pi(Y^*, Y)$ such that

- (i) $|(T_n y_n^*)(y_n)| > \nu(T_n) a_n, n = 1, 2, ...$
- (ii) $||T_n T_{n-1}|| \leq b_{n-1}$ and $T_n T_{n-1}$ is a rank one operator, $n = 2, \ldots$
- (iii) $|y_n^*(y_m)| > 1 1/2^k$, where $k = \min(n, m), n, m = 1, 2, ...$

We first show how the proof of the theorem can be completed by using the above lemma.

Since
$$\sum_{n=2}^{\infty} ||T_n - T_{n-1}|| \leq \sum_{n=2}^{\infty} b_{n-1} = \varepsilon$$
, T_n converges to $T_{\infty} \in L(Y^*)$ in norm
and $||T_{\infty} - T|| = ||T_{\infty} - T_1|| \leq \sum_{n=2}^{\infty} ||T_n - T_{n-1}|| \leq \varepsilon$. Moreover $T_{\infty} - T$ is compact as
 $T_n - T_1$ is of finite rank for every n . Now it remains to show $T_{\infty} \in NRA(Y^*)$.

Since Y has property (**), Y has the Radon-Nikodym property by [6], which implies that Y is weak sequentially compact and $\ell_1 \nleftrightarrow Y$ (see [4]). So we may assume that y_n^* converges weakly* to y^* in Y* and y_n converges weakly to y^{**} in Y**.

Now

$$|y^{**}(y^*)| \ge \underline{\lim}_m |y^*(y_m)| \ge \underline{\lim}_m \underline{\lim}_n |y^*_n(y_m)| \ge \underline{\lim}_m \underline{\lim}_n \{1 - \frac{1}{2^k}\} = 1,$$

where $k = \min(n, m)$.

Since $||y^{**}|| \leq \underline{\lim_{n}} ||y_{n}|| = 1$ and $||y^{*}|| \leq \underline{\lim_{n}} ||y_{n}^{*}|| = 1$, $||y^{*}|| = ||y^{**}|| = 1$, and $(y^{*}, \lambda y^{**}) \in \pi(Y^{*}, Y^{**})$, where $\lambda = \overline{y^{**}(y^{*})}$.

It now follows that y_n^* converges weakly^{*} to y^* and $||y_n^*|| = |y^*|| = 1$, so y_n^* converges to y^* in norm by the property (**) of Y.

Now

$$\begin{split} \nu(T_{\infty}) &= \lim_{n} \nu(T_{n}) \text{ because } T_{n} \text{ converges to } T \text{ in norm} \\ &= \lim_{n} |(T_{n}y_{n})(y_{n})| \text{ by the lemma} \\ &= \lim_{n} |(T_{\infty}y^{*})(y_{n})| \text{ because } y_{n}^{*} \text{ converges to } y^{*} \text{ in norm} \\ &= |y^{**}(T_{\infty}y^{*})| \text{ because } y_{n} \text{ converges to } y^{**} \text{ weakly}^{*} \\ &= |\lambda y^{**}(T_{\infty}y^{*})|. \end{split}$$

Hence T_{∞} attains its numerical radius, that is $T_{\infty} \in NRA(Y^*)$.

Now we turn to the proof of the lemma. First we quote a theorem from [3] as a sublemma.

SUBLEMMA. [3, p.84, Theorem 5] $\nu(A) = \sup\{|Ay^*(y)|; (y^*, y) \in \pi(Y^*, Y)\}$ for every $A \in L(Y^*)$.

Let $T_1 = T$, choose $(y_1^*, y_1) \in \pi(Y^*, Y)$ by the sublemma such that $|(T_1y_1^*)(y_1)| > \nu(T_1) - a_1$. Define $T_2y^* = T_1y^* + b_1e^{i\theta_1}y^*(y_1)y_1^*$, where $\theta_1 = \arg(T_1y_1^*)(y_1)$.

Obviously, $T_2 - T_1$ is of rank one and $||T_2 - T_1|| \leq b_1$.

Further,

$$egin{aligned}
u(T_2) &\geqslant |(T_2y_1)(y_1)| \ &= \left|(T_1y_1^*)(y_1) + b_1 e^{i heta_1}
ight| \ &= |(T_1y_1^*)(y_1)| + b_1 >
u(T_1) - a_1 + b_1, \end{aligned}$$

or equivalently, $\nu(T_2) - \nu(T_1) > b_1 - a_1$.

Now choose $(y_2^*, y_2) \in \pi(Y^*, Y)$, again by the sublemma, with $|(T_2y_2^*)(y_2)| > \nu(T_2) - a_2$. Similarly, define $T_3y^* = T_2y^* + b_2e^{i\theta_2}y^*(y_2)y_2^*$, where $\theta_2 = \arg(T_2y_2^*)(y_2)$ and again $T_3 - T_2$ is of rank one, $||T_3 - T_2|| \leq b_2$, $\nu(T_3) - \nu(T_2) > b_2 - a_2$. Inductively, we may construct (T_n) and $(y_n^*, y_n) \in \pi(Y^*, Y)$ with

- (1) $||T_n T_{n-1}|| \leq b_{n-1};$
- (2) $T_n y^* = T_{n-1} y^* + b_{n-1} e^{i\theta_{n-1}} y^* (y_{n-1}) y_{n-1}^*;$
- (3) $\nu(T_n) \nu(T_{n-1}) > b_{n-1} a_{n-1};$
- (4) $|(T_n y_n^*)(y_n)| > \nu(T_n) a_n$.

CLAIM. (T_n) and (y_n^*, y_n) satisfy (i), (ii) and (iii) of the lemma. In fact, (1) and (2) imply (ii) and (4) is (i). It remains to establish (iii).

Since $\nu(T_n) - \nu(T_{n-1}) > b_{n-1} - a_{n-1}$,

$$\nu(T_n)-\nu(T_m)>b_{n-1}+\ldots+b_m-a_{n-1}-\ldots-a_m(n>m).$$

Now

$$T_n y^* = T_{n-1} y^* + b_{n-1} e^{i\theta_{n-1}} y^* (y_{n-1}) y^*_{n-1} = \dots$$

= $T_m y^* + b_m e^{i\theta_m} y^* (y_m) y^*_m + b_{m+1} e^{i\theta_{m+1}} y^* (y_{m+1}) y^*_{m+1} + \dots$
+ $b_{n-1} e^{i\theta_{n-1}} y^* (y_{n-1}) y^*_{n-1},$

and

$$\begin{split} \nu(T_n) - a_n < |(T_n y_n^*)(y_n)| &= |(T_m y_n^*)(y_n)| + b_m e^{i\theta_m} y_n^*(y_m) y_m^*(y_n) \\ &+ b_{m+1} e^{i\theta_{m+1}} y_n^*(y_{m+1}) y_{m+1}^*(y_n) + \ldots + b_{n-1} e^{i\theta_{n-1}} y_n^*(y_{n-1}) y_{n-1}^*(y_n) \\ &\leqslant \nu(T_m) + b_m |y_n^*(y_m) y_m^*(y_n)| + b_{m+1} + \ldots + b_{n-1}, \end{split}$$

so

$$\begin{aligned} |y_n^*(y_m)y_m^*(y_n)| &> (\nu(T_n) - \nu(T_m) - a_n - b_{m+1} - \ldots - b_{n-1})/b_m \\ &> (b_m - a_m - a_{m+1} - \ldots - a_n)/b_m > 1 - \frac{1}{2^m}. \end{aligned}$$

Hence $|y_n^*(y_m)| > 1 - 1/2^m$ and $|y_m^*(y_n)| > 1 - 1/2^m$, which implies (iii) of the lemma. This establishes the lemma and all the proof is completed.

From the above proof, we can eaily deduce the following

COROLLARY 1. If X^* has property (**), then X^{**} has property (P). In particular, L(H) and ℓ_{∞} have property (P), where H is a Hilbert space.

COROLLARY 2. $\mathcal{T}_1(H)$, the trace class on a Hilbert space H with the trace norm, has property (P) and $NRA(\mathcal{T}_1(H))$ is norm dense in $L(\mathcal{T}_1(H))$.

PROOF: (H) has property (**) [5].

REMARK. Paya has given two examples of Banach spaces for which the numerical radius attaining operator is not dense.

References

- M.D. Acosta and Paya, 'Denseness of operator whose second adjoints attain their numerical radii', Proc. Amer. Math. Soc. 105 (1989), 97-101.
- [2] I.D. Berg and B. Sims, 'Denseness of operators which attain their numerical radius', J. Austral. Math. Soc. Ser. A 3 (1989), 130-133.
- [3] F.F. Bonsall and J. Duncan, 'Numerical ranges of operators on normed spaces and of elements of normed algebras', London Math. Soc. Lecture Note Ser. 2.
- [4] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics 92 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
- [5] A. To-Ming Lau and P.F. Mah, 'Quasi-normal structures for certain spaces of operators on a Hilbert space', *Pacific J. Math.* 121 (1986), 109-118.
- [6] R.R. Phelps, 'Dentibility and extreme points in Banach spaces', J. Funct. Anal. 16 (1974), 78-90.

Department of Mathematics East China Normal University Shanghai 200062 China [4]

Π