Vol. 48 (1993) [31-34]

DENSENESS OF OPERATORS WHICH ATTAIN THEIR NUMERICAL RADIUS

Wang Jia-Ping and Yu Xin Tai

We show that a bounded linear operator on a dual Banach space X may be perturbed by a compact operator of arbitrarily small norm to yield an operator which attains its numerical radius provided the weak star and norm topologies coincide on the unit sphere of X.

Let X be a Banach space, X^{*} its dual space and $L(X)$ the algebra of bounded linear operators on X. Let

$$
\begin{aligned}
\pi\left(X, X^{*}\right) & =\left\{\left(x, x^{*}\right) \in X \times X^{*} ; x^{*}(x)=\|x\|=\left\|x^{*}\right\|=1\right\} \\
\pi\left(X^{*}, X\right) & =\left\{\left(x^{*}, x\right) \in X^{*} \times X ; x^{*}(x)=\|x\|=\left\|x^{*}\right\|=1\right\}
\end{aligned}
$$

Define the numerical radius of $T \in L(X)$ by

$$
\nu(T)=\sup \left\{\left|x^{*}(T x)\right| ;\left(x, x^{*}\right) \in \pi\left(X, X^{*}\right)\right\}
$$

and say T attains its numerical radius if there exists $\left(x_{0}, x_{0}^{*}\right) \in \pi\left(X, X^{*}\right)$ with $\nu(T)=$ $\left|x_{0}^{*}\left(T x_{0}\right)\right|$. Denote

$$
N R A(X)=\{T \in L(X) ; T \text { attains its numerical radius }\} .
$$

Say a Banach space X has property (P) if every $T \in L(X)$ may be perturbed by a compact operator of arbitrarily small norm to obtain an operator in $N R A(X)$ in $L(X)$.

In [2], Berg and Sims proved that uniformly convex Banach spaces have property (P) and asked how far this result may be extended. In [1], Acosta and Paya proved that every reflexive Banach space has property (P). Recall that a dual Banach space X has property $(* *)$ if it satisfies: whenever $\left(x_{\alpha}\right)$ is a net in X, x_{α} converges to x in the weak topology and $\left\|x_{\alpha}\right\|$ converges to $\|x\|$, then x_{α} converges to x in norm. We show that every dual Banach space with property (**) has property (P).

[^0]Theorem. For X a dual Banach space with property (**), given $T \in L(X)$ and $\varepsilon>0$, there exists a compact operator C with $\|C\|<\varepsilon$ such that $T+C$ belongs to $N R A(X)$.

Proof: Assume $X=Y^{*}$. For $\varepsilon>0$, define $a_{n}=\varepsilon / 8^{n}$ and $b_{n}=\varepsilon / 2^{n}$. Given an arbitrary $T \in L\left(Y^{*}\right)$, we shall construct an operator $T_{\infty} \in B\left(Y^{*}\right)$ such that $T_{\infty} \in$ $N R A\left(Y^{*}\right), T_{\infty}-T$ is compact and $\left\|T_{\infty}-T\right\|<\varepsilon$. This will complete our proof.

For this purpose, we need
Lemma. There exist $\left(T_{n}\right)_{n=1}^{\infty}$ in $L\left(Y^{*}\right)$ with $T_{1}=T,\left(y_{n}^{*}, y_{n}\right) \in \pi\left(Y^{*}, Y\right)$ such that
(i) $\left|\left(T_{n} y_{n}^{*}\right)\left(y_{n}\right)\right|>\nu\left(T_{n}\right)-a_{n}, n=1,2, \ldots$
(ii) $\left\|T_{n}-T_{n-1}\right\| \leqslant b_{n-1}$ and $T_{n}-T_{n-1}$ is a rank one operator, $n=2, \ldots$
(iii) $\left|y_{n}^{*}\left(y_{m}\right)\right|>1-1 / 2^{k}$, where $k=\min (n, m), n, m=1,2, \ldots$

We first show how the proof of the theorem can be completed by using the above lemma.

Since $\sum_{n=2}^{\infty}\left\|T_{n}-T_{n-1}\right\| \leqslant \sum_{n=2}^{\infty} b_{n-1}=\varepsilon, T_{n}$ converges to $T_{\infty} \in L\left(Y^{*}\right)$ in norm and $\left\|T_{\infty}-T\right\|=\left\|T_{\infty}-T_{1}\right\| \leqslant \sum_{n=2}^{\infty}\left\|T_{n}-T_{n-1}\right\| \leqslant \varepsilon$. Moreover $T_{\infty}-T$ is compact as $T_{n}-T_{1}$ is of finite rank for every n. Now it remains to show $T_{\infty} \in N R A\left(Y^{*}\right)$.

Since Y has property (**), Y has the Radon-Nikodym property by [6], which implies that Y is weak sequentially compact and $\ell_{1} \nrightarrow Y$ (see [4]). So we may assume that y_{n}^{*} converges weakly* to y^{*} in Y^{*} and y_{n} converges weakly to $y^{* *}$ in $Y^{* *}$.

Now

$$
\left|y^{* *}\left(y^{*}\right)\right| \geqslant \frac{\lim }{m}\left|y^{*}\left(y_{m}\right)\right| \geqslant \underline{\lim } \frac{\lim }{n}\left|y_{n}^{*}\left(y_{m}\right)\right| \geqslant \frac{\lim }{m} \frac{\lim }{n}\left\{1-\frac{1}{2^{k}}\right\}=1,
$$

where $k=\min (n, m)$.
Since $\left\|y^{* *}\right\| \leqslant \frac{\lim }{n}\left\|y_{n}\right\|=1$ and $\left\|y^{*}\right\| \leqslant \frac{\lim }{n}\left\|y_{n}^{*}\right\|=1,\left\|y^{*}\right\|=\left\|y^{* *}\right\|=1$, and $\left(y^{*}, \lambda y^{* *}\right) \in \pi\left(Y^{*}, Y^{* *}\right)$, where $\lambda=\overline{y^{* *}\left(y^{*}\right)}$.

It now follows that y_{n}^{*} converges weakly* to y^{*} and $\left\|y_{n}^{*}\right\|=\mid y^{*} \|=1$, so y_{n}^{*} converges to y^{*} in norm by the property ($* *$) of Y.

Now

$$
\begin{aligned}
\nu\left(T_{\infty}\right) & =\lim _{n} \nu\left(T_{n}\right) \text { because } T_{n} \text { converges to } T \text { in norm } \\
& =\lim _{n}\left|\left(T_{n} y_{n}\right)\left(y_{n}\right)\right| \text { by the lemma } \\
& =\lim _{n}\left|\left(T_{\infty} y^{*}\right)\left(y_{n}\right)\right| \text { because } y_{n}^{*} \text { converges to } y^{*} \text { in norm } \\
& =\left|y^{* *}\left(T_{\infty} y^{*}\right)\right| \text { because } y_{n} \text { converges to } y^{* *} \text { weakly } \\
& =\left|\lambda y^{* *}\left(T_{\infty} y^{*}\right)\right| .
\end{aligned}
$$

Hence T_{∞} attains its numerical radius, that is $T_{\infty} \in N R A\left(Y^{*}\right)$.
Now we turn to the proof of the lemma. First we quote a theorem from [3] as a sublemma.

Sublemma. [3, p.84, Theorem 5] $\nu(A)=\sup \left\{\left|A y^{*}(y)\right| ;\left(y^{*}, y\right) \in \pi\left(Y^{*}, Y\right)\right\}$ for every $A \in L\left(Y^{*}\right)$.

Let $T_{1}=T$, choose $\left(y_{1}^{*}, y_{1}\right) \in \pi\left(Y^{*}, Y\right)$ by the sublemma such that $\left|\left(T_{1} y_{1}^{*}\right)\left(y_{1}\right)\right|>$ $\nu\left(T_{1}\right)-a_{1}$. Define $T_{2} y^{*}=T_{1} y^{*}+b_{1} e^{i \theta_{1}} y^{*}\left(y_{1}\right) y_{1}^{*}$, where $\theta_{1}=\arg \left(T_{1} y_{1}^{*}\right)\left(y_{1}\right)$.

Obviously, $T_{2}-T_{1}$ is of rank one and $\left\|T_{2}-T_{1}\right\| \leqslant b_{1}$.
Further,

$$
\begin{aligned}
\nu\left(T_{2}\right) & \geqslant\left|\left(T_{2} y_{1}\right)\left(y_{1}\right)\right| \\
& =\left|\left(T_{1} y_{1}^{*}\right)\left(y_{1}\right)+b_{1} e^{i \theta_{1}}\right| \\
& =\left|\left(T_{1} y_{1}^{*}\right)\left(y_{1}\right)\right|+b_{1}>\nu\left(T_{1}\right)-a_{1}+b_{1}
\end{aligned}
$$

or equivalently, $\nu\left(T_{2}\right)-\nu\left(T_{1}\right)>b_{1}-a_{1}$.
Now choose $\left(y_{2}^{*}, y_{2}\right) \in \pi\left(Y^{*}, Y\right)$, again by the sublemma, with $\left|\left(T_{2} y_{2}^{*}\right)\left(y_{2}\right)\right|>$ $\nu\left(T_{2}\right)-a_{2}$. Similarly, define $T_{3} y^{*}=T_{2} y^{*}+b_{2} e^{i \theta_{2}} y^{*}\left(y_{2}\right) y_{2}^{*}$, where $\theta_{2}=\arg \left(T_{2} y_{2}^{*}\right)\left(y_{2}\right)$ and again $T_{3}-T_{2}$ is of rank one, $\left\|T_{3}-T_{2}\right\| \leqslant b_{2}, \nu\left(T_{3}\right)-\nu\left(T_{2}\right)>b_{2}-a_{2}$. Inductively, we may construct $\left(T_{n}\right)$ and $\left(y_{n}^{*}, y_{n}\right) \in \pi\left(Y^{*}, Y\right)$ with
(1) $\left\|T_{n}-T_{n-1}\right\| \leqslant b_{n-1}$;
(2) $T_{n} y^{*}=T_{n-1} y^{*}+b_{n-1} e^{i \theta_{n-1}} y^{*}\left(y_{n-1}\right) y_{n-1}^{*}$;
(3) $\nu\left(T_{n}\right)-\nu\left(T_{n-1}\right)>b_{n-1}-a_{n-1}$;
(4) $\left|\left(T_{n} y_{n}^{*}\right)\left(y_{n}\right)\right|>\nu\left(T_{n}\right)-a_{n}$.

Claim. (T_{n}) and (y_{n}^{*}, y_{n}) satisfy (i), (ii) and (iii) of the lemma. In fact, (1) and (2) imply (ii) and (4) is (i). It remains to establish (iii).

Since $\nu\left(T_{n}\right)-\nu\left(T_{n-1}\right)>b_{n-1}-a_{n-1}$,

$$
\nu\left(T_{n}\right)-\nu\left(T_{m}\right)>b_{n-1}+\ldots+b_{m}-a_{n-1}-\ldots-a_{m}(n>m)
$$

Now

$$
\begin{aligned}
T_{n} y^{*}= & T_{n-1} y^{*}+b_{n-1} e^{i \theta_{n-1}} y^{*}\left(y_{n-1}\right) y_{n-1}^{*}=\ldots \\
= & T_{m} y^{*}+b_{m} e^{i \theta_{m}} y^{*}\left(y_{m}\right) y_{m}^{*}+b_{m+1} e^{i \theta_{m+1}} y^{*}\left(y_{m+1}\right) y_{m+1}^{*}+\ldots \\
& +b_{n-1} e^{i \theta_{n-1}} y^{*}\left(y_{n-1}\right) y_{n-1}^{*}
\end{aligned}
$$

and

$$
\begin{gathered}
\nu\left(T_{n}\right)-a_{n}<\left|\left(T_{n} y_{n}^{*}\right)\left(y_{n}\right)\right|=\left|\left(T_{m} y_{n}^{*}\right)\left(y_{n}\right)\right|+b_{m} e^{i \theta_{m}} y_{n}^{*}\left(y_{m}\right) y_{m}^{*}\left(y_{n}\right) \\
\quad+b_{m+1} e^{i \theta_{m+1}} y_{n}^{*}\left(y_{m+1}\right) y_{m+1}^{*}\left(y_{n}\right)+\ldots+b_{n-1} e^{i \theta_{n-1}} y_{n}^{*}\left(y_{n-1}\right) y_{n-1}^{*}\left(y_{n}\right) \\
\leqslant \nu\left(T_{m}\right)+b_{m}\left|y_{n}^{*}\left(y_{m}\right) y_{m}^{*}\left(y_{n}\right)\right|+b_{m+1}+\ldots+b_{n-1}
\end{gathered}
$$

so

$$
\begin{aligned}
\left|y_{n}^{*}\left(y_{m}\right) y_{m}^{*}\left(y_{n}\right)\right| & >\left(\nu\left(T_{n}\right)-\nu\left(T_{m}\right)-a_{n}-b_{m+1}-\ldots-b_{n-1}\right) / b_{m} \\
& >\left(b_{m}-a_{m}-a_{m+1}-\ldots-a_{n}\right) / b_{m}>1-\frac{1}{2^{m}}
\end{aligned}
$$

Hence $\left|y_{n}^{*}\left(y_{m}\right)\right|>1-1 / 2^{m}$ and $\left|y_{m}^{*}\left(y_{n}\right)\right|>1-1 / 2^{m}$, which implies (iii) of the lemma. This establishes the lemma and all the proof is completed.

From the above proof, we can eaily deduce the following
Corollary 1. If X^{*} has property (${ }^{* *}$), then $X^{* *}$ has property (P). In particular, $L(H)$ and ℓ_{∞} have property (P), where H is a Hilbert space.

Corollary 2. $\mathcal{T}_{1}(H)$, the trace class on a Hilbert space H with the trace norm, has property (P) and $N R A\left(\mathcal{T}_{1}(H)\right)$ is norm dense in $L\left(\mathcal{T}_{1}(H)\right)$.

Proof: (H) has property (**) [5].
Remark. Paya has given two examples of Banach spaces for which the numerical radius attaining operator is not dense.

References

[1] M.D. Acosta and Paya, 'Denseness of operator whose second adjoints attain their numerical radii', Proc. Amer. Math. Soc. 105 (1989), 97-101.
[2] I.D. Berg and B. Sims, 'Denseness of operators which attain their numerical radius', J. Austral. Math. Soc. Ser. A 3 (1989), 130-133.
[3] F.F. Bonsall and J. Duncan, 'Numerical ranges of operators on normed spaces and of elements of normed algebras', London Math. Soc. Lecture Note Ser. 2.
[4] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics 92 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
[5] A. To-Ming Lau and P.F. Mah, 'Quasi-normal structures for certain spaces of operators on a Hilbert space', Pacific J. Math. 121 (1986), 109-118.
[6] R.R. Phelps, 'Dentibility and extreme points in Banach spaces', J. Funct. Anal. 16 (1974), 78-90.

[^1]
[^0]: Received 20 June 1992
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

[^1]: Department of Mathematics
 East China Normal University
 Shanghai 200062
 China

