Canad. Math. Bull. Vol. **57** (1), 2014 pp. 119–124 http://dx.doi.org/10.4153/CMB-2013-027-2 © Canadian Mathematical Society 2013

Splitting Families and Complete Separability

Heike Mildenberger, Dilip Raghavan, and Juris Steprans

Abstract. We answer a question from Raghavan and Steprāns by showing that $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$. Then we use this to construct a completely separable maximal almost disjoint family under $\mathfrak{s} \leq \mathfrak{a}$, partially answering a question of Shelah.

1 Introduction

The purpose of this short note is to answer a question posed by the second and third authors in [5] and to use this to solve a problem of Shelah [6]. We say that two infinite subsets *a* and *b* of ω are *almost disjoint* or *a.d.* if $a \cap b$ is finite. We say that a family \mathscr{A} of infinite subsets of ω is *almost disjoint* or *a.d.* if its members are pairwise almost disjoint. A *Maximal Almost Disjoint family* or *MAD family* is an infinite a.d. family that is not properly contained in a larger a.d. family.

For an a.d. family \mathscr{A} , let $\mathfrak{I}(\mathscr{A})$ denote the ideal on ω generated by \mathscr{A} —that is, $a \in \mathfrak{I}(\mathscr{A})$ if and only if $\exists a_0, \ldots, a_k \in \mathscr{A}[a \subset^* a_0 \cup \cdots \cup a_k]$. For any ideal \mathfrak{I} on ω, \mathfrak{I}^+ denotes $\mathcal{P}(\omega) \setminus \mathfrak{I}$. An a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ is said to be *completely separable* if for any $b \in \mathfrak{I}^+(\mathscr{A})$, there is an $a \in \mathscr{A}$ with $a \subset b$. Notice that an infinite completely separable a.d. \mathscr{A} must be MAD. Though the following is one of the most well-studied problems in set theory, it continues to remains open.

Question 1 (Erdős and Shelah [3]) Does there exist a completely separable MAD family $\mathscr{A} \subset [\omega]^{\omega}$?

Progress on Question 1 was made by Balcar, Dočkálková, and Simon who showed in a series of papers that completely separable MAD families can be constructed from any of the assumptions b = b, $s = \omega_1$, or $b \le a$. See [1], [2], and [7] for this work. Then Shelah [6] recently showed that the existence of completely separable MAD families is *almost* a theorem of ZFC. His construction is divided into three cases. The first case is when s < a, and he shows on the basis of ZFC alone that a completely separable MAD family can be constructed in this case. The second and third cases are when s = a and a < s respectively, and Shelah shows that a completely separable MAD family can be constructed in these cases *provided* that certain PCFtype hypotheses are satisfied. More precisely, he shows that there is a completely separable MAD family when s = a and U(s) holds, or when a < s and P(s, a) holds.

Received by the editors March 27, 2012; revised July 17, 2013.

Published electronically September 30, 2013.

The second author was partially supported by Grants-in-Aid for Scientific Research for JSPS Fellows No. 23-01017. The third author was partially supported by the NSERC.

AMS subject classification: 03E05, 03E17, 03E65.

Keywords: maximal almost disjoint family, cardinal invariants.

Definition 2 For a cardinal $\kappa > \omega$, $U(\kappa)$ is the following principle. There is a sequence $\langle u_{\alpha} : \omega \leq \alpha < \kappa \rangle$ such that

(1) $u_{\alpha} \subset \alpha$ and $|u_{\alpha}| = \omega$,

(2) $\forall X \in [\kappa]^{\kappa} \exists \omega \leq \alpha < \kappa [|u_{\alpha} \cap X| = \omega].$

For cardinals $\kappa > \lambda > \omega$, $P(\kappa, \lambda)$ says that there is a sequence $\langle u_{\alpha} : \omega \leq \alpha < \kappa \rangle$ such that

- (3) $u_{\alpha} \subset \alpha$ and $|u_{\alpha}| = \omega$,
- (4) for each $X \subset \kappa$, if X is bounded in κ and $\operatorname{otp}(X) = \lambda$, then $\exists \omega \leq \alpha < \sup(X)[|u_{\alpha} \cap X| = \omega]$.

It is easy to see that both $U(\mathfrak{s})$ and $P(\mathfrak{s}, \mathfrak{a})$ are satisfied when $\mathfrak{s} < \aleph_{\omega}$, so in particular, the existence of a completely separable MAD family is a theorem of ZFC when $\mathfrak{c} < \aleph_{\omega}$. Shelah [6] asked whether all uses of PCF-type hypotheses can be eliminated from the second and third cases.

The second and third authors modified the techniques of Shelah [6] in order to treat MAD families with few partitioners in [5] (see the introduction there). In that paper they introduced a cardinal invariant $\mathfrak{s}_{\omega,\omega}$, which is a variation of the splitting number \mathfrak{s} . They showed that if $\mathfrak{s}_{\omega,\omega} \leq \mathfrak{b}$, then there is a weakly tight family. Recall that an a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ is called *weakly tight* if for every countable collection $\{b_n : n \in \omega\} \subset \mathcal{I}^+(\mathscr{A})$, there is $a \in \mathscr{A}$ such that $\exists^{\infty} n \in \omega [|b_n \cap a| = \omega]$. The question of whether $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$ was raised in [5], and the authors pointed out that an affirmative answer to this question could help eliminate the use of PCF-type hypotheses from the second case of Shelah's construction.

In this paper we answer this question from [5] by proving that $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$. We then use this information to partially answer the question from Shelah [6]. We show that the second case can be done without any additional hypothesis. So it is a theorem of ZFC alone that a completely separable MAD family exists when $\mathfrak{s} \leq \mathfrak{a}$. We give a single construction from this assumption, so Shelah's first and second cases are unified into a single case.

The question of whether the hypothesis $P(\mathfrak{s}, \mathfrak{a})$ can be eliminated from the case when $\mathfrak{a} < \mathfrak{s}$ remains open.

2 $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$

In this section we answer Question 21 from [5] by showing that $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$. For a set $x \subset \omega, x^0$ is used to denote x and x^1 is used to denote $\omega \setminus x$. This notation will be used in the next section also. Recall the following definitions.

Definition 3 For $x, a \in \mathcal{P}(\omega)$, x splits a if $|x^0 \cap a| = |x^1 \cap a| = \omega$. $\mathcal{F} \subset \mathcal{P}(\omega)$ is called a *splitting family* if $\forall a \in [\omega]^{\omega} \exists x \in \mathcal{F}[x \text{ splits } a]$. $\mathcal{F} \subset \mathcal{P}(\omega)$ is said to be (ω, ω) -splitting if for each countable collection $\{a_n : n \in \omega\} \subset [\omega]^{\omega}$, there exists $x \in \mathcal{F}$ such that $\exists^{\infty} n \in \omega[|x^0 \cap a_n| = \omega]$ and $\exists^{\infty} n \in \omega[|x^1 \cap a_n| = \omega]$. Define

 $\mathfrak{s} = \min\{|\mathcal{F}| : \mathcal{F} \subset \mathcal{P}(\omega) \land \mathcal{F} \text{ is a splitting family} \}$ $\mathfrak{s}_{\omega,\omega} = \min\{|\mathcal{F}| : \mathcal{F} \subset \mathcal{P}(\omega) \land \mathcal{F} \text{ is } (\omega, \omega) \text{-splitting} \}.$

120

Obviously every (ω, ω) -splitting family is a splitting family. So $\mathfrak{s} \leq \mathfrak{s}_{\omega,\omega}$. It was shown in Theorem 13 of [5] that if $\mathfrak{s} < \mathfrak{b}$, then $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$. We reproduce that result here for the reader's convenience.

Lemma 4 (Theorem 13 of [5]) If $\mathfrak{s} < \mathfrak{b}$, then $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$.

Proof Let $\langle e_{\alpha} : \alpha < \kappa \rangle$ witness that $\kappa = \mathfrak{s}$. Suppose $\{b_n : n \in \omega\} \subset [\omega]^{\omega}$ is a countable collection such that $\forall \alpha < \kappa \exists i \in 2 \forall^{\infty} n \in \omega [b_n \subset^* e_{\alpha}^i]$. By shrinking them if necessary we may assume that $b_n \cap b_m = 0$ whenever $n \neq m$. Now, for each $\alpha < \kappa$ define $f_{\alpha} \in \omega^{\omega}$ as follows. We know that there is a unique $i_{\alpha} \in 2$ such that there is a $k_{\alpha} \in \omega$ such that $\forall n \geq k_{\alpha} [|b_n \cap e_{\alpha}^{i_{\alpha}}| < \omega]$. We define $f_{\alpha}(n) = \max(b_n \cap e_{\alpha}^{i_{\alpha}})$ if $n \geq k_{\alpha}$, and $f_{\alpha}(n) = 0$ if $n < k_{\alpha}$. As $\kappa < \mathfrak{b}$, there is an $f \in \omega^{\omega}$ with $f^* > f_{\alpha}$ for each $\alpha < \kappa$. Now, for each $n \in \omega$, choose $l_n \in b_n$ with $l_n \geq f(n)$. Since the b_n are pairwise disjoint, $c = \{l_n : n \in \omega\} \in [\omega]^{\omega}$. So by definition of \mathfrak{s} , there is $\alpha < \kappa$ such that $|c \cap e_{\alpha}^0| = |c \cap e_{\alpha}^1| = \omega$. In particular, $c \cap e_{\alpha}^{i_{\alpha}}$ is infinite. However we know that there is an $m_{\alpha} \in \omega$ such that $\forall n \geq m_{\alpha} [f_{\alpha}(n) < f(n)]$. So there exists $n \geq \max\{m_{\alpha}, k_{\alpha}\}$ with $l_n \in b_n \cap e_{\alpha}^{i_{\alpha}}$. But this is a contradiction because $l_n \leq f_{\alpha}(n) < f(n)$.

In the case when $b \leq s$ it turns out that $s = s_{\omega,\omega}$ can still be proved by considering the following notion appearing in [4].

Definition 5 \mathcal{F} is called *block-splitting* if given any partition $\langle a_n : n \in \omega \rangle$ of ω into finite sets there is a set $x \in \mathcal{F}$ such that there are infinitely many n with $a_n \subset x$ and there are infinitely many n with $a_n \cap x = 0$.

It was proved by Kamburelis and Węglorz [4] that the least size of a block-splitting family is max{b, s}. Therefore, when $b \leq s$, there is a block-splitting family of size s.

Theorem 6 $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$.

Proof In view of Lemma 4, we may assume that $b \leq \mathfrak{s}$. By results of Kamburelis and Węglorz [4] fix $\langle x_{\alpha} : \alpha < \mathfrak{s} \rangle \subset \mathcal{P}(\omega)$, a block-splitting family. We show that $\langle x_{\alpha} : \alpha < \mathfrak{s} \rangle$ is an (ω, ω) -splitting family. Let $\{a_n : n \in \omega\} \subset [\omega]^{\omega}$ be given. For $n \in \omega$, define $s_n \in [\omega]^{<\omega}$ as follows. Suppose $\langle s_i : i < n \rangle$ have been defined. Put $s = \bigcup_{i < n} s_i$. Put $s_n = \{\min(\omega \setminus s)\} \cup \{\min(a_i \setminus s) : i \leq n\}$. Note that $\langle s_n : n \in \omega \rangle$ is a partition of ω into finite sets and that $\forall i \in \omega \forall^{\infty} n \in \omega[s_n \cap a_i \neq 0]$. Now choose $\alpha < \mathfrak{s}$ such that $\exists^{\infty} n \in \omega[s_n \subset x_{\alpha}^0]$ and $\exists^{\infty} n \in \omega[s_n \cap a_i \cap x_{\alpha}^1 \neq 0]$. So for each $i \in \omega$, $\exists^{\infty} n \in \omega[s_n \cap a_i \cap x_{\alpha}^0 \neq 0]$ and $\exists^{\infty} n \in \omega[s_n \cap a_i \cap x_{\alpha}^1 \neq 0]$. Since the s_n are pairwise disjoint, it follows that $|a_i \cap x_{\alpha}^0| = |a_i \cap x_{\alpha}^1| = \omega$, for each $i \in \omega$.

3 Constructing a Completely Separable MAD Family from $\mathfrak{s} \leq \mathfrak{a}$

As $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}$ and as every (ω, ω) -splitting family is also a splitting family, fix once and for all a sequence $\langle x_{\alpha} : \alpha < \kappa \rangle$ witnessing that $\kappa = \mathfrak{s} = \mathfrak{s}_{\omega,\omega}$. We will construct a completely separable MAD family assuming that $\kappa \leq \mathfrak{a}$. The construction closely follows the proof of Lemma 8 in [5], which in turn is based on Shelah [6]. An important point of the construction is that if \mathscr{A} is an arbitrary a.d. family and $b \in \mathcal{I}^+(\mathscr{A})$, then every (ω, ω) -splitting family contains an element which splits *b* into two *positive* pieces.

Lemma 7 Let $\mathscr{A} \subset [\omega]^{\omega}$ be any a.d. family. Suppose $b \in \mathfrak{I}^+(\mathscr{A})$. Then there is $\alpha < \kappa$ such that $b \cap x_{\alpha}^0 \in \mathfrak{I}^+(\mathscr{A})$ and $b \cap x_{\alpha}^1 \in \mathfrak{I}^+(\mathscr{A})$.

Proof See proof of Lemma 7 of [5].

At a stage $\delta < \mathfrak{c}$, an a.d. family $\mathscr{A}_{\delta} = \langle a_{\alpha} : \alpha < \delta \rangle \subset [\omega]^{\omega}$ is given. Moreover we assume that there is also a family $\langle \sigma_{\alpha} : \alpha < \delta \rangle \subset 2^{<\kappa}$ such that for each $\alpha < \delta$, $\forall \xi < \operatorname{dom}(\sigma_{\alpha})[a_{\alpha} \subset^* x_{\xi}^{\sigma_{\alpha}(\xi)}]$. We say that σ_{α} is *the node associated with* a_{α} . The next lemma says that under the assumption $\kappa \leq \mathfrak{a}$, such an a.d. family must be "nowhere maximal", which is of course a property that we need to maintain in order to end up with a completely separable MAD family.

Definition 8 Let $\eta \in 2^{<\kappa}$. Define $\mathbb{J}_{\eta} = \{a \in \mathbb{P}(\omega) : \forall \xi < \operatorname{dom}(\eta) [a \subset^* x_{\xi}^{\eta(\xi)}] \}$.

Lemma 9 (Main Lemma) Let $\kappa \leq \mathfrak{a}$ and $\delta < \mathfrak{c}$. Suppose that $\mathscr{A}_{\delta} = \langle a_{\alpha} : \alpha < \delta \rangle$ and $\langle \sigma_{\alpha} : \alpha < \delta \rangle$ are as above. Assume also that $\forall \alpha, \beta < \delta [\alpha \neq \beta \implies \sigma_{\alpha} \neq \sigma_{\beta}]$. Let $b \in \mathfrak{I}^+(\mathscr{A}_{\delta})$. Then there exist $a \in [b]^{\omega}$ and $\sigma \in 2^{<\kappa}$ such that

(1)
$$\forall \alpha < \delta[|a \cap a_{\alpha}| < \omega],$$

(2) for each $\alpha < \delta$, $\sigma \not\subset \sigma_{\alpha}$ and $a \in I_{\sigma}$.

Proof Applying Lemma 7, let $\alpha_0 < \kappa$ be least such that $b \cap x_{\alpha_0}^0 \in \mathcal{I}^+(\mathscr{A}_{\delta})$ and $b \cap x_{\alpha_0}^1 \in \mathcal{I}^+(\mathscr{A}_{\delta})$. Define $\tau_0 \in 2^{\alpha_0}$ by stipulating that

$$\forall \xi < \alpha_0 \forall i \in 2[\tau_0(\xi) = i \leftrightarrow b \cap x_{\varepsilon}^i \in \mathcal{I}^+(\mathscr{A}_{\delta})].$$

By choice of α_0 and by the hypothesis that $b \in \mathcal{I}^+(\mathscr{A}_{\delta})$, τ_0 is well defined. Now construct two sequences $\langle \alpha_s : s \in 2^{<\omega} \rangle \subset \kappa$ and $\langle \tau_s : s \in 2^{<\omega} \rangle \subset 2^{<\kappa}$ such that the following hold:

(3) $\forall s \in 2^{<\omega} \forall i \in 2[\alpha_s = \operatorname{dom}(\tau_s) \land \alpha_{s^\frown \langle i \rangle} > \alpha_s \land \tau_{s^\frown \langle i \rangle} \supset \tau_s^\frown \langle i \rangle].$ (4) For each $s \in 2^{<\omega}$ and for each $\xi < \alpha_s, x_{\xi}^{1-\tau_s(\xi)} \cap b \cap (\bigcap_{t \subsetneq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \in \mathfrak{I}(\mathscr{A}_{\delta}).$ Here, $\bigcap_{t \subsetneq s} x_{\alpha_t}^{\tau_s(\alpha_t)}$ is taken to be ω when s = 0. (5) For each $s \in 2^{<\omega}$, both

$$x_{\alpha_s}^0 \cap b \cap (\bigcap_{t \subsetneq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \in \mathbb{J}^+(\mathscr{A}_{\delta}) \quad \text{and} \quad x_{\alpha_s}^1 \cap b \cap (\bigcap_{t \subsetneq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \in \mathbb{J}^+(\mathscr{A}_{\delta}).$$

 α_0 and τ_0 are already defined. Suppose that α_s and τ_s are given. By (5), for each $i \in 2$, $x_{\alpha_s}^i \cap b \cap (\bigcap_{t \subsetneq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \in \mathcal{I}^+(\mathscr{A}_{\delta})$. Apply Lemma 7 to let $\alpha_{s \frown \langle i \rangle}$ be the least $\alpha < \kappa$ such that both $x_{\alpha_s}^i \cap b \cap (\bigcap_{t \subsetneq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \cap x_{\alpha}^0$ and $x_{\alpha_s}^i \cap b \cap (\bigcap_{t \subsetneq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \cap x_{\alpha}^1$ are in $\mathcal{I}^+(\mathscr{A}_{\delta})$. Again define $\tau_{s \frown \langle i \rangle} \in 2^{\alpha_s \frown \langle i \rangle}$ by stipulating that

$$\forall \xi < \alpha_{s^{\frown}\langle i \rangle} \forall j \in 2[\tau_{s^{\frown}\langle i \rangle}(\xi) = j \leftrightarrow x^{i}_{\alpha_{s}} \cap b \cap \left(\bigcap_{t \subsetneq s} x^{\tau_{s}(\alpha_{t})}_{\alpha_{t}}\right) \cap x^{j}_{\xi} \in \mathbb{J}^{+}(\mathscr{A}_{\delta})]$$

 $\tau_{s^{\frown}\langle i\rangle}$ is well defined because $x_{\alpha_s}^i \cap b \cap (\bigcap_{t \subseteq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \in \mathcal{I}^+(\mathscr{A}_{\delta})$ and because of the choice of $\alpha_{s^{\frown}\langle i\rangle}$. Now, for each $\xi < \alpha_s$, $x_{\alpha_s}^i \cap b \cap (\bigcap_{t \subseteq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \subset b \cap (\bigcap_{t \subseteq s} x_{\alpha_t}^{\tau_s(\alpha_t)})$

122

Splitting Families and Complete Separability

and, by (4), $b \cap (\bigcap_{t \subseteq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \cap x_{\xi}^{1-\tau_s(\xi)} \in \mathcal{I}(\mathscr{A}_{\delta})$. It follows that $\alpha_{s \cap \langle i \rangle} \ge \alpha_s$ and that for each $\xi < \alpha_s$, $\tau_s(\xi) = \tau_{s \cap \langle i \rangle}(\xi)$. Next, since $x_{\alpha_s}^i \cap b \cap (\bigcap_{t \subseteq s} x_{\alpha_t}^{\tau_s(\alpha_t)}) \cap x_{\alpha_s}^{1-i} = 0$, $\alpha_{s \cap \langle i \rangle} > \alpha_s$, and $\tau_{s \cap \langle i \rangle} \supset \tau_s \cap \langle i \rangle$. Now, it is clear that (4) and (5) hold for $s \cap \langle i \rangle$. This completes the construction of $\langle \alpha_s : s \in 2^{<\omega} \rangle$ and $\langle \tau_s : s \in 2^{<\omega} \rangle$.

For each $f \in 2^{\omega}$, put $\alpha_f = \sup\{\alpha_{f \upharpoonright n} : n \in \omega\}$ and $\tau_f = \bigcup_{n \in \omega} \tau_{f \upharpoonright n}$. As $\kappa = \mathfrak{s}$, $\operatorname{cf}(\kappa) > \omega$. Therefore, $\alpha_f < \kappa$. Note that $\tau_f \in 2^{\alpha_f}$. Also, if $f, g \in 2^{\omega}$, $f \neq g$, and $n \in \omega$ is least such that $f(n) \neq g(n)$, then $\tau_f \supset \tau_s \frown \langle i \rangle$ and $\tau_g \supset \tau_s \frown \langle 1 - i \rangle$, where $s = f \upharpoonright n = g \upharpoonright n$ and $i \in 2$. So there cannot be $\alpha < \delta$ such that both $\tau_f \subset \sigma_\alpha$ and $\tau_g \subset \sigma_\alpha$ hold. Therefore, it is possible to find $f \in 2^{\omega}$ such that $\tau_f \notin \{\sigma \in 2^{<\kappa} : \exists \alpha < \delta [\sigma \subset \sigma_\alpha]\}$. Fix such f and for each $n \in \omega$, define e_n to be $b \cap (\bigcap_{m < n} x_{\alpha_{f \upharpoonright m}}^{\tau_f(\alpha_{f \upharpoonright m})})$. By (5) each $e_n \in \mathcal{I}^+(\mathscr{A}_{\delta})$. Moreover, $e_{n+1} \subset e_n \subset b$. Therefore, by a standard argument, there is $e \in [b]^{\omega} \cap \mathcal{I}^+(\mathscr{A}_{\delta})$ such that $\forall n \in \omega[e \subset^* e_n]$.

Now suppose $\xi < \alpha_f$. Since $\alpha_{f \upharpoonright n+1} > \alpha_{f \upharpoonright n}$ for all $n \in \omega$, it follows that $\xi < \alpha_{f \upharpoonright n}$ for some *n*. By (4) applied to $s = f \upharpoonright n$, we have $x_{\xi}^{1-\tau_f(\xi)} \cap e_n \in \mathfrak{I}(\mathscr{A}_{\delta})$. Since $e \subset *e_n$, $x_{\xi}^{1-\tau_f(\xi)} \cap e \in \mathfrak{I}(\mathscr{A}_{\delta})$. Thus we conclude that $\forall \xi < \alpha_f[x_{\xi}^{1-\tau_f(\xi)} \cap e \in \mathfrak{I}(\mathscr{A}_{\delta})]$. So for each $\xi < \alpha_f$, fix $F_{\xi} \in [\delta]^{<\omega}$ such that

$$(x_{\xi}^{1-\tau_{f}(\xi)}\cap e)\subset^{*} \left(\bigcup_{\alpha\in F_{\xi}}a_{\alpha}\right).$$

Now put $\mathcal{F} = \bigcup_{\xi < \alpha_f} F_{\xi}$ and $\mathcal{G} = \{\alpha < \delta : \sigma_{\alpha} \subset \tau_f\}$. Note that $|\mathcal{F} \cup \mathcal{G}| < \kappa \leq \mathfrak{a}$ because of the assumption that $\forall \alpha, \beta < \delta [\alpha \neq \beta \implies \sigma_{\alpha} \neq \sigma_{\beta}]$. Since $e \in \mathcal{I}^+(\mathscr{A}_{\delta})$, there is $a \in [e]^{\omega}$ such that $\forall \alpha \in \mathcal{F} \cup \mathcal{G}[|a \cap a_{\alpha}| < \omega]$. Note that for each $\xi < \alpha_f, x_{\xi}^{1-\tau_f(\xi)} \cap a$ is finite. Thus, putting $\sigma = \tau_f$, we have that $\forall \alpha < \delta [\sigma \not\subset \sigma_{\alpha}]$ and $a \in I_{\sigma}$. In order to finish the proof, it is enough to check that $\forall \alpha < \delta [|a_{\alpha} \cap a| < \omega]$.

Fix $\alpha < \delta$. If $\alpha \in \mathcal{G}$, then $|a \cap a_{\alpha}| < \omega$ simply by choice of *a*. Suppose $\alpha \notin \mathcal{G}$. Then there must be $\xi \in \operatorname{dom}(\sigma_{\alpha}) \cap \alpha_{f}$ such that $\sigma_{\alpha}(\xi) = 1 - \tau_{f}(\xi)$. However, since $a_{\alpha} \subset^{*} x_{\xi}^{\sigma_{\alpha}(\xi)}$ and $a \cap x_{\xi}^{1-\tau_{f}(\xi)}$ is finite, it follows that $|a \cap a_{\alpha}| < \omega$.

Theorem 10 If $\mathfrak{s} \leq \mathfrak{a}$, then there is a completely separable MAD family.

Proof Fix an enumeration $\langle b_{\alpha} : \alpha < \mathfrak{c} \rangle$ of $[\omega]^{\omega}$. Let $\langle x_{\alpha} : \alpha < \kappa \rangle$ witness $\kappa = \mathfrak{s} = \mathfrak{s}_{\omega,\omega}$. Build two sequences $\langle a_{\delta} : \delta < \mathfrak{c} \rangle$ and $\langle \sigma_{\delta} : \delta < \mathfrak{c} \rangle$ such that the following hold:

(1) For each $\delta < \mathfrak{c}, a_{\delta} \in [\omega]^{\omega}, \sigma_{\delta} \in 2^{<\kappa}$, and $a_{\delta} \in I_{\sigma_{\delta}}$.

(2) $\forall \gamma, \delta < \mathfrak{c} [\gamma \neq \delta \implies (|a_{\gamma} \cap a_{\delta}| < \omega \land \sigma_{\gamma} \neq \sigma_{\delta})].$

(3) For each $\delta < \mathfrak{c}$, if $b_{\delta} \in \mathfrak{I}^+(\mathscr{A}_{\delta})$, then $a_{\delta} \subset b_{\delta}$, where $\mathscr{A}_{\delta} = \{a_{\alpha} : \alpha < \delta\}$.

Note that if we succeed in this, then $\mathscr{A}_{\mathfrak{c}} = \{a_{\delta} : \delta < \mathfrak{c}\}$ will be completely separable. For given any $b \in \mathcal{I}^+(\mathscr{A}_{\mathfrak{c}})$, b is in $\mathcal{I}^+(\mathscr{A}_{\delta})$ for every $\delta < \mathfrak{c}$ and so there is a $\delta < \mathfrak{c}$, where $b_{\delta} = b$ and $b_{\delta} \in \mathcal{I}^+(\mathscr{A}_{\delta})$, whence by (3), $a_{\delta} \subset b$.

At a stage $\delta < \mathfrak{c}$ suppose $\langle a_{\alpha} : \alpha < \delta \rangle$ and $\langle \sigma_{\alpha} : \alpha < \delta \rangle$ are given. If $b_{\delta} \in \mathfrak{I}^+(\mathscr{A}_{\delta})$, then let $b = b_{\delta}$, else let $b = \omega$. In either case, the hypotheses of Lemma 9 are satisfied. So find $a_{\delta} \in [b]^{\omega}$ and $\sigma_{\delta} \in 2^{<\kappa}$ such that

(4) $\forall \alpha < \delta [|a_{\delta} \cap a_{\alpha}| < \omega],$

(5) for each $\alpha < \delta$, $\sigma_{\delta} \not\subset \sigma_{\alpha}$ and $a_{\delta} \in I_{\sigma_{\delta}}$.

It is clear that a_{δ} and σ_{δ} are as needed.

References

- B. Balcar, J. Dočkálková, and P. Simon, Almost disjoint families of countable sets. In: Finite and infinite sets, Vol. I, II (Eger, 1981), Colloq. Math. Soc. János Bolyai 37, North-Holland, Amsterdam, 1984, 59–88.
- B. Balcar and P. Simon, *Disjoint refinement*. In: Handbook of Boolean algebras, Vol. 2, North-Holland, Amsterdam, 1989, 333–388.
- P. Erdős and S. Shelah, Separability properties of almost-disjoint families of sets. Israel J. Math. 12(1972), 207–214. http://dx.doi.org/10.1007/BF02764666
- [4] A. Kamburelis and B. Węglorz, *Splittings*. Arch. Math. Logic **35**(1996), 263–277. http://dx.doi.org/10.1007/s001530050044
- [5] D. Raghavan and J. Steprāns, *On weakly tight families*. Canad. J. Math., to appear. http://dx.doi.org/10.4153/CJM-2012-017-8
- [6] S. Shelah, Mad families and sane player. Preprint, 0904.0816.
- [7] P. Simon, A note on almost disjoint refinement. In: 24th Winter School on Abstract Analysis (Benešova Hora, 1996), Acta Univ. Carolin. Math. Phys. 37(1996), 89–99.

Albert-Ludwigs-Universität, Freiburg e-mail: heike.mildenberger@math.uni-freiburg.de

Kobe University e-mail: raghavan@math.toronto.edu

York University, Toronto, ON e-mail: steprans@yorku.ca