Splitting Families and Complete Separability

Heike Mildenberger, Dilip Raghavan, and Juris Steprans

Abstract

We answer a question from Raghavan and Steprāns by showing that $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$. Then we use this to construct a completely separable maximal almost disjoint family under $\mathfrak{s} \leq \mathfrak{a}$, partially answering a question of Shelah.

1 Introduction

The purpose of this short note is to answer a question posed by the second and third authors in [5] and to use this to solve a problem of Shelah [6]. We say that two infinite subsets a and b of ω are almost disjoint or a.d. if $a \cap b$ is finite. We say that a family \mathscr{A} of infinite subsets of ω is almost disjoint or a.d. if its members are pairwise almost disjoint. A Maximal Almost Disjoint family or MAD family is an infinite a.d. family that is not properly contained in a larger a.d. family.

For an a.d. family \mathscr{A}, let $\mathcal{J}(\mathscr{A})$ denote the ideal on ω generated by \mathscr{A}-that is, $a \in \mathcal{J}(\mathscr{A})$ if and only if $\exists a_{0}, \ldots, a_{k} \in \mathscr{A}\left[a \subset^{*} a_{0} \cup \cdots \cup a_{k}\right]$. For any ideal \mathcal{J} on ω, \mathcal{J}^{+}denotes $\mathcal{P}(\omega) \backslash \mathcal{J}$. An a.d. family $\mathscr{A} \subset[\omega]^{\omega}$ is said to be completely separable if for any $b \in \mathcal{J}^{+}(\mathscr{A})$, there is an $a \in \mathscr{A}$ with $a \subset b$. Notice that an infinite completely separable a.d. \mathscr{A} must be MAD. Though the following is one of the most well-studied problems in set theory, it continues to remains open.

Question 1 (Erdős and Shelah [3]) Does there exist a completely separable MAD family $\mathscr{A} \subset[\omega]^{\omega}$?

Progress on Question 1 was made by Balcar, Dočkálková, and Simon who showed in a series of papers that completely separable MAD families can be constructed from any of the assumptions $\mathfrak{b}=\mathfrak{D}, \mathfrak{s}=\omega_{1}$, or $\mathfrak{b} \leq \mathfrak{a}$. See [1], [2], and [7] for this work. Then Shelah [6] recently showed that the existence of completely separable MAD families is almost a theorem of ZFC. His construction is divided into three cases. The first case is when $\mathfrak{s}<\mathfrak{a}$, and he shows on the basis of ZFC alone that a completely separable MAD family can be constructed in this case. The second and third cases are when $\mathfrak{s}=\mathfrak{a}$ and $\mathfrak{a}<\mathfrak{s}$ respectively, and Shelah shows that a completely separable MAD family can be constructed in these cases provided that certain PCFtype hypotheses are satisfied. More precisely, he shows that there is a completely separable MAD family when $\mathfrak{s}=\mathfrak{a}$ and $U(\mathfrak{s})$ holds, or when $\mathfrak{a}<\mathfrak{s}$ and $P(\mathfrak{s}, \mathfrak{a})$ holds.

[^0]Definition 2 For a cardinal $\kappa>\omega, U(\kappa)$ is the following principle. There is a sequence $\left\langle u_{\alpha}: \omega \leq \alpha<\kappa\right\rangle$ such that
(1) $u_{\alpha} \subset \alpha$ and $\left|u_{\alpha}\right|=\omega$,
(2) $\forall X \in[\kappa]^{\kappa} \exists \omega \leq \alpha<\kappa\left[\left|u_{\alpha} \cap X\right|=\omega\right]$.

For cardinals $\kappa>\lambda>\omega, P(\kappa, \lambda)$ says that there is a sequence $\left\langle u_{\alpha}: \omega \leq \alpha<\kappa\right\rangle$ such that
(3) $u_{\alpha} \subset \alpha$ and $\left|u_{\alpha}\right|=\omega$,
(4) for each $X \subset \kappa$, if X is bounded in κ and $\operatorname{otp}(X)=\lambda$, then $\exists \omega \leq \alpha<$ $\sup (X)\left[\left|u_{\alpha} \cap X\right|=\omega\right]$.

It is easy to see that both $U(\mathfrak{s})$ and $P(\mathfrak{s}, \mathfrak{a})$ are satisfied when $\mathfrak{s}<\aleph_{\omega}$, so in particular, the existence of a completely separable MAD family is a theorem of ZFC when $\mathfrak{c}<\aleph_{\omega}$. Shelah [6] asked whether all uses of PCF-type hypotheses can be eliminated from the second and third cases.

The second and third authors modified the techniques of Shelah [6] in order to treat MAD families with few partitioners in [5] (see the introduction there). In that paper they introduced a cardinal invariant $\mathfrak{s}_{\omega, \omega}$, which is a variation of the splitting number \mathfrak{s}. They showed that if $\mathfrak{s}_{\omega, \omega} \leq \mathfrak{b}$, then there is a weakly tight family. Recall that an a.d. family $\mathscr{A} \subset[\omega]^{\omega}$ is called weakly tight if for every countable collection $\left\{b_{n}: n \in \omega\right\} \subset \mathcal{J}^{+}(\mathscr{A})$, there is $a \in \mathscr{A}$ such that $\exists^{\infty}{ }_{n} \in \omega\left[\left|b_{n} \cap a\right|=\omega\right]$. The question of whether $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$ was raised in [5], and the authors pointed out that an affirmative answer to this question could help eliminate the use of PCF-type hypotheses from the second case of Shelah's construction.

In this paper we answer this question from [5] by proving that $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$. We then use this information to partially answer the question from Shelah [6]. We show that the second case can be done without any additional hypothesis. So it is a theorem of ZFC alone that a completely separable MAD family exists when $\mathfrak{s} \leq \mathfrak{a}$. We give a single construction from this assumption, so Shelah's first and second cases are unified into a single case.

The question of whether the hypothesis $P(\mathfrak{s}, \mathfrak{a})$ can be eliminated from the case when $\mathfrak{a}<\mathfrak{s}$ remains open.
$2 \quad \mathfrak{s}=\mathfrak{s}_{\omega, \omega}$
In this section we answer Question 21 from [5] by showing that $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$. For a set $x \subset \omega, x^{0}$ is used to denote x and x^{1} is used to denote $\omega \backslash x$. This notation will be used in the next section also. Recall the following definitions.

Definition 3 For $x, a \in \mathcal{P}(\omega)$, x splits a if $\left|x^{0} \cap a\right|=\left|x^{1} \cap a\right|=\omega$. $\mathcal{F} \subset \mathcal{P}(\omega)$ is called a splitting family if $\forall a \in[\omega]^{\omega} \exists x \in \mathcal{F}[x$ splits $a]$. $\mathcal{F} \subset \mathcal{P}(\omega)$ is said to be (ω, ω)-splitting if for each countable collection $\left\{a_{n}: n \in \omega\right\} \subset[\omega]^{\omega}$, there exists $x \in \mathcal{F}$ such that $\exists^{\infty} n \in \omega\left[\left|x^{0} \cap a_{n}\right|=\omega\right]$ and $\exists^{\infty} n \in \omega\left[\left|x^{1} \cap a_{n}\right|=\omega\right]$. Define

$$
\begin{aligned}
\mathfrak{s} & =\min \{|\mathcal{F}|: \mathcal{F} \subset \mathcal{P}(\omega) \wedge \mathcal{F} \text { is a splitting family }\} \\
\mathfrak{s}_{\omega, \omega} & =\min \{|\mathcal{F}|: \mathcal{F} \subset \mathcal{P}(\omega) \wedge \mathcal{F} \text { is }(\omega, \omega) \text {-splitting }\}
\end{aligned}
$$

Obviously every (ω, ω)-splitting family is a splitting family. So $\mathfrak{s} \leq \mathfrak{s}_{\omega, \omega}$. It was shown in Theorem 13 of [5] that if $\mathfrak{s}<\mathfrak{b}$, then $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$. We reproduce that result here for the reader's convenience.

Lemma 4 (Theorem 13 of [5]) If $\mathfrak{s}<\mathfrak{b}$, then $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$.
Proof Let $\left\langle e_{\alpha}: \alpha<\kappa\right\rangle$ witness that $\kappa=\mathfrak{s}$. Suppose $\left\{b_{n}: n \in \omega\right\} \subset[\omega]^{\omega}$ is a countable collection such that $\forall \alpha<\kappa \exists i \in 2 \forall^{\infty} n \in \omega\left[b_{n} \subset^{*} e_{\alpha}^{i}\right]$. By shrinking them if necessary we may assume that $b_{n} \cap b_{m}=0$ whenever $n \neq m$. Now, for each $\alpha<\kappa$ define $f_{\alpha} \in \omega^{\omega}$ as follows. We know that there is a unique $i_{\alpha} \in 2$ such that there is a $k_{\alpha} \in \omega$ such that $\forall n \geq k_{\alpha}\left[\left|b_{n} \cap e_{\alpha}^{i_{\alpha}}\right|<\omega\right]$. We define $f_{\alpha}(n)=\max \left(b_{n} \cap e_{\alpha}^{i_{\alpha}}\right)$ if $n \geq k_{\alpha}$, and $f_{\alpha}(n)=0$ if $n<k_{\alpha}$. As $\kappa<\mathfrak{b}$, there is an $f \in \omega^{\omega}$ with $f^{*}>f_{\alpha}$ for each $\alpha<\kappa$. Now, for each $n \in \omega$, choose $l_{n} \in b_{n}$ with $l_{n} \geq f(n)$. Since the b_{n} are pairwise disjoint, $c=\left\{l_{n}: n \in \omega\right\} \in[\omega]^{\omega}$. So by definition of \mathfrak{s}, there is $\alpha<\kappa$ such that $\left|c \cap e_{\alpha}^{0}\right|=\left|c \cap e_{\alpha}^{1}\right|=\omega$. In particular, $c \cap e_{\alpha}^{i_{\alpha}}$ is infinite. However we know that there is an $m_{\alpha} \in \omega$ such that $\forall n \geq m_{\alpha}\left[f_{\alpha}(n)<f(n)\right]$. So there exists $n \geq \max \left\{m_{\alpha}, k_{\alpha}\right\}$ with $l_{n} \in b_{n} \cap e_{\alpha}^{i_{\alpha}}$. But this is a contradiction because $l_{n} \leq f_{\alpha}(n)<f(n)$.

In the case when $\mathfrak{b} \leq \mathfrak{s}$ it turns out that $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$ can still be proved by considering the following notion appearing in [4].

Definition $5 \mathcal{F}$ is called block-splitting if given any partition $\left\langle a_{n}: n \in \omega\right\rangle$ of ω into finite sets there is a set $x \in \mathcal{F}$ such that there are infinitely many n with $a_{n} \subset x$ and there are infinitely many n with $a_{n} \cap x=0$.

It was proved by Kamburelis and Weglorz [4] that the least size of a block-splitting family is $\max \{\mathfrak{b}, \mathfrak{s}\}$. Therefore, when $\mathfrak{b} \leq \mathfrak{s}$, there is a block-splitting family of size \mathfrak{s}.

Theorem $6 \mathfrak{s}=\mathfrak{s}_{\omega, \omega}$.
Proof In view of Lemma 4, we may assume that $\mathfrak{b} \leq \mathfrak{s}$. By results of Kamburelis and Węglorz [4] fix $\left\langle x_{\alpha}: \alpha<\mathfrak{s}\right\rangle \subset \mathcal{P}(\omega)$, a block-splitting family. We show that $\left\langle x_{\alpha}: \alpha<\mathfrak{s}\right\rangle$ is an (ω, ω)-splitting family. Let $\left\{a_{n}: n \in \omega\right\} \subset[\omega]^{\omega}$ be given. For $n \in \omega$, define $s_{n} \in[\omega]^{<\omega}$ as follows. Suppose $\left\langle s_{i}: i<n\right\rangle$ have been defined. Put $s=\bigcup_{i<n} s_{i}$. Put $s_{n}=\{\min (\omega \backslash s)\} \cup\left\{\min \left(a_{i} \backslash s\right): i \leq n\right\}$. Note that $\left\langle s_{n}: n \in \omega\right\rangle$ is a partition of ω into finite sets and that $\forall i \in \omega \forall^{\infty} n \in \omega\left[s_{n} \cap a_{i} \neq 0\right]$. Now choose $\alpha<\mathfrak{s}$ such that $\exists^{\infty}{ }_{n} \in \omega\left[s_{n} \subset x_{\alpha}^{0}\right]$ and $\exists^{\infty} n \in \omega\left[s_{n} \subset x_{\alpha}^{1}\right]$. So for each $i \in \omega$, $\exists{ }^{\infty} n \in \omega\left[s_{n} \cap a_{i} \cap x_{\alpha}^{0} \neq 0\right]$ and $\exists{ }^{\infty} n \in \omega\left[s_{n} \cap a_{i} \cap x_{\alpha}^{1} \neq 0\right]$. Since the s_{n} are pairwise disjoint, it follows that $\left|a_{i} \cap x_{\alpha}^{0}\right|=\left|a_{i} \cap x_{\alpha}^{1}\right|=\omega$, for each $i \in \omega$.

3 Constructing a Completely Separable MAD Family from $\mathfrak{s} \leq \mathfrak{a}$

As $\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$ and as every (ω, ω)-splitting family is also a splitting family, fix once and for all a sequence $\left\langle x_{\alpha}: \alpha<\kappa\right\rangle$ witnessing that $\kappa=\mathfrak{s}=\mathfrak{s}_{\omega, \omega}$. We will construct a completely separable MAD family assuming that $\kappa \leq \mathfrak{a}$. The construction closely follows the proof of Lemma 8 in [5], which in turn is based on Shelah [6]. An important point of the construction is that if \mathscr{A} is an arbitrary a.d. family and $b \in \mathcal{J}^{+}(\mathscr{A})$, then every (ω, ω)-splitting family contains an element which splits b into two positive pieces.

Lemma 7 Let $\mathscr{A} \subset[\omega]^{\omega}$ be any a.d. family. Suppose $b \in \mathcal{J}^{+}(\mathscr{A})$. Then there is $\alpha<\kappa$ such that $b \cap x_{\alpha}^{0} \in \mathcal{J}^{+}(\mathscr{A})$ and $b \cap x_{\alpha}^{1} \in \mathcal{J}^{+}(\mathscr{A})$.

Proof See proof of Lemma 7 of [5].
At a stage $\delta<\mathfrak{c}$, an a.d. family $\mathscr{A}_{\delta}=\left\langle a_{\alpha}: \alpha<\delta\right\rangle \subset[\omega]^{\omega}$ is given. Moreover we assume that there is also a family $\left\langle\sigma_{\alpha}: \alpha<\delta\right\rangle \subset 2^{<\kappa}$ such that for each $\alpha<\delta$, $\forall \xi<\operatorname{dom}\left(\sigma_{\alpha}\right)\left[a_{\alpha} \subset^{*} x_{\xi}^{\sigma_{\alpha}(\xi)}\right]$. We say that σ_{α} is the node associated with a_{α}. The next lemma says that under the assumption $\kappa \leq \mathfrak{a}$, such an a.d. family must be "nowhere maximal", which is of course a property that we need to maintain in order to end up with a completely separable MAD family.

Definition 8 Let $\eta \in 2^{<\kappa}$. Define $\mathcal{J}_{\eta}=\left\{a \in \mathcal{P}(\omega): \forall \xi<\operatorname{dom}(\eta)\left[a \subset^{*} x_{\xi}^{\eta(\xi)}\right]\right\}$.
Lemma 9 (Main Lemma) Let $\kappa \leq \mathfrak{a}$ and $\delta<\mathfrak{c}$. Suppose that $\mathscr{A}_{\delta}=\left\langle a_{\alpha}: \alpha<\delta\right\rangle$ and $\left\langle\sigma_{\alpha}: \alpha<\delta\right\rangle$ are as above. Assume also that $\forall \alpha, \beta<\delta\left[\alpha \neq \beta \Longrightarrow \sigma_{\alpha} \neq \sigma_{\beta}\right]$. Let $b \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$. Then there exist $a \in[b]^{\omega}$ and $\sigma \in 2^{<\kappa}$ such that
(1) $\forall \alpha<\delta\left[\left|a \cap a_{\alpha}\right|<\omega\right]$,
(2) for each $\alpha<\delta, \sigma \not \subset \sigma_{\alpha}$ and $a \in I_{\sigma}$.

Proof Applying Lemma 7, let $\alpha_{0}<\kappa$ be least such that $b \cap x_{\alpha_{0}}^{0} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$ and $b \cap x_{\alpha_{0}}^{1} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$. Define $\tau_{0} \in 2^{\alpha_{0}}$ by stipulating that

$$
\forall \xi<\alpha_{0} \forall i \in 2\left[\tau_{0}(\xi)=i \leftrightarrow b \cap x_{\xi}^{i} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)\right] .
$$

By choice of α_{0} and by the hypothesis that $b \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right), \tau_{0}$ is well defined. Now construct two sequences $\left\langle\alpha_{s}: s \in 2^{\langle\omega}\right\rangle \subset \kappa$ and $\left\langle\tau_{s}: s \in 2^{<\omega}\right\rangle \subset 2^{<\kappa}$ such that the following hold:
(3) $\forall s \in 2^{<\omega} \forall i \in 2\left[\alpha_{s}=\operatorname{dom}\left(\tau_{s}\right) \wedge \alpha_{s}{ }^{\wedge}\langle i\rangle>\alpha_{s} \wedge \tau_{s}\left\ulcorner\langle i\rangle \supset \tau_{s} \frown\langle i\rangle\right]\right.$.
(4) For each $s \in 2^{<\omega}$ and for each $\xi<\alpha_{s}, x_{\xi}^{1-\tau_{s}(\xi)} \cap b \cap\left(\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \in \mathcal{J}\left(\mathscr{A}_{\delta}\right)$. Here, $\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}$ is taken to be ω when $s=0$.
(5) For each $s \in 2^{<\omega}$, both

$$
x_{\alpha_{s}}^{0} \cap b \cap\left(\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right) \quad \text { and } \quad x_{\alpha_{s}}^{1} \cap b \cap\left(\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{\alpha_{t}}\left(\alpha_{t}\right)}\right) \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right) .
$$

α_{0} and τ_{0} are already defined. Suppose that α_{s} and τ_{s} are given. By (5), for each $i \in 2$, $x_{\alpha_{s}}^{i} \cap b \cap\left(\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$. Apply Lemma 7 to let $\alpha_{\varsigma \sim\langle i\rangle}$ be the least $\alpha<\kappa$ such that both $x_{\alpha_{s}}^{i} \cap b \cap\left(\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \cap x_{\alpha}^{0}$ and $x_{\alpha_{s}}^{i} \cap b \cap\left(\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \cap x_{\alpha}^{1}$ are in $\mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$. Again define $\tau_{s}{ }^{\sim}\langle i\rangle \in 2^{\alpha_{s}<\langle i\rangle}$ by stipulating that

$$
\forall \xi<\alpha_{s \backsim\langle i\rangle} \forall j \in 2\left[\tau_{s \checkmark\langle i\rangle}(\xi)=j \leftrightarrow x_{\alpha_{s}}^{i} \cap b \cap\left(\bigcap_{t \subsetneq s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \cap x_{\xi}^{j} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)\right]
$$

$\tau_{s}\left\ulcorner\langle i\rangle\right.$ is well defined because $x_{\alpha_{s}}^{i} \cap b \cap\left(\bigcap_{t \subsetneq_{s} s} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$ and because of the choice of $\alpha_{s\ulcorner\langle i\rangle}$. Now, for each $\xi<\alpha_{s}, x_{\alpha_{s}}^{i} \cap b \cap\left(\bigcap_{t \subsetneq_{s} s} x_{\alpha_{t}}^{\tau_{s}}\left(\alpha_{t}\right)\right) \subset b \cap\left(\bigcap_{t \subsetneq_{s}} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right)$
and, by (4), $b \cap\left(\bigcap_{t \subsetneq_{s}} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \cap x_{\xi}^{1-\tau_{s}(\xi)} \in \mathcal{J}\left(\mathscr{A}_{\delta}\right)$. It follows that $\alpha_{s\ulcorner\langle i\rangle} \geq \alpha_{s}$ and that for each $\xi<\alpha_{s}, \tau_{s}(\xi)=\tau_{s \smile\langle i\rangle}(\xi)$. Next, since $x_{\alpha_{s}}^{i} \cap b \cap\left(\bigcap_{t \subsetneq_{s}} x_{\alpha_{t}}^{\tau_{s}\left(\alpha_{t}\right)}\right) \cap x_{\alpha_{s}}^{1-i}=0$, $\alpha_{\varsigma}\left\ulcorner\langle i\rangle>\alpha_{s}\right.$, and $\tau_{s} \prec\langle i\rangle \supset \tau_{s} \frown\langle i\rangle$. Now, it is clear that (4) and (5) hold for $s^{\curvearrowleft}\langle i\rangle$. This completes the construction of $\left\langle\alpha_{s}: s \in 2^{<\omega}\right\rangle$ and $\left\langle\tau_{s}: s \in 2^{<\omega}\right\rangle$.

For each $f \in 2^{\omega}$, put $\alpha_{f}=\sup \left\{\alpha_{f \upharpoonright n}: n \in \omega\right\}$ and $\tau_{f}=\bigcup_{n \in \omega} \tau_{f \upharpoonright n}$. As $\kappa=\mathfrak{s}$, $\operatorname{cf}(\kappa)>\omega$. Therefore, $\alpha_{f}<\kappa$. Note that $\tau_{f} \in 2^{\alpha_{f}}$. Also, if $f, g \in 2^{\omega}, f \neq g$, and $n \in \omega$ is least such that $f(n) \neq g(n)$, then $\tau_{f} \supset \tau_{s} \frown\langle i\rangle$ and $\tau_{g} \supset \tau_{s} \frown\langle 1-i\rangle$, where $s=f \upharpoonright n=g \upharpoonright n$ and $i \in 2$. So there cannot be $\alpha<\delta$ such that both $\tau_{f} \subset \sigma_{\alpha}$ and $\tau_{g} \subset \sigma_{\alpha}$ hold. Therefore, it is possible to find $f \in 2^{\omega}$ such that $\tau_{f} \notin\left\{\sigma \in 2^{<\kappa}: \exists \alpha<\delta\left[\sigma \subset \sigma_{\alpha}\right]\right\}$. Fix such f and for each $n \in \omega$, define e_{n} to be $b \cap\left(\bigcap_{m<n} x_{\alpha_{f \vdash m}}^{\tau_{f}\left(\alpha_{f \mid m}\right)}\right)$. By (5) each $e_{n} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$. Moreover, $e_{n+1} \subset e_{n} \subset b$. Therefore, by a standard argument, there is $e \in[b]^{\omega} \cap \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$ such that $\forall n \in \omega\left[e \subset^{*} e_{n}\right]$.

Now suppose $\xi<\alpha_{f}$. Since $\alpha_{f \upharpoonright n+1}>\alpha_{f \upharpoonright n}$ for all $n \in \omega$, it follows that $\xi<\alpha_{f \upharpoonright n}$ for some n. By (4) applied to $s=f \upharpoonright n$, we have $x_{\xi}^{1-\tau_{f}(\xi)} \cap e_{n} \in \mathcal{J}\left(\mathscr{A}_{\delta}\right)$. Since $e \subset^{*} e_{n}$, $x_{\xi}^{1-\tau_{f}(\xi)} \cap e \in \mathcal{J}\left(\mathscr{A}_{\delta}\right)$. Thus we conclude that $\forall \xi<\alpha_{f}\left[x_{\xi}^{1-\tau_{f}(\xi)} \cap e \in \mathcal{J}\left(\mathscr{A}_{\delta}\right)\right]$. So for each $\xi<\alpha_{f}$, fix $F_{\xi} \in[\delta]^{<\omega}$ such that

$$
\left(x_{\xi}^{1-\tau_{f}(\xi)} \cap e\right) \subset^{*}\left(\bigcup_{\alpha \in F_{\xi}} a_{\alpha}\right) .
$$

Now put $\mathcal{F}=\bigcup_{\xi<\alpha_{f}} F_{\xi}$ and $\mathcal{G}=\left\{\alpha<\delta: \sigma_{\alpha} \subset \tau_{f}\right\}$. Note that $|\mathcal{F} \cup \mathcal{G}|<\kappa \leq \mathfrak{a}$ because of the assumption that $\forall \alpha, \beta<\delta\left[\alpha \neq \beta \Longrightarrow \sigma_{\alpha} \neq \sigma_{\beta}\right]$. Since $e \in$ $\mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$, there is $a \in[e]^{\omega}$ such that $\forall \alpha \in \mathcal{F} \cup \mathcal{G}\left[\left|a \cap a_{\alpha}\right|<\omega\right]$. Note that for each $\xi<\alpha_{f}, x_{\xi}^{1-\tau_{f}(\xi)} \cap a$ is finite. Thus, putting $\sigma=\tau_{f}$, we have that $\forall \alpha<\delta\left[\sigma \not \subset \sigma_{\alpha}\right]$ and $a \in I_{\sigma}$. In order to finish the proof, it is enough to check that $\forall \alpha<\delta\left[\left|a_{\alpha} \cap a\right|<\right.$ $\omega]$.

Fix $\alpha<\delta$. If $\alpha \in \mathcal{G}$, then $\left|a \cap a_{\alpha}\right|<\omega$ simply by choice of a. Suppose $\alpha \notin \mathcal{G}$. Then there must be $\xi \in \operatorname{dom}\left(\sigma_{\alpha}\right) \cap \alpha_{f}$ such that $\sigma_{\alpha}(\xi)=1-\tau_{f}(\xi)$. However, since $a_{\alpha} \subset^{*} x_{\xi}^{\sigma_{\alpha}(\xi)}$ and $a \cap x_{\xi}^{1-\tau_{f}(\xi)}$ is finite, it follows that $\left|a \cap a_{\alpha}\right|<\omega$.

Theorem 10 If $\mathfrak{s} \leq \mathfrak{a}$, then there is a completely separable MAD family.
Proof Fix an enumeration $\left\langle b_{\alpha}: \alpha<\mathfrak{c}\right\rangle$ of $[\omega]^{\omega}$. Let $\left\langle x_{\alpha}: \alpha<\kappa\right\rangle$ witness $\kappa=\mathfrak{s}=$ $\mathfrak{s}_{\omega, \omega}$. Build two sequences $\left\langle a_{\delta}: \delta<\mathfrak{c}\right\rangle$ and $\left\langle\sigma_{\delta}: \delta<\mathfrak{c}\right\rangle$ such that the following hold:
(1) For each $\delta<\mathfrak{c}, a_{\delta} \in[\omega]^{\omega}, \sigma_{\delta} \in 2^{<\kappa}$, and $a_{\delta} \in I_{\sigma_{\delta}}$.
(2) $\forall \gamma, \delta<\mathfrak{c}\left[\gamma \neq \delta \Longrightarrow\left(\left|a_{\gamma} \cap a_{\delta}\right|<\omega \wedge \sigma_{\gamma} \neq \sigma_{\delta}\right)\right]$.
(3) For each $\delta<\mathfrak{c}$, if $b_{\delta} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$, then $a_{\delta} \subset b_{\delta}$, where $\mathscr{A}_{\delta}=\left\{a_{\alpha}: \alpha<\delta\right\}$.

Note that if we succeed in this, then $\mathscr{A}_{\mathfrak{c}}=\left\{a_{\delta}: \delta<\mathfrak{c}\right\}$ will be completely separable. For given any $b \in \mathcal{J}^{+}\left(\mathscr{A}_{\mathfrak{c}}\right), b$ is in $\mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$ for every $\delta<\mathfrak{c}$ and so there is a $\delta<\mathfrak{c}$, where $b_{\delta}=b$ and $b_{\delta} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$, whence by (3), $a_{\delta} \subset b$.

At a stage $\delta<\mathfrak{c}$ suppose $\left\langle a_{\alpha}: \alpha<\delta\right\rangle$ and $\left\langle\sigma_{\alpha}: \alpha<\delta\right\rangle$ are given. If $b_{\delta} \in \mathcal{J}^{+}\left(\mathscr{A}_{\delta}\right)$, then let $b=b_{\delta}$, else let $b=\omega$. In either case, the hypotheses of Lemma 9 are satisfied. So find $a_{\delta} \in[b]^{\omega}$ and $\sigma_{\delta} \in 2^{<\kappa}$ such that
(4) $\forall \alpha<\delta\left[\left|a_{\delta} \cap a_{\alpha}\right|<\omega\right]$,
(5) for each $\alpha<\delta, \sigma_{\delta} \not \subset \sigma_{\alpha}$ and $a_{\delta} \in I_{\sigma_{\delta}}$.

It is clear that a_{δ} and σ_{δ} are as needed.

References

[1] B. Balcar, J. Dočkálková, and P. Simon, Almost disjoint families of countable sets. In: Finite and infinite sets, Vol. I, II (Eger, 1981), Colloq. Math. Soc. János Bolyai 37, North-Holland, Amsterdam, 1984, 59-88.
[2] B. Balcar and P. Simon, Disjoint refinement. In: Handbook of Boolean algebras, Vol. 2, North-Holland, Amsterdam, 1989, 333-388.
[3] P. Erdős and S. Shelah, Separability properties of almost-disjoint families of sets. Israel J. Math. 12(1972), 207-214. http://dx.doi.org/10.1007/BF02764666
[4] A. Kamburelis and B. Węglorz, Splittings. Arch. Math. Logic 35(1996), 263-277. http://dx.doi.org/10.1007/s001530050044
[5] D. Raghavan and J. Steprāns, On weakly tight families. Canad. J. Math., to appear. http://dx.doi.org/10.4153/CJM-2012-017-8
[6] S. Shelah, Mad families and sane player. Preprint, 0904.0816.
[7] P. Simon, A note on almost disjoint refinement. In: 24th Winter School on Abstract Analysis (Benešova Hora, 1996), Acta Univ. Carolin. Math. Phys. 37(1996), 89-99.

Albert-Ludwigs-Universität, Freiburg
e-mail: heike.mildenberger@math.uni-freiburg.de
Kobe University
e-mail: raghavan@math.toronto.edu
York University, Toronto, ON
e-mail: steprans@yorku.ca

[^0]: Received by the editors March 27, 2012; revised July 17, 2013.
 Published electronically September 30, 2013.
 The second author was partially supported by Grants-in-Aid for Scientific Research for JSPS Fellows No. 23.01017. The third author was partially supported by the NSERC.

 AMS subject classification: 03E05, 03E17, 03E65.
 Keywords: maximal almost disjoint family, cardinal invariants.

