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SUMMARY

This paper uses the techniques of time series analysis (autocorrelation and
spectral analysis) to examine oscillatory secular trends in the incidence of
infectious diseases and the impact of mass vaccination programmes on these
well-documented phenomena. We focus on three common childhood diseases:
pertussis and mumps (using published disease-incidence data for England and
Wales) and measles (using data from England and Wales, Scotland, North America
and France). Our analysis indicates highly statistically significant seasonal and
longer-term cycles in disease incidence in the prevaccination era. In general, the
longer-term fluctuations (a 2-year period for measles, 3-year periods for pertussis
and mumps) account for most of the cyclical variability in these data, particularly
in the highly regular measles series for England and Wales. After vaccination, the
periods of the longer-term oscillations tend to increase, an observation which
corroborates theoretical predictions. Mass immunization against measles (which
reduces epidemic fluctuations) magnifies the relative importance of the seasonal
cycles. By contrast, we show that high levels of vaccination against whooping
cough in England and Wales appear to have suppressed the annual cycle.

INTRODUCTION

Oscillatory secular trends in the incidences of infectious diseases are widely
observed phenomena within human communities. In many instances the periodic
or epidemic outbreaks of infection are strikingly regular in occurrence. Such
patterns have aroused considerable interest amongst both epidemiologists and
mathematicians (Brownlee, 1915; Soper, 1929; Bartlett, 1956; Dietz, 1976; Yorke
et al. 1979; Anderson & May, 1982a). In a related field of scientific study, namely
that of ecology, regular fluctuations in the abundances of various animal species
have stimulated similar interest in periodic population behaviour (Poole, 1974;
Bulmer, 1974; Williamson, 1975; Finerty, 1980; Potts, Tapper & Hudson, 1984).
Many and varied hypotheses have been put forward to explain these patterns
(Williamson, 1972; May, 1973; Finerty, 1980). Today, however, in both epide-
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miology and ecology, it is widely accepted that non-seasonal fluctuations arise as
a consequence of the dynamical interactions between two or more populations,
whether they be host and parasite, predator and prey, plant and herbivore, or
indeed, any of these combinations. Climatic factors, which sometimes vary on a
regular seasonal basis, may impinge upon these longer-term fluctuations to induce
complex patterns of short- and long-term cycles.

In medicine, interest in periodic epidemic phenomena played a central role in
the development of modern-day epidemiological theory. The arguments over the
respective roles of changes in the 'infective' power of a disease agent, and the
dynamic interplay between the densities of susceptibles and immunes, make
fascinating reading (see Fine, 1979). Ironically, the first detailed statistical studies
of cycles in disease incidence were those stimulated by John Brownlee, who was
chosen in 1914 to become the first Director of the Statistical Department of the
newly formed Medical Research Council (see Brownlee, 1914, 1915, 1918, 1919,
1920; Young, 1920; Zinsser & Wilson, 1932). The irony lies in the fact that
Brownlee was the major proponent of the theory of changes in disease infectivity
during the course of epidemic cycles. Brownlee's hypothesis was in direct conflict
with earlier work by William Hamer (Hamer, 1906) and Ronald Ross (Ross, 1908,
1911, 1915, 1916, 1917), both of whom believed that the so-called 'mass action'
principle of transmission (the idea that the net rate of spread is dependent on the
density of infectious people times the density of susceptible individuals) explained
the regular recurrence of measles epidemics. Although instrumental in providing
statistical evidence for the regularity of recurrent epidemics (employing the
'method of periodograms'; see Brownlee, 1918), the demise of Brownlee's theory
of infectivity followed shortly after his death in 1927. Long-term studies of viral
and bacterial diseases in colonies of mice provided convincing evidence that
fluctuations in incidence were largely determined by the rate of influx of susceptible
animals and the acquisition of immunity (Greenwood et al. 1936). Firm mathe-
matical evidence that the mass-action principle induces oscillatory fluctuations in
incidence came later from the deterministic studies of Martini (1921), Lotka (1923),
Kermack & McKendrick (1927) and Soper (1929), and the stochastic work of
Bartlett (1956).

Since these early beginnings, the theory of epidemic cycles, founded on the
cornerstone of the mass action principle of transmission, has expanded rapidly (for
reviews see Bailey, 1975; Anderson & May, 1979, 19826; May & Anderson, 1979).
First, there is considerable mathematical interest in models of recurrent epidemic
behaviour as a consequence of their non-linear dynamical properties (see Dietz,
1976; Nussbaum, 1977; Busenberg & Cooke, 1978; Green, 1978; Smith, 1978;
Yorke et al. 1979; Grossman, 1980; Gripenberg, 1980; Stech & Williams, 1981;
Hethcote, Stech & van den Driessche, 1981, 1983; Schwartz & Smith, 1983; Aron
& Schwartz, 1984). The mass-action non-linearity, combined with incubation
delays in the course of infection, may induce simple cycles or two-point and
higher-order cycles (moving into chaos), depending on parameter values and
precise model structure. Secondly, observed seasonal changes in incidence, as
opposed to longer-term fluctuations, have themselves attracted attention (London
& Yorke, 1973; Dietz, 1976; Yorke et al. 1979; Fine & Clarkson, 1982a; Schwartz
& Smith, 1983). This is partly a consequence of their role in helping to perpetuate
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or pump longer-term oscillations, and partly due to intrinsic epidemiological
interest in the climatic, environmental, social and behavioural factors which
trigger seasonal changes. The third, and most recent, trend is an interest in melding
epidemiological theory more closely with its empirical base (Anderson & May,
1982a, 1983a; Fine & Clarkson, 1982a, b, 1983). In the past, much of the theory
has been rather abstract in character and of mathematical, as opposed to
epidemiological, interest (or indeed relevance). Yet the principles which form the
template of these models, and the model properties themselves, are of great
practical relevance to the interpretation of epidemiological data and in the design
of control programmes based on mass immunization (Anderson & May, 1983a).

This paper is concerned with the latter area. We focus on three problems arising
from theoretical and observational studies on longitudinal trends in disease
incidence. We examine first the statistical evidence for regularity in epidemic
cycles. We base our analyses on longitudinal data of three common childhood
infections, namely measles, pertussis and mumps. We pose a simple question - are
such cycles more regular in occurrence than would be expected on the basis of
chance fluctuations alone? We employ for the first time, to our knowledge,
time-series analysis methods in the examination of this problem. Observed cycle
periods are compared with those predicted by theoretical studies. The second topic
concerns seasonal changes and we analyse their regularity on a year-to-year basis
and make comparisons between the three diseases. The last problem concerns the
impact of mass immunization on both seasonal and longer-term cycles. Theory
predicts that immunization programmes will act to lengthen the inter-epidemic
period (Anderson & May, 1982 a). We examine the evidence for such behaviour by
reference to measles and pertussis in England and Wales.

METHODS

We employ two complementary techniques for examining periodicities in time
series: autocorrelation and spectral analysis. In this section we present a general
description of the two methods, and a note on interpretation. A formal description
of autocorrelation and spectral analysis techniques, and details of their application,
are set out in the Appendix. Detailed reviews of both methods are given by Jenkins
& Watts (1968), Chatfield (1975) and Box & Jenkins (1976).

Autocorrelation
This technique is based on the construction of a series of sample autocorrelation

coefficients rk (k = 0, 1,... , A7— 1, where N is the length of the time series), which
reflect the correlation between observations at different distances (and, therefore,
times) apart within the series. In particular, rk ( —1 ^ r f c < 1) measures the
correlation between the original data and the same series with a displacement (or
lag) of k observations. Autocorrelations are usually interpreted via a correlogram:
a plot of rk against the lag, Jb. Confidence limits for a correlogram based on
randomly distributed data, and an overall test for departure from randomness, can
be constructed to aid in the interpretation of results (see Appendix).
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Spectral analysis
The correlogram is a natural tool for analysing periodicities in time. By contrast,

spectral analysis examines the contribution of oscillations at different frequencies
to the observed series. Spectral analysis is based on the concept of a theoretical
(power) spectrum, which partitions the total variance (or power) of the series
between sinusoidal components up to a maximum, directly measurable, frequency
of one cycle every two observations (Chatfield, 1975).

The analysis of epidemiological time series has concentrated on the frequency
approach. A number of authors have used a harmonic (Fourier) analysis to
calculate the contribution of various frequency components to observed patterns
of disease incidence (Brownlee, 1918, 1920; Bliss & Blevins, 1959; Nagasawa &
Kanzaki, 1977). For a process with a continuous frequency spectrum, however,
harmonic analysis does not produce a consistent estimate of the theoretical
spectrum (Jenkins & Watts, 1968). Instead, we calculate a spectral estimate as the
Fourier Transform of the autoco variance function, using a Tukey spectral window
as a noise filter (more details are given in the Appendix). In order to strike a balance
between variance and discrimination, we present the results at a range of window
cut-off points: N/3, {N/10+N/3)/2, N/10 (where N is the length of the series),
which represent increasing degrees of spectral smoothing. The discrimination of
these spectra is illustrated by the bandwidths (essentially the widths) of the
associated windows. For ease in comparing the contributions of seasonal and
longer-term oscillations (often widely different), we plot unlogged rather than
logged spectra, and give the associated multiplicative 95 % confidence limits.

Interpreting correlograms and spectra
The epidemiological series which we analyse below are characterized by strong

periodicities at various frequencies. In general, regular fluctuations in a time series
will generate oscillations at the same frequency in the correlogram. The equivalent
spectrum will show a sharp peak at the frequency of the oscillation, with smaller
peaks (harmonics) at integer multiples of this frequency. In order to reduce the
asymmetry of epidemic peaks, and therefore smooth the appearance of correlograms
and spectra, we log transform the data (unless otherwise stated) before analyses.
Finally, 'long term' changes in the mean of the data (e.g. due to changes in
vaccination coverage) would tend to dominate other effects in correlograms and
spectra. We therefore remove such trends by regression, where required.

Sources of data
The measles (1948-82) and pertussis (1948-82) weekly notification data were

obtained from the Annual Reviews of the Registrar General of England and Wales
and the quarterly Infectious Diseases Monitors published by the Office of Population
Censuses and Surveys. The data of monthly records of measles cases in Aberdeen
from 1883 to 1902 were obtained from the tables published by Wilson (1904), while
those for Baltimore in the United States between 1900 and 1927 were extracted
from the paper by Hedrich (1933). The monthly deaths due to measles in Paris
between-1880 and 1910 are listed in Brownlee (1918) and the yearly figures for
London (1910-39) are from Brincker (1938) and Stocks (1942). The mumps data
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Fig. I. Longitudinal trends in measles incidence, (a) Number of reported cases per
month (per 100000 population) in Aberdeen, 1883-1902. (6) Number of reported cases
per month in Baltimore, U.S.A., 1900-27. (c) Number of reported cases per week in
England and Wales, 1948-82. (rf) Number of deaths due to measles reported per month
in Paris, 1880-1910. (e) Number of deaths due to measles reported per year in London.
1910-39. Data sources are given in the main text.
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Fig. 2. Longitudinal trends in pertussis and mumps incidence, (a) Number of reported
cases of pertussis per week in England and Wales, 1948-82. (b) Annual general-
practitioner reports of mumps (consultation rates per 1000 population) in England and
Wales, 1962-81.

in England and Wales from 1962 to 1981 come from a variety of sources which
are documented in Galbraith el al. (1984), as are the annual trends in incidence.

RESULTS
The longitudinal records of measles incidence (England and Wales, 1948-82;

Aberdeen, 1883-1902; Baltimore, 1900-27), pertussis (England and Wales,
1948-82) and mumps (England and Wales, 19G2-81), plus the measles mortality
data (Paris, 1880-1910; London, 1910-39), are displayed in Figs. 1 and 2.

Prevaccination periodicities
Measles. In England and Wales (1948-68) prior to widescale immunization,

measles incidence cycled on a very regular 2-year period. The correlogram (a graph
of the serial autocorrelation coefficients plotted against the time lag in years) is
depicted in Fig. 3 (a). It is a smooth two-peak oscillating curve with a major period
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Fig. 3. (a) Correlogram of weekly measles reports for England and Wales, 1948-68.
Here, and in subsequent correlograms, A are 95 % confidence limits for the zero
correlogram from a completely random series, and p is the probability that such data
could generate the observed correlogram (see the Appendix). (6) Spectra for the same
series; data were mean corrected before spectral analysis. Here, and in subsequent
spectra, the results are presented at a range of window cut-off points (M), and therefore
bandwidths (B cycles per year); multiplicative 95 % confidence limits for the spectra
are also given (see Appendix).

of 2 years and a minor period of 1 year (the seasonal component). Note that the
serial correlation coefficients were calculated from logarithm transformed data.
The effect is to make the oscillations more symmetrical than in an arithmetic plot
(compare Figs. 1 and 3). The most important features of the analysis displayed
in Fig. 3 (a) are the smoothness of the correlogram (indicating great regularity in
the seasonal and 2-year cycles) and the dominance of the amplitude of the
longer-term cycle over that of the seasonal component. Spectral analysis confirms
these observations (Fig. 36). The spectra (for various band widths - see Methods
section) show sharp peaks at the 2-year frequency point (a frequency of 0-5 year"1
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Fig. 4 (a,b). For legend see opposite.
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Fig. 4. (a) Spectra of monthly measles case reports for Aberdeen, 1883-1902. Data were
mean corrected before spectral analysis, but not logged, due to the presence of zeros.
(6) Spectra of monthly deaths due to measles reported for Paris, 1880-1910. Data were
trend corrected before spectral analysis, (c) Spectra of monthly measles case reports
for Baltimore, U.S.A., 1900-27. Data were trend corrected before spectral analysis.
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Fig. 5. Cofielogram of annual deaths due to measles reported for London, 1910-39.

denotes cycles every second year) and the smaller peaks at the 1-year point (a
frequency of 10 year"1).

Similar analyses of the measles case records from Aberdeen and Baltimore, plus
the measles mortality records from London and Paris show corresponding trends.
A significant 2-year cycle is apparent in each case from inspection of the spectra
(Figs. 4, 5). The relative importance of the seasonal and 2-year cycle components,
however, varies between data sets. In England and Wales (1948-56) and Aberdeen
(1883-1902) the amplitude of the 2-year cycle dominates the seasonal component.
This situation is reversed in Paris (1880-1910) and Baltimore (1900-27). The
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Fig. 6. (a) Correlogram of weekly pertussis case reports for England and Wales,
1948-1956. (6) Spectra for the same series. Data were mean corrected before spectral
analysis.

London (1910-39) study does not reveal seasonal trends since the data are recorded
as yearly case totals. I t is interesting to note that the period of the long-term cycle
in England remained at 2 years over the period 1910 (London only) to 1956
(England and Wales).

Pertussis. The England and Wales pertussis data, prior to mass immunization,
reveals evidence of seasonal and 3-yearly cycles. The correlogram (Fig. 6 a) is less
smooth than the patterns recorded for measles (Fig. 3), although low-amplitude
seasonal cycles and a dominant 3-year peak are apparent. The seasonal peak, just
prior to the major epidemic every third year, is more marked than the earlier
seasonal peaks within the long-term cycle (Fig. 6a). Spectral analysis confirms the
dominance of the long-term cycle over the seasonal trend (Fig. 66) (a peak
frequency at 0*33 year"1).

Mumps. The England and Wales mumps data (1962-81) are in the form of yearly
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Fig. 7. Spectra of annual general-practitioner reports of mumps (consultation rates per
1000 population) in England and Wales, .1948-82. Data were trend corrected before
spectral analysis.

case-records and hence do not permit an examination of seasonal trend. Spectral
analysis reveals a significant average 3-year cycle (Fig. 7).

Theoretical predictions and observed trends
Simple deterministic models of recurrent epidemic behaviour predict damped

oscillations in disease incidence to a stable endemic equilibrium state (Martini,
1921; Soper, 1929; Dietz, 1976; Anderson & May, 1982a). The predicted damping
time for infections such as measles and pertussis is long, however, and a variety
of processes such as seasonality in transmission and stochastic demographic effects
(the inclusion of chance elements in the growth and decay of the susceptible and
infectious populations) can perpetuate indefinitely the otherwise damped cycles
Bartlett, 1956; (Grossman, 1980; Schwartz & Smith, 1984).

The non-seasonal oscillations arise as a consequence of the decay (by infection
and recovery to an immune state) and renewal (by births) of the supply of
susceptibles within the population. Simple models yield the prediction that the
weakly damped oscillations have an inter-epidemic period, T, approximately given
b y TK2TT{AK)1 (1)

Here A is the average age at infection and K is the average interval between an
individual acquiring infection and passing it on to a new infective. (K is estimated
as the sum of the latent plus infectious periods; Anderson & May, 1982a.) The
precise structure of equation (1) is fairly robust to changes in model structure: it

https://doi.org/10.1017/S0022172400065177 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400065177


598 R. M. ANDERSON, B. T. GRENFELL AND R. M. MAY

Table 1. Estimates of the average duration of infection, K, the average age at
infection, A, and the predicted [T) plus observed inter-epidemic period

Duration of Average age Inter-epidemic period in years
infection at infection

Infection (days)* (years)f Predicted Observed:}:

Measles 120 4-5 2-25-2-50 2
Pertussis 250 4-5 3-30-300 3
Mumps 190 6-7 3-50-3-80 3

* References: measles and pertussis, Benenson (1975); mumps, Armenian & Lilienfield (1983),
Ikeda et al. (1971).

t These estimates are based on data from England and Wales in the period 1960-70 (Anderson
& May, 1982a; Anderson & May, unpublished).

% Figures for England and Wales prior to immunization (see Figs. 1 and 2).

provides a reasonable estimate of the average period for age-structured models with
incubation delays (Anderson & May, in preparation) and discrete time formula-
tions (Anderson & May, 1982a). The models used in the classic studies of Soper
(1929) and Bartlett (1956), for example, generate cycle periods as defined by
equation (1).

To compare the predictions of equation (1) with observed trends we require
estimates of A and K for measles, pertussis and mumps. These are listed in Table
1, as are the predicted and observed inter-epidemic periods. There is good
agreement between the theory and the frequencies calculated by time series
analyses. Seasonal factors probably act to lock the cycles into periods of integer
years (Yorke et al. 1979).

Theory further predicts that vaccination programmes act (by the creation of
herd immunity) to reduce the net force of transmission within a community and
hence raise the average age at infection A (Anderson & May, 1982 a, 1983 a). If
correct, this suggests that immunization will tend (on average) to lengthen the
inter-epidemic period in relation to that pertaining prior to the introduction of
control measures. We examine this prediction in the following section.

Periodicities under the impact of vaccination
We focus on two sets of data, namely the England and Wales case-records for

measles and for pertussis.
Measles immunization was initiated on a large scale in 1969. The level of vaccine

uptake by 2- to 3-year-old children has remained stable at around 50 % of each
cohort (Anderson & May, 1982a). The spectra (various band widths) for the period
1968-82 are presented in Fig. 8(6) and the correlogram in Fig. 8 (a). These are to
be compared with the spectra and correlogram in Fig. 3(6) and (a) for the
provaccination era. A substantive change is apparent. There is no longer a marked
difference between the seasonal and longer-term cycles. In addition, there is
evidence that the regular 2-year cycle is shifting towards a period of 2-3 years;
compare the precise frequencies at which the major peaks occur in Figs. 3 (6) and
8(&y(0'5 and 0*4 year"1, respectively). The shift, however, is not substantive as
yet, perhaps reflecting the comparatively low level of vaccination coverage.

Immunization against pertussis reached high levels of coverage in 1957. Uptake
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Fig. 8. (a) Correlogram of weekly measles reports for England and Wales, 1969-82.
(b) Spectra for the same series. Data were trend corrected before spectral analysis.

declined, however, between 1975 and 1976 following the widely publicized concern
over the safety of the vaccine (H.M.S.O., 1981). Low levels of vaccine acceptance
persisted from that time to 1982. We have, therefore, divided the vaccination era
in England and Wales into two periods: 1957-76 and 1977-82. The average level
of immunization coverage of each yearly cohort of children attained between the
ages of 1 and 3 years was between 70 % and 80 % (H.M.S.O., 1981) during the period
1957-76. In the latter period, 1977-82, coverage fell to 40% or less. The
correlogram and spectra for the earlier period are presented in Fig. 9 (a) and (6).
These are to be compared with the prevaccination results presented in Fig. 6 (a)
and (6). Two points are striking, namely the complete elimination of the seasonal
peak in the vaccination era and the lengthening of the inter-epidemic period
following high levels of immunization. The period changes from a fairly regular
3-year cycle to a cycle of between 3 and 4 years. The 1977-82 section is too short
a time-span for effective detection of changes in the longer-term cycles. The
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Fig. 9. (a) Correlogram of weekly pertussis case reports for England and Wales, 1957-7G.
(b) Spectra for the same series. Data were trend corrected before spectral analysis.

corrologram and spectra arc presented in Fig. 10 (a) and (6), however, to illustrate
the continued suppression of the seasonal cycle.

Seasonal cycles
Aside from the long-term cycles, short-term seasonal components are detectable

in all the longitudinal data collected prior to the introduction of mass immunization.
The detailed weekly records for measles and pertussis in England and Wales permit
close inspection. As illustrated in Fig. 11 (a), the seasonal troughs in measles
incidence follow a very consistent pattern from year to year, irrespective of
whether or not the data were collected in the prevaccination or vaccination eras.
The major trough occurs in the summer months and is followed by a rise in
incidence between the end of August and the beginning of September (weeks
36-39). Peak incidence within a year invariably occurs in February or March. Small
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Fig. 10. (a) Correlogram of weekly pertussis case reports for England and Wales, 1077-82.
(6) Spectra for the same series. Data were trend corrected before spectral analysis.

troughs are apparent in January and then again around the month of April. The
association of these trends with school holiday periods is striking, as recently noted
by Fine & Clarkson (1982 a). There is no suggestion in the data that these patterns
change significantly between major and minor epidemic years (the longer-term
2-year cycle). The rises in incidence, following the three troughs, all coincide with
opening of school terms. Interestingly, in contrast to the conclusions reached by
Fine & Clarkson (1982a), time series analysis reveals that the longer-term period
is still apparent in the vaccination era, although the average amplitude of its cycles
is only marginally greater than the average amplitude of the regular seasonal
fluctuations (see Fig. 8a).

The longitudinal patterns for pertussis in England and Wales are somewhat
different than those recorded for measles. First, the seasonal component is less
marked in the prcvaccination era (Fig. 116). There is evidence of a trough in late
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(a)

1982

52 1948

(b)

1982

52
Fig. 11. Surfaces showing seasonal patterns in measles and pertussis incidence, based
on weekly case reports in England and Wales, 1948-82. (a) Measles, (b) Pertussis.
1 = first week in January.

summer/early autumn, but the trends around January and April (following school
holidays) are rather irregular. Secondly, the timing of peak incidence within a year
varies from year to year. In some years it occurred in the winter months, in others
during the summer months (Fig. 116). The third and most dramatic difference,
however, is apparent during the period of high vaccine uptake. Overall, incidence
was substantially reduced and, most importantly, the seasonal component dis-
appeared. There is a hint of its return following the decline in uptake (1977-82),
but this is as yet non-significant (Fig. 10a, b). Over the period of high vaccine
coverage the weekly case records varied little from week to week throughout a year
(the observed seasonal variation is not significantly different from that induced
by chance mechanisms alone).
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DISCUSSION

The most striking feature of our statistical analyses is the significance of the
seasonal and long-term cycles in the prevaccination eras. The trends for measles
incidence are the most clear-cut; the regular 2-year cycle in England and Wales,
Aberdeen and London is particularly notable (see Figs. 1 and 2). The records for
measles in Paris show a very marked seasonal component but a less-significant
2-year cycle. Persistent annual cycles of measles are recorded in cities within
developing countries with high birth rates (a high input of susceptibles per unit
of time) and the observed pattern in Paris from 1880 to 1910 may reflect the high
birth rate in the city during that period.

In general, the relative amplitudes of the longer-term cycles, compared with the
seasonal components, are probably a reflexion of population density and birth rate.
In large cities, or densely populated areas (or countries), the magnitude of the
longer-term oscillations tends to be more exaggerated than is the case in less
densely populated areas. Indeed, in the latter case, stochastic factors may result
in disease fade out during the troughs in the epidemic cycle (Bartlett, 1960). This
factor, combined with the deterministic notion of a critical density of susceptibles
necessary to support an epidemic (Kermack & McKendrick, 1927; Anderson &
May, 1979), leads to the observation that the long-term endemic maintenance of
measles is critically dependent on community size and the net birth rate (Bartlett,
1960; Black, 1966).

Simple theory, based on compartmental deterministic models, predicts inter-
epidemic periods in good agreement with observed trends in the incidences of
measles, pertussis and mumps (Table 1). We suspect that similarly good agreement
holds for other common infections in developed countries, such as rubella (cycles
of 4-5 years) and chicken pox (cycles of 2-3 years) (Anderson & May, 1982a, 1983a)
and less-well-studied infections such as human parvovirus (Anderson, 1983),
coxsackievirus and echovirus. Time series analysis of the available longitudinal
records of the incidences of such infections is a subject for future research.

Theory also predicts that mass immunization will act to lengthen inter-epidemic
periods. Our analyses support this prediction, but suggest that the degree to which
the period increases is somewhat less than that predicted by models which do not
take account of age-related changes in the force of infection (Anderson & May,
1982a, 1983a). For example, standard theory (see Dietz, 1976; Anderson & May,
1983 a) predicts that a 50% vaccination coverage will approximately double the
average age at infection. In the case of measles this would yield an inter-epidemic
period of between 3 and 4 years. In practice, the average age of infection has
increased slightly in England and Wales (see Anderson & May, 1982a) as has the
inter-cpidemic period, but both far less than predicted. The discrepancy probably
arises as a consequence of both inadequate model assumptions concerning the
dependency of the force of infection on age, and the long time-periods involved
for the full effects of cohort vaccination to become apparent within a community
(often 20-30 years following the initiation of a programme; see Anderson & May,
1983a). It has recently been suggested that the force of infection for many common
childhood viral and bacterial infections changes with age, moving from low levels
in the 0- to 5-year age class, to high levels in the 5- to 10-year age class, to
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intermediate levels among adolescents, and back to low levels in adults (Anderson
& May, 19836; Schenzle, 1985). For example, vaccine coverage of children of 0-5
years may move more susceptibles into a class with a high infection rate, such as
the 5- to 10-year-olds, than was the case prior to immunization. The precise
quantitative details of these changes will influence the net impact of any
vaccination programme on both the average age at infection and the inter-epidemic
period. Current research should help to clarify these issues (Schenzle, 1985;
Anderson & May, in preparation).

The interesting observations of Fine & Clarkson (1982 a) on seasonally in the
transmission of measles (see also London & Yorke, 1973) are largely confirmed by
our statistical studies. The association between peaks and troughs in incidence with
the timing of school holiday periods is striking (see Fig. 11). The impact of
vaccination, by suppressing overall incidence, reduces the difference in the relative
magnitudes of the seasonal and longer-term cycles but, in our view, does not (at
current levels of vaccine uptake in England and Wales) completely eliminate it.
Observed patterns in whooping-cough incidence, however, are very different; high
vaccine uptake totally removes the seasonal trend. We find this observation
somewhat puzzling but suspect, however, that aggregation and disassembly of
school-children is not the primary cause of scasonality in transmission of pertussis.
Climatic factors may play an important role. It is not clear at present why such
differences should exist between the observed trends of measles and pertussis
incidence.

We conclude by stressing the regularity of long-term fluctuations in many
childhood infections. We are in no doubt that these arise as a consequence of
dynamical factors associated with the renewal and depletion of the supply of
susceptible individuals within human communities. The correlogram for measles
incidence in England and Wales (Fig. 3a), prior to widescale immunization, is (to
our knowledge) the most detailed and clear-cut statistical demonstration of
periodic population behaviour (seasonal and non-seasonal) published to date.
These results indicate, in turn, the usefulness of time series analysis as a powerful
tool in elucidating the temporal structure of epidemiological data.

We gratefully acknowledge the Chief Scientist's Office of the Department of
Health and Social Security for financial support of this research.
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APPENDIX

This appendix comprises a technical summary of autocorrelation and spectral
analysis. More details are given by Jenkins & Watts (1968), Chatfield (1975) and
Bloomfield (1976).

(a) Autocorrelation
(i) Definition. Given a time series of iV observations, xlt ...,xN, with mean x, the

sample autocovariance coefficient at lag k is defined as

Ck = ^£(xt-x)(xt+k-x) (& = 0, l K). (Al)

The sample autocorrelation coefficient at lag k, rk, is calculated as the ratio
N-k

2 (xt-x){xt+k-x)

r* = W = J=^ ' (A2)

0 S (xt-x)*
i-i

(ii) Significance tests for the correlogram. For a white-noise process the auto-
correlation function has an expected value of zero for k > 0. If iV is large, a
confidence interval around this expectation is given by ± \ / ( l / ^ ) ' a« where ta is
the estimated value of Student's t with JV— 1 degrees of freedom for a two-tailed
confidence band of width (1—a) (Jenkins & Watts, 1968).

We construct an overall test for departure from randomness based on the
statistic k

S = Nl,rl (A3)
jt-i

(Box & Jenkins, 1968). If N is large and K is much smaller than N, S has a %2

distribution with k degrees of freedom under the hypothesis of a zero autocorrelation
function, and may be used to test this assumption.

(b) Spectral analysis
(i) Definition. The smoothed sample spectrum is defined as

1 f M~l 1
/ M = - C0+2 2 A{C,COS(G») , (A4)

nl i-i J
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where (o is the angular frequency (0 < a) < n), Ck is the au toco variance at log it
(equation A 1), and A< is the lag window applied up to a cut-off point i — M
{l^MG N).

In practice, we plot the spectral density function against frequency per unit
time; rather than angular frequency. The spectral density function is calculated
from

^i(W0, (A 5)

where w is the frequency in cycles per year (0 < w < /), and a% is the variance of
the time series. The integral

g[w)dw (A 6)

represents the proportion of the series variance accounted for by frequencies
between wt and w2; in particular,

r
Jo

g(w)dw=l. (A 7)

The time series is mean or trend corrected and tapered at each end before
calculating the covariances. The tapering factors used are those of the split cosine
bell:

i[l-cos[7T(/-i)/T]] (1^ + ^T),
i[l-cos[7r(N-t+i)/T]] (N+l-T^t ^ N),

1, otherwise

where T = (Np)/2, and p is the tapering proportion. A tapering proportion of
p = 0-1 was used throughout these analyses.

We smooth the spectrum with a Tukey smoothing window, defined by

cos (ni/M)]. (A 8)
The associated bandwidth (essentially the width of the window) is given by

SIB = -^-rz cycles per year. (A 9)

(ii) Confidence limits for the spectrum. Asymptotic multiplicative confidence
limits for the spectrum at the 100(1 — a)th percentile are given by the factors:

. . I A / O (lower) a n d ..i.. ,? ^/ON (UPP<*).

v is the number of degrees of freedom of the lag window; for the Tukey window,
v = 2G1N/M.
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