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A MULTIPLE LINKING MINIMAX PRINCIPLE

DUMITRU MOTREANU

The aim of this paper is three-fold: to fill the gap between different deformation
lemmas, to obtain a unifying minimax result where multiple linking situations can
occur, and to locate the critical points as solutions of minimisation problems.

1. A UNIFORM DEFORMATION LEMMA

This section is devoted to a sharp version of the deformation lemma due to Du [4]
with the following specific features:

(a) the functional / £ C^X.R) and the disjoint closed sets A and B are
permitted to satisfy

I\B ^ c and I\A ^ c - e

for some c 6 R and e > 0;
(b) the deformation involved has a uniform character with respect to A, and

in some sense also relative to B.
Before proceeding we list some notation used in the sequel. For a continuously

differentiable functional I £ C1(X,R) on a real Banach space X and a number c £ K
we denote

Ic := {x £ X : I{x) s$ c} and Ic := {x £ X : I{x) ^ c}.

The notation / ' stands for the differential of I, while KC(I) designates the critical
points of I (that is, the elements of X where I' vanishes) at the level c £ M., so

KC{I) :={x£X : I'(x) = 0 and I(x) = c}.

If KC(I) ^ 0 the number c is called a critical value of / . The functional / £ C ^ X . l )
is said to satisfy the Palais-Smale condition (briefly (PS)) if every sequence (xn) in X
with I(xn) bounded and I'{xn) —> 0 contains a convergent subsequence. If we replace
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40 D. Motreanu [2]

in the preceding formulation the boundedness of I(xn) with I(xn) —> c we say that /
satisfies the Palais-Smale condition at the level c £ R (briefly (PS)C). We quote from
Ghoussoub and Preiss [5] that / G Crl(-Y,K) verifies the Palais-Smale condition around
a set F C X at the level c £ K (in short (PS) F,C ) if every sequence (xn) in X satisfying
dist(xn,F) —> 0, I(xn) —> c and I'(xn) —> 0 has a convergent subsequence. We
further recall that a pseudo-gradient vector field of I G Cl{X, R) (in short p.g.) means
a locally Lipschitz mapping V from the set ~R{I) :— {x G X : I'(x) ^ 0} of regular
points of / into X satisfying on its domain the relations

(1.1) \\V(x)\\ < 2 ||7'(x)|| and I'(x)V(x) > \\I'(x)\\2 .

The existence of such V is well known (see, for example, [6, 10, 11, 14, 15]). For
any set S C X and any number e > 0 the notation Ne(S) represents the (closed)
e-neighbourhood of S in X, that is, NC(S) := {x G X : dist(x,S) ^ e} .

LEMMA 1 . 1 . Let a functional I G C^-Y.R) on the Banach space X, a p.g.
V of I, a number c € M. and a closed subset B of X be given such that (PS)B,O

B D KC{I) = 0 and B C Ic. Then for every e > 0 there exists an e G (0,e) and a
S < c such that for each closed subset A of X with A C Ic~e and A D B = % there is
a homotopy TJA G C(R X X, X) with the properties below

(i) ^(- ,2;) is the solution of the vector field VA = — <PA m i n ( l , l / ||V||)V
with the initial condition x G X for some locally Lipschitz function ipA •
X —y [0,1] whose support is contained in TZ(I) PI (X \ A);

(ii) TiA(t, x) = x for all t G R and x G AU Ic-j U Ic+';
(iii) for every 8 ^ d ^ c one has 7/^(1, B fl Id)dd-e •

PROOF: The argument is rather standard following the lines in Du [4] (see also
Ding [3]). Condition (PS)B ,C implies the existence of numbers 0 < £i < 1, ei > 0,
(T\ > 0 such that

(1.2) ||/'(x)|| ^ <n whenever xeN36l{B)nlc+3einr-3'1.

We claim that the lemma holds for every e > 0 with

(1.3) e < m i n { e , e i , - i i min(l,2o-i)(7i}.

In order to check the claim let us fix two locally Lipschitz functions <p and ip from X
to [0,1] satisfying

<P = I on N6l(B)nic+clnic-'*,

P = O on x\NiSl(B)nic+2einic-2'\

V> = 0 on / c _ 5 U Ic+J,

i> = i on / c + e o n J c - e o ,
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for some number eo with

(1.4) e < £0 < min(e, ei) .

The vector field — 6i<pipmm(l,l/ ||V||)V is well defined on X (being considered 0
outside H(I) in view of the definition of ip and (1.2)), locally Lipschitz and bounded.
Consequently, its global flow r](t,x) exists throughout for (t,x) £ R x X. It is readily
seen that

(1.5) Bi :- 7/([0,l] X B) is a closed subset in X.

Let now A(ZX be a set as in the statement of lemma. Then

(1.6) Af\B1=%.

For otherwise we would find 0 < to = to{A) ^ 1 a n £ i ^o = XQ(A) £ B with rj(to,xo) £
A. Then one can write

(1.7) c-e^I(r,(tQ,xo))^I(ri(t,xo))^I{xo)^c, * € [0,*0].

Hence

r,{t,x0) 6 NSl(B)nicnr-', t e [o,*0].

Then from (1.1) and (1.3) we have the estimate

(1.8) I(r,(to,xo))-I(xo)

=-*1 C ***C
The contradiction between (1.7) and (1.8) proves the claim (1.6). Taking into account
(1.5) and (1.6) there is a locally Lipschitz function ipA '• X —> [0,1] such that -0A = 0
on a neighbourhood of A and if)A = 1 on B i . Finally we define the homotopy TJA :
R x X —> X as being the global flow of the vector field VA - - y M m i n ( l , l / ||V||)V
where (pA = S\IJ)AVI>- The assertions (i) and (ii) are clear from the construction of T]A •
We show that (iii) is valid for S = c + e — eo with e described by (1.3) and eo by (1.4).
To this end we argue by contradiction. Suppose that for some d £ [6, c] there exists
x £ B H Id such that

(1.9) J(IM(1, x))>d-e.

It is straightforward to deduce

VA{t, x) = r,(t, x) G NSl (B) nldn Id~\ t £ [0,1].

Then by reasoning similar to (1.8) replacing ^OJ^O by l,x, respectively, leads to

I(VA(t,x)) - I(x) <-e.

The contradiction with (1.9) completes the proof. u
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42 D. Motreanu [4]

REMARK 1.1. Lemma 1.1. unifies different types of deformation results such as, for
example, the classical deformation lemmas (see Corollaries 1.1 and 1.2) and those ini-
tiated by Du (see Corollaries 1.3 and 1.4). This question has been raised in Du [4] (as
well as in Ding [3]) where one makes use of a proper deformation lemma according to
the specific situations. Below we get some known deformation results as special cases
of Lemma 1.1.

PROPOSITION 1 . 1 . (Proposition 2.1 in Rabinowitz [14].) If c is not a critical
value of I G C1(X,E.) satisfying (PS), given any e > 0 there exists an e 6 (0,e) and
77 e C([0,l] x X,X) such that

i° ij(i|ao = a! if xeic-jur+',

2° 77(l,Jc

PROOF: Fix a positive number o < I such that the interval [c — a, c + o] contains
no critical values of / . We apply Lemma 1.1 with Ba — Jc+a D Ic~a and c + a in
place of B and c, for each o € (0,5]. Lemma 1.1 yields ea > 0, 8a < c + a and,
with A = Ie+e, the homotopy rja € C(R x X,X) satisfying the requirements (i)-(iii)
for e,6,T)A replaced by £4)fo,T/o, respectively. Then 1° follows from (ii) of Lemma 1.1.
The examination of relations (1.2),(1.3) shows that eo is bounded away from zero, say
ea ^ e~> 0 for a € (0, a]. Then we set d = c + min (a, e)/2. If a > 0 is small enough, d
is an admissible value in (iii) of Lemma 1.1 relative to r)a, that is Sa ^ d ^ c + a. This
happens because eo entering (1.4) can be chosen independently of a £ (0,a]. Then
2° is obtained with e = min(a,e)/2 by using property (iii) in Lemma 1.1 for Ba and
c + a in place of B and c. Indeed, one has c + e = d and d — eo < c — e, so the result
follows. D

COROLLARY 1 .2 . (Theorem A' in Pucci and Serrin [13].) Let I e
satisfy (PS), let E be a closed set in X and c 6 R with KC(I) H E = 0. Then for ail
sufficiently small d > 0 tiere is a continuous map a : E —* X such that the conditions
x € E, I(x) ^ c + d imply I(<r(x)) ^ c — d. Moreover we can suppose that <r(x) = x
whenever I(x) ^ c — Id.

PROOF: Condition (PS) insures that Kc+a(I) D E = 0 for any small a > 0.
Setting B = E D Ic+a in Lemma 1.1 it is seen from (1.3) that one can put I = 3d
and e — 2d with 0 < d < a small enough. For A — Ib with b > c + a we define
a = 77.4(1, •) • The last assertion in Corollary 1.2 follows from (ii) of Lemma 1.1 because
c + a — 3d ̂  c — 2d. Choose d in (iii) of Lemma 1.1 to be c + d, which is possible since
S = c + a + d — £0 < c + d < c-\- a if eo > a. Here we used the fact that for a sufficiently
small a > 0 the number eo > 0 in (1.4) can be supposed to be independent of a. Then
one gets that a(E f"l Ic+d)dc-d- D

COROLLARY 1 . 3 . (Lemma 1.1 in Du [4].) Let I e CJ(X,R) satisfy (PS), let
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A and B be two closed disjoint subsets of X and let c G R such that B f) KC(I) = 0,
Bcle and Acle • Then there exists e > 0 and a homeomorphism r\ of X such that

(i) i(v(*)H /(*), *ex;
(ii) 17(1) = x, x G A;

(iii) T,(B)Clc-e.

PROOF: Apply Lemma 1.1 for the set B and the number c. One obtains an
e > 0 and r\ := 7/^(1, •) G C(X,X) corresponding to AcIcClc~e • It is obvious that
(i),(ii),(iii) of Corollary 1.3 are derived from (i),(ii),(iii) of Lemma 1.1, respectively, the
property (iii) being deduced for d = c. D

COROLLARY 1 . 4 . (Lemma 2.1 in Ding [3].) Let I G C ^ X . R ) defined on a real
Hilbert space X = Xi © X2 Aave tie form I(x) = (l/2)(Lx,x)x + G(x), where Lx =
(LiXi,Ii2X2) for x = (zi,z2) £ X> with L{ : X,- —> X,, i = 1,2, bounded linear and
self-adjoint, and G G C1(X, K) witi G' compact. Then, under the same hypotheses
upon the sets A and B as in Corollary 1.3, there exist e > 0 and 77 G C(K x -Y,.X")
such that

(i) 7/(t, •) is a homeomorphism of X, t £ i ;

(ii) 7(T/(t,z)) ^ / ( z ) /or Q O and x € X;

(iii) »/(i,z) = x for all t G R and z G A;

(iv) i,(l,B)c/c-«;
(v) r/(t,z) = e ^ - ^ z + WK^x), wiere &{t,x) = J*w(r)(s,x))d3,

w : X —> [0,1] is locally Lipschitz, W^Ojz) = 0 and W is compact.

PROOF: The argument is the same as in Corollary 1.3 with the difference of fixing
in Lemma 1.1 a p.g. V of / of the form V = L + C with C a compact mapping from
X to X. D

2 . A GENERAL MINIMAX THEOREM

Our main result is stated below.

THEOREM 2 . 1 . Let the functional I G C^J f .R) and the closed subset B of a

Ba.na.ch space X satisfy c := inf / > —00 and (PS)B,C • Let V be a fixed p.g. of I and

let M be a nonempty family of subsets M of X such that

(2.1) c = inf sup I{x)
M€M M

and the following hypothesis holds

(H) for each M G M. there exists a closed subset A of X with A C

M\B such that for each locally Lipschitz function ipx '• X —* [0,1] with

supp <pAC(X \ A)nTZ{I) the global Sow £A of -ipA min (1 ,1 / || V||)V sat-

isfies 6i(l,M)nJB^0.
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Tien

(i) the infimum c of I over B is attained;
(ii) KC{I) \AjLQ for each set A as in (H);
(iii) Ke(I)nB?Q.

PROOF: The assertions (i) and (ii) are derived from (iii). In order to check (iii) we
argue by contradiction, so suppose K-C{—I)C\B = 0. Since one has -I\B < —ewe may
apply Lemma 1.1 for our set B but with I and c replaced by -I and —c, respectively.
Let e > 0 be the number supplied by Lemma 1.1. The minimax characterisation of c
in (2.1) ensures that a set M £ M must satisfy

(2.2) 7 | M < c + e.

Corresponding to M, hypothesis (H) yields a set A with the properties there stated.
In particular we infer that

(2.3) AHB = <H and

For —/, —c and the p.g. -V of —/, Lemma 1.1 implies that there exists r\A £
C(K x X, X) satisfying among other things

VA(i,Bn(-i)_c)c(-i)_c_e

which gives

(2.4) VA(l,B)cIc+°.

Notice from condition (i) of Lemma 1.1 applied to —/ and from hypothesis (H) that

(2.5) U(t,*)=VA(-i,*), {t,x)£RxX.

By (H) we know that

Then (2.5) gives

(2.6) r,A(l,B)nM^t

By combining (2.4) and (2.6), we deduce that there exists a point XQ £ M with /(xo) ̂
c + e. Since this contradicts (2.2) the proof is complete. U

The next minimax principle which is a direct consequence of Theorem 2.1 includes
all the classical minimax results, for example, the Mountain Pass Theorem of Ambrosetti
and Rabinowitz [1], the Saddle Point Theorem (Theorem 4.6 in Rabinowitz [14]), the
Generalised Saddle Point Theorem (Theorem 5.3 in Rabinowitz [14]). In these results
all the sets A in (H) coincide with the boundary of a prescribed (compact) manifold in
X. We relax this framework by not demanding even to have ^^(l , M) £ M. whenever
M e M.
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COROLLARY 2 . 1 . Let I G Cl(X, R) satisfying (PS) and a family M of subsets
M of X be such that c defined by (2.1) is a real number. Assume that

(H ' ) for eacA M 6 M. there exists a closed set A in X with I\A < c such that

for every homeomorphism h of X with /I|A = id.A one has h(M) C\IC ^ 0.

Then c in (2.1) is a critical value of I and certainly KC(I) D A = 0 for every A as in

(H>).

PROOF: For any p.g. V of / we can apply Theorem 2.1 where B = Ic. It is clear
that (H ' ) implies (H) because AcM \ B and £yi(l> •) is a homeomorphism of X with
£A(1) •) = id on A. Then Theorem 2.1 concludes the proof. U

Theorem 2.1 is useful in locating the critical points. We illustrate this aspect by
deducing from Theorem 2.1 a result due to Ghoussoub and Preiss [5].

COROLLARY 2 . 2 . (Theorem 1 bis in Ghoussoub and Preiss [5].) Let a func-
tional I G C1(X,E.), two points u,v G X and the number

c = inf max I(g(t)),
9 e r o<ts$i V3V '"

be given, where T is the set of all paths g G CQO, 1],-^) joining u and v. Suppose F is
a closed subset of X such that F D Ic separates u and v, that is, u,v belong to disjoint
connected components of X \ F (~l Ic, and condition (PS)F,C is satisfied. Then there
exists a critical point of I in F with critical value c.

PROOF: We set M - {^([0,1]) : g G T}, B = FC\IC and each A equal to {u,v}.
With the notation of Theorem 2.1 we see that £ A ( M ) G M if M G M , thus hypothesis
(H) is true. Theorem 2.1 implies then the result. D

Now we point out two (known) relevant special cases of Theorem 2.1 with essentially
only one linking situation.

COROLLARY 2 . 3 . (Theorem 2.1 in Du [4].) Let Q be a Banach manifold with
boundary dQ in the Banach space X and let S be a closed set in X that is linking with
OQ in the Banach space X in the sense that dQ D 5 = 0 and f(Q) n 5 ^ 0 for any
f G T := {/ G C(Q,X) : f\aQ = id8Q}. Suppose that I G C ^ . R ) satisfies (PS),

< +oo and, for some ct G K,

(2.7) 8QcIa and Sda.

Defining

(2.8) c := inf sup !(/(*))
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we have

(i) c^ a;
(ii) KC\8Q^%-

(iii) KCHS ^ 0 i / c = a.

PROOF: Choose a p.g. V of I and M = {/(<?) : / € T}. If c > a in (2.8),

hypothesis (H) applies with B = Ic with a < c' < c and each A equal to dQ since

£ A ( 1 , M ) G M for M € X . If c = a in (2.8), hypothesis (H) applies with B = S and

each A as above in view of the linking property between dQ and 5 . We get the result

from Theorem 2.1. D

COROLLARY 2 . 4 . (Theorem 2.1 in Ding [3].) Let the functional I £ C1(X,R)
on t i e Hilbert space X = Xi © X2 be of the form described in Corollary 1.4. Given
SCX2 and QcX, a subspace of X, Q bounded, S and dQ iini in the sense of [3], we
assume there is a g R such fhat ("2.7) holds. Let

(2.9) c:= inf sup

where
(2.10)

T=-{>e C([0,l] xX,X) :

h(t,x) = ee{t'x)Lx + W(t,x), where 9 € C([0,l] x X,R) and W is compact} .

Suppose I satisfies (PS)C • Then the assertions (i)-(iii) of Corollary (2.3) hold.

PROOF: Consider a p.g. V as in Corollary 1.4. Let the class M be determined by

M = {h(l,Q) : h € T} where T is given by (2.10). For c denned in (2.9) hypothesis

(H) of Theorem 2.1 is satisfied with B = Ic>, a < c' < c, if c > a and B — S if c — a,

and the sets A coinciding with dQ. We utilised that £A|[O,I]X;C € T f°r each flow £A-

The corollary follows from Theorem 2.1. U

Theorem 2.1 allows us to deduce many other critical point theorems, for instance
the ones dealing with functionals admitting symmetries, for example even functionals
as in Theorem 4 of Clark [4]. As an illustration we indicate how Theorem 2.1 gives rise
to an important known such result.

COROLLARY 2 . 5 . (The symmetric version of the Mountain Pass Theorem, see
Kavian [6], Rabinowitz [14], Struwe [15].) Let I £ C1(X,R) be a functional on an
infinite dimensional Banach space X which is even, satisfies (PS) together with

(i) 1(0) — 0 and there exist R > 0 and a > 0 such that I(x) ^ o for
\\x\\ = R;

(ii) if XjC^T is a finite dimensional subspace, then the set {x € Xi : I(x) ^
0} is bounded.
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Then I possesses an unbounded sequence of critical values.

PROOF: Since / is even we can construct an odd p.g. V of / . Denote by S the
unit sphere of X and by 7 the Krasnoselski genus (see [6, 14, 15]). We introduce the
sequence

(2.11) Ci :- inf m a x J ( i ) , 7 ^ 1 ,
v ' 3 EtBj *€E v '

where

Bj := {EcX : £ is compact and symmetric such that for every odd
homeomorphism h of X with -f U(s) > 0 o n e has -y(E fl h(S)) ̂  j}.

From assumptions (i) and (ii) one can establish that the sequence (c;) is un-
bounded. We omit this part of the argument. Then the proof reduces to justifying that
the sequence (cy) consists of critical values of I. Let us apply Theorem 2.1 withJ3 equal
to the sphere in X of radius R and centred at the origin, c = c;- and M. = Bj. We
have to check hypothesis (H). From (i) and (ii) we easily derive that for each M £ M
there is a closed set A with AcM \ B. It remains to show that

(2.12) Ul,M)nB^0

for each global flow (A of a vector field as in (H). Denoting by g the standard linear
isomorphism of X mapping 5 onto B, that is, g(x) — Rx for x £ X, we see that
h = £A(—l)ff(')) 1S a n ^ d homeomorphism of X and by assumption (i) for each x 6 S
one has

I(h(x)) = I{U(~h Rx)) > I(U(0,Rx)) = I(Rx) > a > 0.

Thus f(M (1 ft(S)) ̂  j which ensures in particular (2.12). Therefore hypothesis (H) is
satisfied and Theorem 2.1 implies that each CJ in (2.11) is a critical value of / . u

3. AN APPLICATION TO A MINIMISATION PROBLEM

In this section we treat by the minimax method of Theorem 2.1 the following
abstract minimisation problem: given a closed set B of a Banach space X and a
functional I € C^Jf.R) bounded below on B, find

(P) u£B with inf J = /(u)and J ' (u)=0.
B

A large number of variational problems can be expressed by statement (P) (see, for
example, Ambrosetti and Rabinowitz [1], Ding [3], Kavian [6], Motreanu [7], Motreanu
and Naniewicz [8], Motreanu and Panagiotopoulos [9], Nirenberg [10], Palais [11],
Panagiotopoulos [12], Rabinowitz [14], Struwe [15]). We are briefly concerned here
with a minimax approach in studying the general problem (P).
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THEOREM 3 . 1 . Let B be a closed subset of a Banach space X and let the func-
tional I € C1(X,R) satisfy c := infs / > —oo and (PS)B,C- Assume that there exist a
minimising sequence (xn)C.B of I\B and a sequence M. = {Mn}n^i of subsets Mn of
X such that

(3.1) xn£Mn, sup/ = I(xn)

and the family A4 satisfies the intersection property (H) of Theorem 2.1 for some p.g.
V of I. Then the problem (P) admits a solution.

PROOF: In view of (3.1) one finds that

(3.2) c = inf / ^ inf sup / < I{xn), n ^ 1.
B n Mn

By letting n —> oo in (3.2)? it follows that formula (2.1) holds. Hence the hypotheses
of Theorem 2.1 are met. Then assertion (iii) of Theorem 2.1 provides an element
u G KC(I) D B. This is exactly a solution of problem (P). U

We simply present the applicability of Theorem 3.1 by deducing the celebrated
Palais Minimisation Theorem. Other existence results for the solvability of various
optimisation problems can be derived using the same technique based on Theorem 3.1.

COROLLARY 3 . 1 . (Palais [11].) Assume that J 6 C^-E.R) is bounded below
on the Banach space E and satisfies (PS). Then J attains its infimum on E (at a critical
point).

PROOF: Let us define X := E xR, B := E x OCJL" and I: X —> R given by

(3.3) I{v,t) = J(v) -t2, (v,t)eExR = X.

A direct computat ion involving (3.3) shows tha t I satisfies (PS). Choose a minimising
sequence (vn) of J, so vn £ E and J(vn) —»• infg J as n —» oo. For each n ^ l we
consider the line segment

joining the points (vn, ±1) in X . It is seen that (3.1) is satisfied with xn = (vn,0) £ B.
Let us check hypothesis (H) of Theorem 2.1 for M = {Mn}n^i and a fixed p.g. V of
I. Clearly we may set An — {(^,,,±1)}, n ^ 1. Because ^AB(lr) = id on An and
B = E x 0 disconnects X - E x R one obtains ^ n ( l , Afn) f l B / l l l , and have (H)
holds. Theorem 3.1 assures us the existence of a point (u,s) G X = E x R solving (P).
By (3.3) we find that s = 0, so 7(u,0) = J(u) = infg J. The proof is thus complete. D
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