ON CERTAIN EQUATIONS IN RINGS

Joso Vukman, Irena Kosi-Ulbl and Daniel Eremita

Abstract

In this paper we prove the following result: Let R be a 2 -torsion free semiprime ring. Suppose there exists an additive mapping $T: R \rightarrow R$ such that $T(x y x)$ $=T(x) y x-x T(y) x+x y T(x)$ holds for all pairs $x, y \in R$. Then T is of the form $2 T(x)=q x+x q$, where q is a fixed element in the symmetric Martindale ring of quotients of R.

1. Introduction

This research has been motivated by the work of Brešar [6] and Zalar [13]. Throughout, R will represent an associative ring with centre $Z(R)$. A ring R is n-torsion free, where $n>1$ is an integer, when $n x=0$ implies $x=0$. As usual the commutator $x y-y x$ will be denoted by $[x, y]$. We shall use basic commutator identities $[x y, z]=[x, z] y+x[y, z]$ and $[x, y z]=[x, y] z+y[x, z]$. Recall that R is prime if $a R b=(0)$ implies $a=0$ or $b=0$, and is semiprime if $a R a=(0)$ implies $a=0$. An additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$ and is called a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$ is satisfied for all $x \in R$. A derivation D is inner if there exists $a \in R$ such that $D(x)=[a, x]$ holds for all $x \in R$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein [8] asserts that any Jordan derivation on a 2-torsion free prime ring is a derivation. A brief proof of Herstein's result can be found in [4]. Cusack [7] has generalised Herstein's result to 2-torsion free semiprime rings (see also [5] for an alternative proof). We denote by $Q_{m r}, Q_{r}, Q_{s}$ and C the maximal right ring of quotients, the right Martindale ring of quotients, the symmetric Martindale ring of quotients and the extended centroid of a semiprime ring R, respectively. For the explanation of $Q_{m r}, Q_{r}, Q_{s}$ and C we refer the reader to [2]. An additive mapping $T: R \rightarrow R$ is called a left centraliser if $T(x y)=T(x) y$ holds for all pairs $x, y \in R$. The concept appears naturaly in C^{*}-algebras. In ring theory it is more common to work with module homomorphisms. Ring theorists would write that $T: R_{R} \rightarrow R_{R}$ is a homomorphism of a right R-module R into itself. For a semiprime ring R all such homomorphisms are of the form $T(x)=q x$ for all $x \in R$, where q is an element of Q_{r} (see [2, Chapter 2]). If R has the identity element, $T: R \rightarrow R$ is a left

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.
centraliser if and only if T is of the form $T(x)=a x$ for some fixed element $a \in R$. An additive mapping $T: R \rightarrow R$ is called a left Jordan centraliser if $T\left(x^{2}\right)=T(x) x$ holds for all $x \in R$. The definition of a right centraliser and a right Jordan centraliser should be self-explanatory. We follow Zalar [13] and call an additive mapping $T: R \rightarrow R$ a centraliser if T is both left and right centraliser. For a semiprime ring R each centraliser T is of the form $T(x)=c x$ for some fixed element $c \in C$ (see [2, Theorem 2.3.2]). Following ideas from [5] Zalar proved that any left (right) Jordan centraliser on a 2-torsion free semiprime ring is a left (right) centraliser. Molnar [9] proved that if we have an additive mapping $T: A \rightarrow A$, where A is a semisimple H^{*}-algebra, satisfying the relation $T\left(x^{3}\right)=T(x) x^{2}$ (respectively $T\left(x^{3}\right)=x^{2} T(x)$) for all $x \in A$, then T is a left (respectively right) centraliser. For the definition of an H^{*}-algebra we refer to [1]. Vukman [10] proved that if there exists an additive mapping $T: R \rightarrow R$, where R is a 2 -torsion free semiprime ring, satisfying the relation $2 T\left(x^{2}\right)=T(x) x+x T(x)$ for all $x \in R$, then T is a centraliser. Recently, Benkovič and Eremita [3] obtained the following result: Let $T: R \rightarrow R$ be an additive mapping, where R is a prime ring of either $\operatorname{char}(R)=0$ or $\operatorname{char}(R) \geqslant n$, satisfying the relation $T\left(x^{n}\right)=T(x) x^{n-1}$ for any $x \in R$ and some integer $n>1$, then T is a left centraliser. An additive mapping $D: R \rightarrow R$, where R is an arbitrary ring, is called a Jordan triple derivation if

$$
\begin{equation*}
D(x y x)=D(x) y x+x D(y) x+x y D(x) \tag{1}
\end{equation*}
$$

is satisfied for all pairs $x, y \in R$. One can easily prove that any Jordan derivation on arbitrary ring is a Jordan triple derivation (see for example [4]). Brešar [6] proved the result below.

Theorem 1.1. [6, Theorem 4.3] Any Jordan triple derivation on a 2-torsion free semiprime ring is a derivation.

Recently, Vukman [11] proved that if there exists an additive mapping $T: R \rightarrow R$ where R is a 2-torsion free semiprime ring satisfying the relation $T(x y x)=x T(y) x$ for any pair $x, y \in R$, then T is a centraliser (see also [12]). It is easy to see that any centraliser T on arbitrary ring R satisfies the relation

$$
\begin{equation*}
T(x y x)=T(x) y x-x T(y) x+x y T(x) \tag{2}
\end{equation*}
$$

for all pairs $x, y \in R$ (compare the relations (1) and (2)). It seems natural to ask whether the above relation characterises centralisers among all additive mappings on 2-torsion free semiprime rings. The answer to this question is negative. Namely, a routine calculation shows that for any fixed element $a \in R$, where R is an arbitrary ring, the mapping $T: R \rightarrow R$ defined by $T(x)=a x+x a$ satisfies the relation (2).

2. The result

Theorem 2.1. Let R be a 2 -torsion free semiprime ring. Suppose there exists an additive mapping $T: R \rightarrow R$ such that

$$
T(x y x)=T(x) y x-x T(y) x+x y T(x)
$$

for all $x, y \in R$. Then there exists $q \in Q$ such that $2 T(x)=q x+x q$ for all $x \in R$.
For the proof of Theorem 2.1 we need several lemmas.
Lemma 2.2. [5, Lemma 4] Let R be a 2 -torsion free semiprime ring and let a, b $\in R$. If for all $x \in R$ the relation $a x b+b x a=0$ holds, then $a x b=b x a=0$ is satisfied for all $x \in R$.

Lemma 2.3. [6, Lemma 1.2] Let $G_{1}, G_{2}, \ldots, G_{n}$ be additive groups and R be a semiprime ring. Suppose that mappings $S: G_{1} \times G_{2} \times \ldots \times G_{n} \rightarrow R$ and $T: G_{1} \times G_{2}$ $\times \ldots \times G_{n} \rightarrow R$ are additive in each argument. If $S\left(a_{1}, a_{2}, \ldots, a_{n}\right) x T\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for all $x \in R, a_{i} \in G_{i}, i=1, \ldots, n$, then $S\left(a_{1}, a_{2}, \ldots, a_{n}\right) x T\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0$ for all $x \in R, a_{i}, b_{i} \in G_{i}, i=1, \ldots, n$.

Before we write down the next lemma, let us notice that the linearisation of the relation (2) gives

$$
\begin{equation*}
T(x y z+z y x)=T(x) y z-x T(y) z+x y T(z)+T(z) y x-z T(y) x+z y T(x) \tag{3}
\end{equation*}
$$

for all $x, y, z \in R$. For the purposes of the next lemma we shall write $A(x, y, z)$ $=T(x y z)-T(x) y z+x T(y) z-x y T(z)$ and $B(x, y, z)=x y z-z y x$. From (3) it follows that $A(x, y, z)=-A(z, y, x)$.

Lemma 2.4. If R is any ring then

$$
A(x, y, z) u B(x, y, z)+B(x, y, z) u A(x, y, z)=0
$$

holds for all $x, y, z, u \in R$.
Proof: We compute $W=T(x y z u z y x+z y x u x y z)$ in two ways. On the one hand using (2) we have

$$
\begin{aligned}
W= & T(x(y z u z y) x)+T(z(y x u x y) z) \\
= & T(x) y z u z y x-x T(y(z u z) y) x+x y z u z y T(x)+T(z) y x u x y z \\
& \quad-z T(y(x u x) y) z+z y x u x y T(z) \\
= & T(x) y z u z y x-x T(y) z u z y x+x y T(z u z) y x-x y z u z T(y) x \\
& \quad+x y z u z y T(x)+T(z) y x u x y z-z T(y) x u x y z+z y T(x u x) y z \\
& \quad-z y x u x T(y) z+z y x u x y T(z) \\
= & T(x) y z u z y x-x T(y) z u z y x+x y T(z) u z y x-x y z T(u) z y x
\end{aligned}
$$

$$
\begin{aligned}
& +x y z u T(z) y x-x y z u z T(y) x+x y z u z y T(x)+T(z) y x u x y z \\
& -z T(y) x u x y z+z y T(x) u x y z-z y x T(u) x y z+z y x u T(x) y z \\
& -z y x u x T(y) z+z y x u x y T(z)
\end{aligned}
$$

for all $x, y, z, u \in R$. On the other hand using (3) we get

$$
\begin{aligned}
W= & T((x y z) u(z y x)+(z y x) u(x y z)) \\
= & T(x y z) u z y x-x y z T(u) z y x+x y z u T(z y x) \\
& \quad+T(z y x) u x y z-z y x T(u) x y z+z y x u T(x y z)
\end{aligned}
$$

for all $x, y, z, u \in R$. Comparing two expressions so obtained and using

$$
A(x, y, z)=T(x y z)-T(x) y z+x T(y) z-x y T(z)
$$

and

$$
A(x, y, z)=-A(z, y, x)
$$

we obtain the assertion of the lemma.
LEMMA 2.5. Let R be a semiprime ring and let $f, g: R \rightarrow Q_{m r}$ be additive mappings. If

$$
\begin{equation*}
f(x) y+x g(y)=0 \tag{4}
\end{equation*}
$$

for all $x, y \in R$, then there exists a unique $q \in Q_{m r}$ such that $f(x)=-x q$ and $g(x)=q x$ for all $x \in R$.

Proof: Using (4) we see that

$$
x g(y z)=-f(x) y z=x g(y) z
$$

and hence $x(g(y z)-g(y) z)=0$ for all $x, y, z \in R$. Since R is semiprime we have $g(y z)=g(y) z$ for all $y, z \in R$. This means that g is a right R-module homomorphism. We set $I=R Q_{m r}$ and define the mapping $\tilde{g}: I \rightarrow Q_{m r}$ by

$$
\tilde{g}\left(\sum x_{i} q_{i}\right)=\sum g\left(x_{i}\right) q_{i}
$$

for all $q_{i} \in Q_{m r}$ and $x_{i} \in R$. By [2, Lemma 2.1.9], I is a dense right ideal of $Q_{m r}$ and according to [2, Lemma 2.1.14] \tilde{g} is a well-defined homomorphism of right $Q_{m r}$-modules. Hence by [2, Proposition 2.1.7] there exists $q \in Q_{m r}\left(Q_{m r}\right)=Q_{m r}$ such that $\tilde{g}(x)=q x$ for all $x \in I$. In particular, $g(x)=q x$ for all $x \in R$. Now, (4) implies that $f(x)=-x q$ for all $x \in R$. It is also straightforward to see that q is uniquely determined.

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1: The proof goes through in several steps.

First step. Let us prove that for any $x, y, z \in R$, we have

$$
\begin{equation*}
T(x y z)=T(x) y z-x T(y) z+x y T(z) \tag{5}
\end{equation*}
$$

As an immediate consequence of Lemma 2.2, Lemma 2.3 and Lemma 2.4 we obtain

$$
\begin{equation*}
A\left(x_{1}, x_{2}, x_{3}\right) u B\left(y_{1}, y_{2}, y_{3}\right)=0 \tag{6}
\end{equation*}
$$

for all $u, x_{i}, y_{i} \in R, i=1,2,3$. Since $A(x, y, z)=-A(z, y, x)$ we have

$$
\begin{aligned}
2 A(x, y, z) u A(x, y, z)= & (A(x, y, z)-A(z, y, x)) u A(x, y, z) \\
= & (T(B(x, y, z))+B(T(z), y, x)-B(z, T(y), x) \\
& +B(z, y, T(x))) u A(x, y, z)
\end{aligned}
$$

for all $x, y, z, u \in R$. Using (6) and Lemma 2.2 the relation above reduces to

$$
\begin{equation*}
2 A(x, y, z) u A(x, y, z)=T(B(x, y, z)) u A(x, y, z) \tag{7}
\end{equation*}
$$

for all $x, y, z, u \in R$. Similarly we obtain

$$
\begin{equation*}
2 A(x, y, z) u A(x, y, z)=A(x, y, z) u T(B(x, y, z)) \tag{8}
\end{equation*}
$$

for all $x, y, z, u \in R$. Next, using Lemma 2.4 and the relation (3) we obtain

$$
\begin{aligned}
& 0= T(A(x, y, z) u B(x, y, z)+B(x, y, z) u A(x, y, z)) \\
&=T(A(x, y, z)) u B(x, y, z)-A(x, y, z) T(u) B(x, y, z) \\
&+A(x, y, z) u T(B(x, y, z))+T(B(x, y, z)) u A(x, y, z) \\
&-B(x, y, z) T(u) A(x, y, z)+B(x, y, z) u T(A(x, y, z))
\end{aligned}
$$

for all $x, y, z, u \in R$, which according to (7) and (8) implies

$$
\begin{aligned}
0=4 A(x, y, z) u A(& x, y, z)+T(A(x, y, z)) u B(x, y, z) \\
& -A(x, y, z) T(u) B(x, y, z)-B(x, y, z) T(u) A(x, y, z) \\
& +B(x, y, z) u T(A(x, y, z))
\end{aligned}
$$

for all $x, y, z, u \in R$. Using (6) the above relation reduces to

$$
0=4 A(x, y, z) u A(x, y, z)+T(A(x, y, z)) u B(x, y, z)+B(x, y, z) u T(A(x, y, z))
$$

for all $x, y, z, u \in R$. Left multiplication of the above relation by $A(x, y, z) u A(x, y, z) v$ gives according to (6)

$$
4 A(x, y, z) u A(x, y, z) v A(x, y, z) u A(x, y, z)=0
$$

for all $x, y, z, u, v \in R$. Since R is a 2-torsion free semiprime ring it follows immediately that $A(x, y, z)=0$ for all $x, y, z \in R$, which completes the proof of the relation (5).
Second step. We intend to prove that

$$
\begin{equation*}
(T(x y)-T(x) y) z+x(T(y z)-y T(z))=0 \tag{9}
\end{equation*}
$$

holds for all $x, y, z \in R$. According to (5) $T(x y z u)$ can be written as

$$
\begin{equation*}
T((x y) z u)=T(x y) z u-x y T(z) u+x y z T(u) \tag{10}
\end{equation*}
$$

and also as

$$
\begin{equation*}
T(x(y z) u)=T(x) y z u-x T(y z) u+x y z T(u) \tag{11}
\end{equation*}
$$

Comparing (10) and (11) we arrive at

$$
0=(T(x y)-T(x) y) z u+x(T(y z)-y T(z)) u
$$

for all $x, y, z, u \in R$ and so

$$
((T(x y)-T(x) y) z+x(T(y z)-y T(z))) R=(0)
$$

Since R is semiprime, it follows that (9) holds true.
Third sTEP. It remains to prove that there exists $q \in Q_{s}$ such that

$$
2 T(x)=q x+x q
$$

for all $x \in R$. We define mappings $F, G: R \times R \rightarrow R$ by $F(x, y)=T(x y)-T(x) y$ and $G(x, y)=T(x y)-x T(y)$ for all $x, y \in R$. Now (9) can be written as

$$
F(x, y) z+x G(y, z)=0
$$

for all $x, y, z \in R$. Using Lemma 2.5 we see that for each $y \in R$ there exists a uniquely determined $q_{y} \in Q_{m r}$ such that $F(x, y)=-x q_{y}$ and $G(y, z)=q_{y} z$ for all $x, z \in R$. Thus, the mapping $H: R \rightarrow Q_{m r}$ defined by $H: y \mapsto q_{y}$ is well-defined. Since F is biadditive, it follows easily that H is additive. We have

$$
\begin{aligned}
& T(x y)-T(x) y=F(x, y)=-x H(y) \\
& T(x y)-x T(y)=G(x, y)=H(x) y
\end{aligned}
$$

and so $(H(x)-T(x)) y+x(H(y)+T(y))=0$ for all $x, y \in R$. Again, applying Lemma 2.5 we get $q \in Q_{m r}$ such that $H(x)-T(x)=-x q$ and $H(x)+T(x)=q x$, which in turn implies that

$$
\begin{equation*}
2 T(x)=q x+x q \tag{12}
\end{equation*}
$$

for each $x \in R$. Finally, let us prove that $q \in Q_{s}$. Since $q \in Q_{m r}$, there exists a dense right ideal J of R such that $q J \subseteq R$ (see [2, Proposition 2.1.7 (ii)]). According to (12) we have $q x+x q \in R$ for all $x \in R$ and so we see that also $J q \subseteq R$. Let $I=R J$. Then I is an essential two-sided ideal (see [2, Proposition 2.1.1] and [2, Remark 2.1.4]). Obviously, $I q=R J q \subseteq R^{2} \subseteq R$. Since $q x+x q \in R$ for all $x \in I$, it follows that $q I \subseteq R$. Thus, $q I \cup I q \subseteq R$ and hence $q \in Q_{s}$ (see [2, p. 66]).

Corollary 2.6. Let R be a 2-torsion free semiprime ring. If $S, T: R \rightarrow R$ are additive mappings such that

$$
\begin{align*}
& S(x y x)=S(x) y x-x T(y) x+x y S(x) \tag{13}\\
& T(x y x)=T(x) y x-x S(y) x+x y T(x) \tag{14}
\end{align*}
$$

for all $x \in R$, then there exist a derivation $D: R \rightarrow R$ and $q \in Q_{s}$ such that

$$
4 S(x)=q x+x q+D(x) \quad \text { and } \quad 4 T(x)=q x+x q-D(x)
$$

for all $x \in R$.
Proof: Comparing (13) and (14) we see that $S-T$ is a Jordan triple derivation and

$$
(S+T)(x y x)=(S+T)(x) y x-x(S+T)(y) x+x y(S+T)(x)
$$

for all $x, y \in R$. Hence by Theorem 2.1 there is $q \in Q_{s}$ such that $2(S+T)(x)=q x+x q$ for all $x \in R$. On the other hand, Theorem 1.1 implies that $S-T$ is a derivation. By D we denote the derivation $2(S-T)$. Consequently, $4 S(x)=q x+x q+D(x)$ and $4 T(x)=q x+x q-D(x)$ for all $x \in R$.

References

[1] W. Ambrose, 'Structure theorems for a special class of Banach algebras', Trans. Amer. Math. Soc. 57 (1945), 364-386.
[2] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with generalized identities (Marcel Dekker, Inc., New York, 1996).
[3] D. Benkovič and D. Eremita, 'Characterizing left centralizers by their action on a polynomial', Publ. Math. Debrecen 64 (2003), 1-9.
[4] M. Brešar and J. Vukman, 'Jordan derivations on prime rings', Bull. Austral. Math. Soc. 37 (1988), 321-322.
[5] M. Brešar, 'Jordan derivations on semiprime rings', Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[6] M. Brešar, 'Jordan derivations of semiprime rings', J. Algebra 127 (1989), 218-228.
[7] J. Cusack, 'Jordan derivations on rings', Proc. Amer. Math. Soc. 53 (1975), 321-324.
[8] I.N. Herstein, 'Jordan derivations of prime rings', Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[9] L. Molnar, 'On centralizers of an H^{*}-algebra', Publ. Math. Debrecen 46 (1995), 89-95.
[10] J. Vukman, 'An identity related to centralizers in semiprime rings', Comment. Math. Univ. Carolin. 40 (1999), 447-458.
[11] J. Vukman, 'Centralizers of semiprime rings', Comment. Math. Univ. Carolin. 42 (2001), 237-245.
[12] J. Vukman and I. Kosi-Ulbl, 'An equation related to centralizers in semiprime rings', Glas. Mat. 38(58) (2003), 253-261.
[13] B. Zalar, 'On centralizers of semiprime rings', Comment. Math. Univ. Carolin. 32 (1991), 609-614.

Department of Mathematics
University of Maribor
PeF, Koroška 160
SI-2000 Maribor
Slovenia
e-mail: joso.vukman@uni-mb.si irena.kosi@uni-mb.si daniel.eremita@uni-mb.si

[^0]: Received 3rd August, 2004

