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A NOTE ON THE RELATIVE TRACE FORMULA 

JASON LEVY 

ABSTRACT. This paper deals with the relative trace formula in the case of base 
change. Two truncations of the kernel are introduced, both based on the ideas of Arthur, 
and their integrals are shown to be asymptotic to each other. We also consider products 
of the kernel with automorphic forms, as these appear when comparing trace formulae 
(see [5]). 

0. Introduction. Let G be a reductive algebraic group defined over Q and let E 
be a finite extension of Q. Given any algebraic group H defined over Q, write H for 
the Weil restriction ResE/QH of H from E to Q, and //(/V)1 for the intersection of the 
kernels in H(&) of the absolute values of all rational characters of H. In the Selberg-
Arthur trace formula for the group G one considers the regular representation R of G(A) 
on L2(G(Q)\ 6(A)1), given by 

(*0W)(*) = <K*y), x,y e 0(A)1, <t> e L2(Ô(Q) \ 0(A)1). 

Given a function/ 6 C^°(G(A)' ) we can consider the operator 

It is well known that the operator R(f) is an integral operator with kernel 

K{x,y)= £ f(pc-hy), ^ G 0(A)1. 
7GG(Q) 

On can decompose this kernel in two ways: one, the "geometric side," a sum over equiv­
alence classes o of conjugacy classes in G(Q), the other, the "spectral side," a sum over 
equivalence classes of equivalence classes \ of cuspidal representations of Levi compo­
nents of parabolic subgroups of G. This gives an equality 

(0.1) £ K0(x,y) = E Kx(pc9y)9 x,y G G(A)1. 

For the Selberg-Arthur trace formula, one considers only the case x = y. This gives an 
equality of two functions on G(A)1 that are left G(Q)-invariant. One then truncates both 
sides of this equality, integrates over G(Q) \ G(A)1, and then (see [1], [2], and many 
more) adjusts the resulting equality into a more useful form. 
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ON THE RELATIVE TRACE FORMULA 451 

For the relative trace formula, one treats (0.1) as an equality of two functions on 
(7(A)1 x G(A)1 C G(A)1 x G(A)1, truncates these functions, and integrates the result­
ing equality over (G(Q)\G(A)') .This idea was first carried out in [4] for the group 
GL2, quadratic extensions E of Q, and functions / satisfying certain local conditions. 
The paper [5] extended this to a larger class of functions, and considered the integral 
of the product of the truncated kernel and an automorphic form. The presence of this 
automorphic form was necessitated by the fundamental lemma proven in [5]. 

In this paper we will present an integrated equality using the truncations of Arthur, 
for arbitrary groups. We will also begin an investigation of the integral of the truncation 
of the geometric side. The equivalence classes 0 C G(Q) will be different from those 
considered in the Selberg-Arthur trace formula because we need the function 

K0(x,y) = E/OrWy), x9y G G(\)1 

to be left G(Q)-invariant in both variables. The spectral kernels Kx that appear in [1] are 
already bi-left G(Q)-invariant, and so do not need to be changed. 

We note that although all statements in this paper treat an extension E/Q, they are 
also true, and can be proved in exactly the same way, for arbitrary finite extensions E/F 
of number fields. 

I would like to thank Robert Kottwitz for helpful discussions and James Arthur for 
suggesting that I examine the relative trace formula. 

1. Preliminaries. Let G be a reductive group defined over Q. Fix, for the remainder 
of this paper, a minimal parabolic subgroup Po of G and a Levi component Mo of Po, both 
defined over Q. When we refer to a parabolic subgroup we mean a standard parabolic 
subgroup. Given a parabolic subgroup P, write Mp for its Levi component containing 
Mo, Np for its unipotent radical, and Ap for the split component of the centre of Mp. We 
write AP(R)° for the connected component of the identity in Ap(R). Choose a maximal 
compact subgroup K of G(A) satisfying the properties on p. 917 of [ 1 ]. For P a parabolic 
subgroup of G, write O^ for the roots of {Mp, A) and Ap Ç À for the simple roots. 

Given an algebraic group H defined over Q, we defined H to be the group Res£/Q H, 
also defined over Q. Recall that H(Q) — H(E) and H(E) is a product of [E : Q] copies 
of H(E). There is a natural inclusion H Ç H of algebraic groups that on Q-points in the 
inclusion //(Q) Ç H(E) and on ^-points is given by the diagonal map. This lets us treat 
H as an algebraic subgroup of H. The group Po is a minimal parabolic subgroup of G. 
Furthermore, given a parabolic subgroup P of G, the group P is a (standard) parabolic 
subgroup of G with Levi component Mp and unipotent radical Nf9 as expected. The com­
ponent of the centre of Mp that is split over Q is Ap Ç ÂP, and the corresponding root 
system equals that of {MP,Ap). 

When Pi occurs as a subscript or superscript of a symbol other than T, we may write 
i for the subscript instead of Pt. When / = 0 a subscript of P/ may be left out altogether. 
The absence of an expected subscript of a parabolic subgroup indicates that the subscript 
is actually PQ. 
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452 JASON LEVY 

Let X(MO)Q denote the group of characters of Mo defined over Q, and define the real 
vector spaces 

a = Hom(X(M0)Q, R), a = Hom{X(M0)Q, R). 

Recall that X(MO)Q is canonically isomorphic to X(AO)Q, SO that a is canonically iso­
morphic to Hom(X(Ao)Q, R). This gives a canonical isomorphism between a and a that 
commutes with evaluation at roots, because roots are defined as characters on Ao. We 
will identify a and ô under this isomorphism, its dimension is that of Ao. As usual there 
are continuous homomorphisms H: G(A) —» a, H: G(A) —> a, such that 

e{XMm)) = A ( m ) ? m € M Q ( A ) ? A e X(MO)Q 

e(\Am)) = A ( m ) s m E ^ o ( A ) > A G X(MO)Q. 

Then for x in G(A)1, and a in A, 

a(H(x)) = [E:Q]a(H(xj). 

Therefore, with our identification of a and a, the restriction of H to the set G(A) C G(A) 
equals [E : Q]H. 

We will adopt the notation of Arthur; in particular r = TO is the characteristic function 
of the thin Weyl chamber a+, f is the characteristic function of the thick Weyl chamber. 
We pick a fixed point T\ G — a+ and a fixed compact set u Ç A^(A)Mo(A)1 so the the 
Siegel set 

ëp(ri,o;) = {pak :p e u9a eA0(R)°nG(h)l
9k G K,a(H(a)-Ti) > 0 for all a G Ap} 

is a fundamental set for P(Q) \ G(A)1 for each parabolic subgroup P of G. Given a 
parabolic subgroup P of G, the truncated Siegel set £P(T; T\, a;) is given by 

êp(T; Tuu>) = {pak G $P(TUUJ) : zu(//(a) - f) < 0 for all w G Ap}, 

and the function Fp(-, 71) is the characteristic function of the the compact subset of 
MP(Q)Np^)Ap(R)0 \ G(A) obtained as the projection to MP(Q)NP(&)Ap(R)0 \ G(A) of 
P(Q)$p(T;T\,u). Given parabolic subgroups Pi Ç P2, the function G\^ on <X\ is the 
characteristic function of the set of X G ai such that 

(1) a{X) > 0 for all a G à], 
(2) a(X) < 0 for all a G Ai \ A?, and 
(3) w(X) > 0 for all vo G Â2; it is also given as an alternating sum over parabolic 

subgroups on p. 938 of [1]. 
Lemma 6.4 of [Al], a restatement of reduction theory, implies that for g G G(Q), 

the value of Fp(g, T), with respect to the Siegel domain %P(T\ T\, <J) corresponding to 
the point T\, equals the value of Fp(g, [E:Q]T)9 with repsect to a Siegel domain 
ëp(T;TÏ9û) C G(A)1 corresponding to the point [£ : Q]TU where <JjnN0(fi)Mo^y = u. 
This means that the truncation we use in the next section can be seen as a truncation with 
respect to either the group G or the group G. 
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We define equivalence classes of orbits in G(Q) under left and right multiplication 
by G(Q) as in [6]: Two elements x,xf of G(Q) are equivalent if their semisimple parts s, 
s' satisfy s' G G(Q)sG(Q). Notice that if P = MN is a parabolic subgroup and o is an 
equivalence class in G(Q), then 

P(Q) fl o = (MP(Q) PI o)NP(Q). 

Write £> for the collection of equivalence classes in G(Q). 

2. Truncation of the kernel. We preserve the earlier notation. Le t / be a function 

in C^GCA)1). The integral over (x9y) G (G(Q) \ G(A)1)2 of 

Kfry) = E f(*~l7y) 
7GG(Q) 

will not converge in general because K(x, y), although continuous, is not bounded. The 
easiest truncation we can apply to K(x9y) is multiplication by the characteristic function 
of a compact set. For points T, T' G a+, let 

Vf fry) = Kfry^ix, Tf)F«(y9 T)9 

with F° the compactly-supported function mentioned in the previous section. Recall that 
we have two expansions of the kernel K(x,y), one as a sum over equivalence classes 
o G O , 

Kfry) = E Ko fry), Ko fry) = E/(^_1^)? 

the other a sum over equivalence classes of representations, 

Kfry) = E Kxfry) 

given in [1] (the set X corresponds to G). These lead to two expansions of </>f-

Now let 0 be a slowly increasing function on G(Q) \ G(A)1, so that 0 is left G(Q)-
invariant and there are positive constants c, r > 0 such that 

\0(y)\<c\\y\\r 

with || • || a norm on G(/V) defined as on p. 918 of [1]. We clearly have two expansions 

of^pWwv). 
We must prove the absolute convergence of the integrals of these expansions of 

<t>f(x,y)9(y) over (G(Q) \ G(A)1 ) . Let us deal with the geometric side first. It is well-

known that there is a continuous seminorm || • ||o on (^((^(A)1) such that fo r / G 

C?(Ô(\)l)mdx9y€Ô(\)l
9 

E W-liy)\ < IWIolwr. 
7GG(Q) 
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so since the norm || • || is bounded on the truncated Siegel set ëG(T; T\,UJ\ 

converges. 
Convergence for the spectral side is equally simple. Corollary 4.6 of [1] implies that 

there exists a continuous seminorm || • || on (^((/(/V)1) and a positive integer N such 
that forx,y € G(A)1 and/ € C?{G(K)X\ 

E iifxfey)i < II/II iwriwr. 
This clearly implies that 

converges. 
For equivalence classes o and \, write 

/^(Z) = f tf{(x,y)0(y)dxdy 

JT/{f) = [ <l>Tf{(x,y)0(y)dxdy 

The following is therefore true. 

LEMMA 2.1. Le / / e q ? (0(A)). Then for each T, T E a+, 

E J^V) = E 4'r'(0-

Having produced these distributions JT^T\j^T' so directly, we must put a lot of effort 
into determining their behaviour with respect to 7, T' sufficiently regular in a+. For the 
remainder of this paper, we consider only the "geometric" distributions J ^ r , O G O . 

One aspect of the behaviour of the distribution J^T' as T, V vary is easy to prove. It 
follows from the following lemma. 

LEMMA 2.2. Let G be a reductive group defined over Q. Suppose thatf is a bounded 
function on G(A)1 of compact support. Then 

(i) There exists a compact set C C G(A)1 such that 

E ffpr'iy) = o 
76G(Q) 
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ifx,y G G(Q) \ G(A) with x not in the setyC. 
(ii) The function 

e-2KH(a)) £ f(pTlla) 
7GG(Q) 

is bounded on G(A)1 x [a G A(R)° n G(A)1 : r(#(a) - Tx) = l}. 

PROOF, (i) is clear because / has compact support, (ii) follows from (i) and 
Lemma 3.2 of [2]. • 

We will apply this lemma on the group G. Suppose that K0(x9y) is nonzero for some 
JC, y in G(Q) \ G(A)1 and some o G O. Then by the above lemma, there exists a compact 
set C Ç G(ZV)1 such that x G >>C. This implies that there is a point Tf G a such that for 
every 7 G a+ and 7* G T + 7) + Û+, F°(y, T) = 1 implies that F^(x9 V) = 1. Therefore 
we have the following. 

LEMMA 2.3. Le*/ G (^(GCA)1), O G £>. 7%en f/iere ejtisfc a/?o/«f Tf such that for 
T' G r+7> + û+, 

* 0 ( * , ; ^ ( x , r ')/^(y, 7) = *0(x,y)F*(y, 7> 

/« particular, JT/'(f) is independent ofT'eT+Tf + a+. 

Let us call this number «/£(/)• It is the integral over (G(Q)\G(A)1) of the product of 
the function <j>j0 defined by 

*hfry) = "Lfix-hy^fy, T), x,y G G(Q) \ G(A)' 
7€0 

and the function 0. 

3. The geometric side. Le t / G Ç£°(G(Ay) and let o be an equivalence class in 
G(Q) as described in Section 1. In this section we show that J%(f) approximates another 
function whose behaviour is more explicit. 

It is easy to see that if E = Q then the integral over (G(Q) \ G(A)1)2 of K(x,y)0(y) 
converges, and equals 

/ f(x)dx f 0(y)dy. 

In this case there is only one double class, so £) = {G(Q)}. The number JLQ ) approaches 
the above expression as T becomes increasingly regular. This case is not very interesting, 
so we will assume in the future that [E : Q] > 2. 

Define t j , a function on (G(Q) \ G ^ ^ b y 

*0W)=E(-i)dim(^G) E 
PQG 6j'eP(Q)\G(Q) 

5 IN (iAG'xTlMfy)) dn]fP(H(fy) - f). 
•7GorWHQ) J W A y 

This is essentially the truncated kernel used in [6] and is based on the truncation in [1]. 
For T G a+, write d(T) = mina€A(a(r)). This function measures the distance from T 

to the walls of the Weyl chamber. The following is the main result of this paper. 
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THEOREM 3.1. Suppose that [E : Q] > 2. Let e,k > 0. There exists a continuous 
seminorm || • || on C™(G(hy) such that for all sufficiently regular T e a+ with d(T) > 
e\\T\\, the expression 

w bounded by \\f\\e~k^. In particular, the integral ofk% converges absolutely. 

PROOF. In the following, a fixed constant is one independent of both T and/. A fixed 
compact set will be independent of T, and its dependence on / will be clear from context. 

As on pp. 942—943 of [ 1 ], the expression (3.1) equals the sum over equivalence classes 

o of the integral over (G(Q) \ G(A)1)2 of 

£ £ Fl(8y,T)ah2(H(6y)-T) 
PlÇP2è£Pl(Q)\G(Q) 

( £ (^ylim^/Z) ^ ^ /' / ( ( ^ - ^ ( f y ) ) ^ ) ! 
H/^içra^} S'eP(Q)\G(Q)1eMp(Q)noJAim) J ' 

We can therefore clearly bound (3.1) by the sum over equivalence classes and over 
parabolic subgroups Pi £P 2 of the integral over (x,y) G G(Q) \ G(ZV)1 x Pi(Q) \ G(ZV)1 

of the product of 

(3.2) Fl(y,T)aU2(H(y)-T)6(y) 

and 

(3.3) I £ ( - l ) d i ^ / 2 ) £ £ [ f((6x)-llny)dn\. 
1 {/>:/>! ÇPÇP2} <5<E/>(Q)\G(Q) 7GMP (Qpo ^ ^ ' 

Notice that to bound this integral, it would not be sufficient simply to show that x belongs 
to the product of the projection ofy to G(Q) \ G(A)1 and a fixed compact set. 

We now fix representatives for both JC and 8. For each parabolic subgroup P D Pi 
pick a set Sp of representatives in Pi(Q) \ G(ZV)1 of P(Q) \ G(ZV)1 contained in Pi(Q) \ 
Pi (Q)$P(TX, u). Given x G S°, write (P \ G)x for the set of 8 G Pi (Q) \ G(Q) such that 8x 
is in Sp; (P \ G)x is a set of representatives in Pi(Q) \ G(Q) of P(Q) \ G(Q) that depends 
onx. 

We therefore replace the integral over JC in G(Q) \ G(A)1 with the integral over S° Ç 
G(A)1 and replace the sum of 8 in (3.3) with the sum over (P \ G)x, so that fo lies in 
Sp. Assume that (3.2) is nonzero. Choose a representative of 8x in $P(T\, u) and of y in 
êl (T\, a;). These representatives can be decomposed as n'Pnp m'bk1 and npnpmak, respec­
tively, with np, nP eNP(\),np,np' eNp(A),m,m' G M(h)1 all in fixed compact subsets 
of their respective domains, with a, b G v4(IR)0 Pi G(ZV)1 ,k,k/ EK and 

(3.4) r 1 ^ ) - r i ) = ^(Hib) - Tx) = 1. 
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As on p. 944 of [1] we can show that 

(3.5) a(H(a)-f)>0 for all a G A2 \ A1 D Ap \Al, 

and so a~lnpma9b~lnp'm'b lie in fixed compact sets in NP(\)M(\). Now, since 7 is 
in MP(Q) and the contributions of both np and N'P can be absorbed in the integral over 
iV/>(A), we have 

hmf({èxTllny)dn = / ^ / ( A ' - 1 ^ ^ 

For this to be nonzero, we must have that b~xlNp(P£)a intersects a fixed compact set 
in (5(A) (depending on the support of/) and hence b~xla lies in a fixed compact set in 
MP(A)1. This will imply conditions on both 7 and b. 

Let 7 = 1'nWslaln be the Bruhat decomposition of 7, with 7W,7^ in N(A)9 ws the 
representative in Mp(Q) of an element s of the Weyl group of (M/>, A) and 7a is in Mo(Q). 
The element s is uniquely determined by 7. We know that 

bna = b~Wnwslal„a 

= (b-Wnb)ws(la(wsbw7lrla)(a-ll„a) 

is the Bruhat decomposition of b~xla G P(A), and so the element 1 a(wsbwjl)~xa must 
be contained in a fixed compact set. Notice that 

H(la(wsbw7lrla) = H(a) - sH(b) = [E : Q](H(a) - sH(bj). 

Now if 7 G MP(Q) did not lie in A(Q) then by Lemmas 10.2.B and 10.2.C of [3], there 
would exist a positive root a G O7* \ O1 such that — sa is a positive root /? in O .̂ Then 

a(H(a) - sH(bj) = a(H(aj) - sa(H(bj) 

= a(H(a))+(3(H(bp)) 

>a(H{a))+(l{Tx) 

has a fixed upper bound. This would imply that a(//(a)) has a fixed upper bound, con­
tradicting (3.5). Therefore 7 must lie in P\(Q\ and by Lemma 10.2.B of [3], s permutes 
the positive roots in O2 \ O1. Since H(a) — sH(b) lies in a fixed compact set, there are 
fixed positive numbers cay a G À2 \ A1 so that 

a(H(b))>s-xa(H(aj)-ca. 

Write x for the representative in $P(T\, u) Ç G(A)1 that we have chosen for &c. Then for 
each a G À2 \A ! , 

a(H(x) - T2) = a(H(bj) - a(T2) > S-
xa(H(aj) - c a - a{T2) 

> s-xa(T) - a(T2) - ca > 0, 
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where T2 is a fixed sufficiently regular point in a+ and T is chosen to be sufficiently 

regular. 

We have shown that our representative x G &P(T\, u) of Sx actually lies in é2{J\, u) 

and that for each a G A2 \ A1, a(H(x) — r 2 ) > 0, with r 2 a fixed sufficiently regular 

point in ct+. Because G(ZV)1 = P 2 ( ^ ) 3 2 ( r i , UJ\ some left multiple of Sx by an element of 

Pi (Q) \ P2(Q) lies in S2 Ç Sl ; by reduction theory this element is the trivial class Pi (Q), 

and so Sx lies in ti2. Therefore only S in {Pi \ G)x give a nontrivial contribution to (3.3). 

Therefore, if (3.2) is nonzero, the integral over* in G(Q) \ G(A)1 of (3.3) equals the 

integral over* in S° of 

E E (-l)dim^/z> E /- f{Qx)-x1ny)dn 
lfe(Pi\G)x {P:PIQPCP2} lePiioyvkAoyno m 

< E E I E (-lf1*^ E j^^A^r^^H 
}{P:PlÇPÇP2} i/€#f (Q) J W A ) 

= E E | E ( - l y * 1 1 ^ E L f{(Sxrlle(X)y)il;(XX)dx\ 
6 7 ]{P:PlÇPÇP2} CGflf(Q) lC } 

= EE| E /./A/((&)"W^^)!^O«| 

where n is the Lie algebra of TV, e is the exponential map on it, (•, •) is an inner product 

on n as in [1], p. 945, and n ^ Q ) ' is the set of £ G rïi(Q) not in any nf (Q) for a parabolic 

subgroup P with Pi C P 5 P 2 . The first equality follows from Poisson summation and the 

second follows from the binomial theorem (Proposition 1.1 of [ 1 ]). It follows, absorbing 

the sum over S in the integral over JC, that (3.1) is bounded by the sum over parabolic 

subgroups Pi £ P 2 of the integral over (x9y) G S!2 x P{(Q) \ G(A)1 of (3.2) times 

(3.6) E E \[f{x-{le(X)y)i>(XX)dx\. 

Now change variables, replacing y with a representative in &1(T\,LJ). It can be written 

in the form n2n2mak, with « 2 ,« 2 , and m in fixed compact subsets of Af2(A), N2(/V), and 

M(\)1, respectively, k G K, and a G A(R)° D G(A)1. If we assume that (3.2) is nonzero, 

then a satisfies 

a(H(a) - Tx) > 0 for all a G A1, 

(3.7) w{H(a) - f) < 0 for all w G A1, 

a i , 2 ( / / ( a ) - r ) = l . 

This change of variables introduces a Jacobian of e~2f*H^\ Notice that because of stan­
dard properties of || • ||, 

\ m < c\\y\\r < c(||«2*2m||||a||y < c'\\a\\r < c V ^ * » 
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for some positive constant c' and some weight À (the highest weight of the representation 
leading to || • ||). We have bounded (3.2) by a function depending only on a. 

Notice that w2 can be absorbed into X without changing (X9 Q for £ G n\(Q). We can 
rewrite 

x~xle(X)n2amk = x~x1ae(Ad(a~x)X)(a~xn2ma)k, 

and (3.7) implies that a~xn2mak lies in a fixed compact set C Ç G(A)1. Therefore the 
integral over >> G Pi(Q)\G(A)1 ofthe product of(3.2) and (3.6) is bounded by a constant 
multiple ofthe integral over a G A(R)° D G(A)1 satisfying (3.7) ofthe sum over 7 and Ç 
of 

= e2[E:0]Pma)) s u p | ^ ^ / ( j - ^ ^ ) </;(*, Ad(*K) <^rA(/ / (a) ). 

Next we change variables for x. Choose a representative for x G «S2 Ç Pi(Q) \ 0(A)1 

ofthe form n'2n
2 mfb\kf

9 with «2 and n\ m fixed compact subsets of Af2(A) and Nf (A), 
respectively, m' in some predetermined set of representatives for M\(Q) \ Mi (A)1, b\ G 
^(R^nGCA^andit G AT. This introduces a Jacobian of <r2" <"<*»» = e-

2(*H{bi)\ Now, 
«2 can be absorbed into the integral over X, and we can rewrite 

(n2'm'bxk'yxlae(X)y = k'~\b^n\'bxr\b^al){m'~Xlax)e{X)y, 

where a = axa
x with ai G ̂ i(R)0 H G(A)1, a1 G ^(R) 0 H G(A)*. Notice that k! andj> lie 

in fixed compact sets, and b\xv^b\ lies in Aff(A), b\xa\ lies in A\(R)° n G(A)1, /w'"1!^1 

lies in Mi (A), and e(Z) lies in N\ (A). Since/ is compactly supported, its value at the 
above expression is zero unless b\xa\ is in a fixed compact set. By (3.7), this implies 
that for each a G A2, a(H(b\f) > 0, so that k!{b^xn\ b\)~x remains in a fixed compact 
set C. 

Because/ is compactly supported and C, C are compact, there exist non-negative 
functions/i,/2, and/3 with/1 G C ^ i ( R ) 0 n G(A)!),/2 G (^(Mi(A)1), and/3 a 
Schwartz function on nf (A), such that 

sup \jAmf{y'-lgxg2e{X)y)i,{X,0d^ 
yec 

</ifei)/2fe2)/3(0, gi G ̂ i(R)0 H G(A)1, g2 G Mi(A)1, C G n?( 

(These functions can be chosen to vary continuously with/.) Then (3.1) is bounded by 
a fixed constant multiple ofthe sum over Pi £P2 ofthe integral over a G A(Kf n G^A)1 

satisfying (3.7) ofthe product ofthe three terms 

(3.8) f\ma))e2WQ]-x)Pma)) f e-
2*H^Mb7x

ai)dbu 

0.9) e~2p'Wa))L(Q«M(w E /tor1**)**, 
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and 

(3.10) £ /3(Ad(<0C). 
C€n?(Qy 

The expression (3.8) equals 

e(r\+2([E:Q]-2)Pl)(H(a)) 

times the integral overv4i(R)0 H G(A)1 of e^^^/K^i) , a continuous seminorm of/. 
By Lemma 2.2 and the finiteness of the volume of M\ (Q) \ M\ (A)1, the expression (3.9) 
converges and is another continuous seminorm of/. 

We will bound (3.10) and conclude our estimates as on p. 1248 of [2]. Let N(f$) be the 
smallest positive integer such that the support of/ in n\(Q) is contained in n\ (N(fo )~ * Z). 
Because of (3.7), if « is an arbitrarily large number, then for T sufficiently regular (3.10) 
is bounded by 

E HAdfcxir. 

As on p. 1248 of [2] we find that for n sufficiently large this is bounded by a constant 
multiple of 

WiT I I e~kaa{H{a)\ 
<*€A2 

with each ka non-negative, and for a £ A2 \ A1, ka is a fixed quotient of n. Choose n so 
large that 

rX + 2([E : Q] - 2)Pl + (2k/e) E )9 " E *««, 
/5€A2 a€A2 

when written as a linear combination of simple roots, has all coefficients corresponding 
to a G A2 \ A1 negative, where k and e are the fixed positive numbers in the statement 
of the theorem. 

Write H(a) as 

(E W + f l *) - (E^ v ) + r, 
V<EA2 / V$€AJ / 

with //* in 02. Because of (3.7), we know that the numbers tp and rb are nonnegative, and 
H* belongs to a compact subset of — a\ whose volume can be bounded by a polynomial 
Xlpç.&p(tp) in the numbers tp. Then an elementary calculation shows that 

e{r\+2([E:Q]-2)Pl)(H(a)) JT e-kaa{H{a)) < c TT e~W'eX'/J+W) 

aGA2 3̂GA2 

for some fixed constant c depending only on T\. The integral over all a satisfying (3.7) 
of this is the product of the volume of 

f , ft i cc(H(a) -TX)>0 for all a G A1 ) 
(3.11) \aeA\R)°nG(\)1 : \ ( 

I w(H(a)-T)<0 forall^GA1! 
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and 
JJ fe-(2k/eMD Fptffr-Qkl'*) < c'e-WMW < c>e-2k\\T\\ 

/3GA;V JO } 

where c' is some fixed fixed constant and the second inequality follows from our restric­
tions on T. The volume of the set (3.11) is bounded by a polynomial in ||r||, so that the 
integral of the product of (3.2) times (3.6) is bounded by the product of three continu­
ous seminorms off with a constant multiple of e~k^. Then we have proven our results, 
with 11/11 the sum over Px^Pi of this constant multiple of the product of these three 
seminorms. • 
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