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Abstract
Selenium is an essential mineral yet both deficiency and excess are associated with adverse health effects. Dietary intake of Se in humans varies
greatly between populations due to food availability, dietary preferences, and local geological and ecosystem processes impacting Se
accumulation into agricultural products and animal populations. We argue there is a need to evaluate and reconsider the relevance of public
health recommendations on Se given recent evidence, including the metabolic pathways and health implications of Se. This argument is
particularly pertinent for Inuit populations in Northern Canada, who often exceed dietary tolerable upper intake levels and exhibit very high
whole blood Se concentrations due to their dependence on local country foods high in the newly discovered Se compound, selenoneine. Since
selenoneine appears to have lower toxicity compared to other Se species and does not contribute to the circulating pools of Se for selenoprotein
synthesis, we argue that total dietary Se or total Se in plasma or whole blood are poor indicators of Se adequacy for human health in these
populations. Overall, this review provides an overview of the current evidence of Se speciation, deficiency, adequacy, and excess and
implications for human health and dietary recommendations, with particular reference to Inuit populations in the Canadian Arctic and other
coastal populations consuming marine foods.
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Introduction

Selenium (Se) is a chalcogen trace element that is essential for
human health(1). Over the last three decades, there has been
considerable advancement in our understanding of the sources
and biological functions of Se. An important outcome of this
research is the understanding that the health effects of Se depend
upon the species of Se ingested and their metabolism(2–4). This
insight corresponds with the current trend in toxicological and
public health research of determining the diverse health effects
of various forms or species of several other elements found in the
natural environment (for example, mercury and arsenic)(5,6). In
Inuit Nunangat (the Inuit homelands of the Canadian Arctic
comprised of Inuvialuit Settlement Region, Nunavut, Nunavik,
and Nunatsiavut), the traditional diet of Inuit populations
(comprised of ‘country foods’, as they are called locally) is
exceptionally high in Se, largely due to the presence of
selenoneine (SeN) – an organoselenium compound and Se
isologue of ergothioneine – in marine foods, and particularly
beluga skin, that serve important roles in food security, nutrition,

and cultural integrity(7,8). As a result, Inuit populations across
Inuit Nunangat exhibit considerably higher blood Se concen-
trations than other reference populations in North America and
Europe(9,10). There is a need for both individuals, who may wish
to take responsibility for their own health, and government
agencies, which often establish public nutrition programming
and nutrition guidelines, to be attentive to SeN as it relates to Se
dietary sufficiency, metabolism, and health implications. The
objective of this article is to review the current evidence on Se as
it pertains to Inuit populations in the Canadian Arctic and make
recommendations for cohesive, evidence-based research prior-
ities, risk assessment, and public health decision-making that
considers the presence of SeN as a major selenium species in
several key marine foods.

Human selenoproteins

The biological actions and proposed nutritional essentiality of
Se occur largely through selenoproteins. Selenium metabolism
of major forms of dietary Se and selenoprotein synthesis are
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well-documented(3,11–14). Organic forms of selenium, including
selenomethionine (SeMet) and selenocysteine (Sec), are the
most abundant forms of dietary Se, while inorganic compounds
(selenite and selenate) represent a minor proportion of dietary
intake(15). Following absorption, Se compounds are mostly
transported to the liver, which is the principal site of Se
metabolism(14). Dietary SeMet can be trans-selenated to Sec but is
primarily non-specifically incorporated into body proteins (such
as blood albumin) or converted to methylselenol (CH3SeH)
(Fig. 1), although the importance of the latter process in humans
is not known(16). Surplus Se may accumulate as SeMet in blood
albumin or may be converted to methylated metabolites for
excretion in the breath or (more commonly) urine(3). In the liver,
most Se compounds are metabolised to hydrogen selenide
(H2Se). Subsequently, Sec is phosphorylated, leading to the
formation of monoselenophosphate, which is used for the
production of unique transfer RNA, Sec tRNA[Ser]Sec, that provides
Sec for selenoprotein synthesis. In the presence of a Sec insertion
sequence (SECIS), the UGA codon (which is normally a stop
codon) is recoded to specify the insertion of Sec(17). A SECIS-
binding protein recruits Sec tRNA[Ser]Sec for ribosomal translation
and incorporation of Sec into nascent polypeptides(17).

Approximately 25 selenoproteins have been identified thus
far that play a functional role in a variety of physiological
processes, including cell maintenance, oxidative homeostasis,
thyroid hormone metabolism, brain activity, and immune
response(17). For a summary of selenoproteins and their
nomenclature and functions, please refer to Pitts and Hoffman
(2018)(18). Optimum blood plasma Se levels are between 60 and
150 μg/L to maximize selenoprotein synthesis and activity(19,20).
It is commonly accepted that when Se intake is sufficient, plasma
selenoprotein concentrations and activities plateau. Several
researchers have therefore argued that plateau concentrations of
plasma selenoproteins reflect functional Se sufficiency(21–23).
Consequently, total plasma Se concentrations and plasma
selenoprotein (e.g., glutathione peroxidase 3 (GPX3) and
selenoprotein P (SELENOP)) concentrations and activity levels

are the most commonly used biomarkers for determining Se
adequacy(24).

Dietary reference values and safe upper limits

Although Se deficiency is rare, it is linked with reduced tissue
concentrations and activity levels of selenoproteins and can
contribute to Keshan disease (congestive cardiomyopathy
caused by depletion of selenoprotein glutathione peroxidase,
GPX), Kashin-Beck disease (atrophy and necrosis in cartilage
tissue, possibly due to oxidative stress), hypothyroidism (due
depletion of iodothyronine deodinases)(25), as well as increased
risk of miscarriage and other reproductive and obstetric
complications(26–29). Conversely, Se toxicity (selenosis) can
occur with acute or chronic ingestion of excess Se. The most
common adverse health impacts of selenosis are alopecia and
nail brittleness and loss(30), as well as gastrointestinal disturb-
ances, skin rash, garlic breath odor, fatigue, irritability, and
eventually nervous system abnormalities and paresthesia(31,32).
Mechanisms of Se toxicity remain unconfirmed but selenosis
likely occurs as a result of oxidative stress generation and
consequent disruptions of cellular and mitochondrial func-
tion(33,34). Biomonitoring equivalents associated with protection
against selenium toxicity range from 400–480 μg/L in whole
blood and 180–230 μg/L in plasma(35).

Over the past three decades, authoritative bodies have
established dietary reference intakes (DRIs) for Se. In their 2001
assessment, the Institute of Medicine established the recom-
mended dietary allowance (RDA) and tolerable upper intake
limit (UL) at 55 μg Se/day and 400 μg Se/day respectively for
individuals above 14 years of age(25). These values were
subsequently adopted by several national regulatory authorities,
including Health Canada(36) and the United States Department of
Health and Human Services(37). This UL was reaffirmed in
separate risk assessments conducted by the National Health and
Medical Research Council of Australia and New Zealand(38) and
the World Health Organization in coordination the Food and

Fig. 1. Metabolism of Se food species, adapted from Combs (2001)(11), Kayrouz et al., (2022)(71), Rayman et al. (2008)(3), Rayman (2012)(15), and Yamashita et al.
(2010)(65). ETT, ergothioneine transporter; SCLY, selenocysteine β-lyase; SeMet, selenomethionine; Sec, selenocysteine; H2Se, hydrogen selenide; CH3SeCys, Se-
methyl-selenocysteine; SeN, selenoneine; CH3SeH, methyl selenol; TSP, transsulfuration pathway.
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Agriculture Organization of the United Nations(39). Meanwhile,
the Scientific Committee on Food (which provided the European
Commission on scientific advice on food safety prior to the
establishment of the European Food Safety Authority (EFSA))
established a UL of 300 μg Se/day(40) and the UK Expert Group
on Vitamins and Minerals established a UL of 450 μg Se/day(41).
While themethodology for these risk assessments varied slightly,
all were based on a limited number of observational and
experimental studies conducted in China(32,42,43), the US(44), and
New Zealand(21). Recently, following a request from the
European Commission, the EFSA Panel of Nutrition, Novel
Foods, and Food Allergens (NDA) undertook a systematic
review to establish a scientific opinion on the UL for Se.
Grounded primarily in data from the Selenium and Vitamin E
Cancer Prevention Trial (SELECT), this panel recommended a UL
of 255 μg Se/day based on a lowest-observed-adverse-effect-
level of 330 μg Se/day and an uncertainty factor of 1·3(13).

Case study: Selenoneine and Se status among
Nunavimmiut

Inuit living in the Arctic have blood concentrations of Se that are
among the highest in theworld due to consumption of traditional
country foods that are exceptionally replete in Se. (Table 1).
Indeed, Inuit from Nunavik(9), Nunavut(45), and Greenland(46)

have considerably higher whole blood Se concentrations than
First Nations populations in southern Canada(47) and general
populations in Canada(48), USA(49), and Europe.

Research involving Nunavimmiut (Inuit living in Nunavik,
Québec) suggests a large portion of dietary Se is consumed as
SeN, which is a major Se compound in RBCs in this population.
Analyses on 881 blood samples collected during the
Qanuippitaa? 2004 Nunavik Inuit Health Survey showed that
SeN accounted for up to 92% of Se in red blood cells (geometric
mean: 26%)(8). Findings from this study also suggest Se intake is

approximately 214 μg/day (range: 10–1973 μg/day) in a
representative sample of Nunavimmiut based on food frequency
questionnaire data(50) and using food Se concentrations derived
from Navarro-Alarcon 2008(51) and Lemire et al. 2015(7). Of all
consumed foods, mattaaq (skin and underlying fat) derived
from beluga whales, which is considered a delicacy by Inuit, is
the richest source of total Se for Nunavimmiut(10). Specifically,
SeN accumulates in the skin layer and comprises the majority
(median 54% in five samples) of Se found in beluga mattaaq(8).
Consumption of beluga mattaaq is strongly correlated with
RBC SeN concentrations among Nunavimmiut(10). Lesser
amounts of Se (including SeN) are also found in other traditional
marine foods, including walrus(52). This dietary Se profile
differs from reference populations in southern Canada(53,54),
United States(55–57), Europe(58,59), New Zealand(60), and
Australia(61), who obtain Se almost exclusively through
purchased meats, eggs, and cereals and other crops grown in
Se-containing soil. Due to the accumulation of SeN in RBCs, Inuit
exhibit a non-linear relationship between plasma and whole
blood Se, in which plasma Se levels plateau around approx-
imately 200 μg/L(9,46). This contrasts with inland populations in
Amazonian Brazil(62), Malawi(63), and the United Kingdom(64),
which exhibit a linear association between whole blood Se and
plasma Se. Further, despite high whole blood Se, plasma Se and
selenoproteins concentration among Inuit are in the normal
ranges as reported elsewhere(9). Such findings therefore under-
score that Se speciation in food plays a role in the Se species
present, as well as their distribution in blood fractions, in
consumers.

A closer look at selenoneine: A unique Se species from the
marine environment. Selenoneine (2-selenyl-Nα,Nα,Nα-
trimethyl-L-histidine or 3-(2-hydroseleno-1H-imidazol-5-yl)-2-
(trimethylammonio) propanoate) is a selenoamino acid and

Table 1. Whole blood Se concentrations in Inuit compared to other global populations

Country or region (year)
Population whole blood Se concentration

(95% CI or SD, if reported) (μg/L)

Range,
if reported
(μg/L)

Canada
Nunavik, Inuit adults (2017)(110) 300 (283–307)* NR
Nunavik, Inuit adults (2004)(9) 261† 118–3555
Nunavik, Inuit pregnant mothers (2001)(111) 316† 182–980
Nunavut, Nunatsiavut, and Inuvialuit Settlement Region, Inuit adults (2007-08)(95) 280† 150–1500
First Nations, general (2011)(47) 189 (182–196)* NR
Canadian, general (2007-09)(48) 203 (199–208)* NR
Greenland Inuit, across three communities (1999-2001)(46) 169 – 354* (NR)–1767
Greenland, Inuit adults (2005-09)(112) 285* 68–5600
United States
United States, general (2011-12)(49) 190 (187–193)* NR
Europe
Czech Republic, general (1996-2001)(113) 80 (79–81)* NR
Austria, adults (2002-2004)(114) 86 (±24)‡ 42–183
Italy, adults(115) 140 (137–143)* 82–178
Germany, general(116) 132* 85–182
Brazil, Amazonian adults (2006)(117) 284† 142 – 2029
French Polynesia, adolescents (2007)(118) 250† NR

NR=not reported.
* Geometric mean.
† Median.
‡ Arithmetic mean.
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Se-isologue to the sulfur-containing compound ergothio-
neine(65). SeN was identified in 2010 in the blood of bluefin
tuna at concentrations in the range of 5–40 μg Se/g. Despite this,
following more than a decade of subsequent research, SeN has
also been reported in different biological matrices of marine
animal origin, including beluga whale mattaaq(8), dolphins(66),
sea turtles(67), various fishes (e.g., swordfish, Pacific mackerel,
sardines, and tilapia)(68), and seabirds(69), indicating trophic
transfer through marine food webs. When found in animals, SeN
is likely derived from the diet as only some fungi and bacteria
synthesize ergothioneine and SeN(65,70,71). Once consumed, SeN
is transported across cell membranes by the ergothioneine
transporter (ETT; formerly known as OCTN1), which is present
in various tissues and organs(68). In the bone marrow, uptake of
SeN bymaturing erythroid cells leads to SeN concentrating in red
blood cells(72).

Selenoneine and human health. Researchers have raised
questions about potential health implications of SeN in animals,
including humans(10,73). Such questions are particularly relevant
to coastal populations that consume high amounts of marine
foods, including Inuit living in northern Canada. As yet,
however, relatively little is known about the chemistry and
physiological functions of SeN.

SeN is one of several dietary Se species. The nutritional
chemistry of Se is complex, and dietary Se compounds and their
metabolites exhibit their own reactivity and biological activity.
The metabolic pathways of the different forms of dietary Se and
the relative abundance of Se metabolites are important to
determine the overall health impacts of Se consumption (Fig. 1).
Notably, as described above, hydrogen selenide (H2Se) plays a
central role in Se metabolism; most dietary Se is transformed to
H2Se before conversion to selenophosphate and incorporation
into selenoproteins as Sec(74). However, SeN does not follow the
H2Se metabolic pathway. Instead, SeN is distributed to organs
and tissues via the ETT. In bonemarrow, where the ETT is highly
expressed, SeN is taken up by red blood cell precursors and
incorporated into mature erythrocytes(68,72). The physiological
functions of SeN remain poorly elucidated. SeN has strong
radical scavenging and antioxidant activity, andmost researchers
agree that this may be its primary function(12,68,75,76). Indeed, it
was shown to be more resistant to irreversible oxidative
degradation compared to ergothioneine and engages in
reversible oxidation and reduction reaction under conditions
that irreversibly degrade ergothioneine(77). SeN has furthermore
been shown to bind to myoglobin and hemoglobin to prevent
auto-oxidation of iron(68). SeN crosses the blood-brain barrier(78)

and a recent study showed that the SeN can accumulate in the
brains of giant petrels(69). Authors suggest that SeN may play a
role in the protection and function of the central nervous system.
Additional implications on mammalian health have been noted;
for example, animal model and in vitro studies have shown that
SeN inhibits tyrosinase in melanoma cells and melanocytes
(potentially by chelating copper at the active site of the
enzyme)(79), is protective against colorectal cancer in mice(80),
may attenuate hepatocellular injury and hepatic steatosis(81), and
has ACE-inhibiting activity(79).

Several metals, including lead, arsenic, cadmium, and Hg,
form insolublemetal-selenide complexes in yeast, a reaction that
may protect cells from both metal toxicity(82,83) and sodium
selenide toxicity(84). It is well recognized that Se can selectively
bind with Hg and protect against MeHg toxicity, which is found
in high concentrations at upper trophic levels of marine
ecosystems(83). Recent experimental and epidemiological
research provides evidence for the potential of Se to mitigate
the cardiovascular and neurotoxic effects of MeHg exposure in
humans(85–91). Following the discovery of SeN, several research-
ers have suggested that it may play a role in the detoxification of
MeHg, possibly through demethylation of MeHg leading to the
formation of stable inorganic mercury selenide (Hg-Se) com-
plexes(8,73,92). Palmer and colleagues (2015) speculate that SeN
promotes MeHg-induced proteolytic cleavage of Hg-C bonds,
thereby demethylating MeHg prior to Hg-Se precipitation(92).
Stable inorganic mercury selenide (Hg-Se) complexes are found
to accumulate over time in the livers of marine birds and marine
mammals, as well as in the brains of humans exposed to high
levels of MeHg(83,93,94), indicating that demethylation mediated
by SeN or other forms of Se occurs in vivo and may
simultaneously reduce metal toxicity and functional availability
of Se. Indeed, studies on zebrafish embryos showed reduced
MeHg accumulation and toxicity in the presence of SeN(73). It is
likely that such mechanisms have bearing on human health.
Among Nunavummiut (Inuit living in Nunavut) and
Nunavimmiut, high whole blood Se status (a large portion of
which was likely SeN) exhibited a protective effect against the
adverse cardiovascular health effects of high MeHg expo-
sure(85,95), suggesting that Se-mediated detoxification of MeHg
may occur in humans. This is particularly relevant due to the
elevated exposure of Inuit populations to MeHg through their
traditional dietary staples, including marine mammals and
predatory fish species(7).

Overall, current research paints an incomplete picture of the
physiological functions and health implications of SeN. Despite
growing interest in recent years, further biological assessment of
SeN has been hampered by the absence of a commercial
source(12). However, as mentioned, an important observation of
the research to date is that SeN does not appear to contribute to
the pool of H2Se for selenoprotein synthesis. Incubating cells
with SeN causes no effect on GPX or SELENOP despite cells
rapidly taking up the compound(96). By contrast, incubation with
reference selenium compounds selenite and selenomethionine
induce increased activity of selenoproteins(97). We can therefore
conclude that SeN metabolism, biological function, nutritional
essentiality, and toxicity differ from those of SeMet, Sec, and
other better-understood Se species that are metabolized through
the H2Se cycle. Furthermore, current evidence suggests that SeN
is less toxic than other forms of Se(70). Drobyshev and colleagues
(2023) demonstrated that SeN causes no toxic effects up to
100 μM concentration in hepatocytes and capillary endothelial
cells(96). Such findings add evidence to the suspicions of
previous authors, including Yamashita et al., (2010), who
posited that SeN has limited toxicity in their paper describing the
discovery of SeN(10,65). Thus, individuals consuming a high
percentage of Se as SeN may not experience the same
detrimental health effects as populations consuming high
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amounts of SeMet, Sec, selenite, and selenate, despite high total
Se intake and highwhole blood total Se. Conversely, populations
consuming the majority of their dietary Se as SeN may need to
ensure they have other dietary sources of Se to ensure adequate
selenoprotein synthesis and activity.

The flaws of current Se recommendations for Inuit
populations living in Canada

Dietary Se guidelines and information sheets often refer to
dietary reference intakes established by the Institute of Medicine,
with the goal of preventing overt signs of deficiency and
excess(36). Under Health Canada’s Chemicals Management Plan,
which aims to assess and manage chemicals to “protect the
health of Canadians and the environment”, the Government of
Canada has published an assessment of Se and its com-
pounds(98). As a part of this assessment, Health Canada prepared
and distributed an overview of information on Se focused on
North and Northern communities, which notes that “Se can be
harmful to human health at levels above what the body needs to
function” and “blood levels of selenium above the international
guidance level (i.e. 480microgram/L) have beenmeasured in up
to 28% of Inuit” (Health Canada, Information on Selenium in the
North, 2018, personal communication). Notably, however, these
assessments and communication contain no reference to SeN,
which comprises one of the primary species of dietary Se among
Nunavimmiut and likely all Inuit living in northern Canada.

The continued failure to disaggregate Se species in research,
dietary guidelines, and communications about Se is problematic
and may lead to unnecessary concern about selenosis among
Inuit populations. This trend is reflected in the fact that RDAs and
ULs apply to total Se intake, thereby overlooking dietary Se
speciation and disregarding the varied functions of dietary Se
compounds andmetabolites(3). The RDAs developed by the IOM
are based on only two experimental studies – one conducted by
Yang and colleagues (1987) in China(23), and one conducted by
Duffield and colleagues (1999) in New Zealand(21). These
foundational studies have limited external validity due to their
small sample sizes, interventions that comprised only one Se
species (SeMet) or unquantified Se species, and a limited
number of female, youth, and elderly participants. Such
limitations minimize the generalizability of findings to other
global populations, including Inuit in northern Canada, for
whom SeMet is not the primary form of dietary Se. Further,
studies that informed the development of RDAs used GPX
activity as an indicator of Se sufficiency(21,23). A major limitation
of this approach is that, despite their contributions to total dietary
Se intake, SeN accumulates in RBCs and has little bearing on
plasma Se or selenoprotein synthesis or activity, as stated earlier.
Indeed, evidence suggests that Inuit populations exhibit normal
levels of selenoproteins despite very high total Se intake and
RBC Se status(9).

Similarly, ULs promoted by the IOM are based on two
observational studies – one conducted by Yang and colleagues
(1994) in Enshi, China(42), and another conducted in western
United States(44). These studies were once again limited in their
external validity due to small sample sizes and unspecified Se
species and exposure routes, thereby limiting their relevance in

determining ULs for Inuit populations. The recent systematic
review and scientific opinion published by the EFSA NDA
recommended lowering the UL from 300 to 255 μg Se/day.While
this review recognized the existence of SeN in marine foods,
their risk assessment failed to consider dietary Se speciation in
establishing ULs.

Despite very high dietary intake of Se (often exceeding ULs
promoted by the IOM and EFSA NDA) and whole blood Se
concentration, Inuit populations in Nunavut(95), Nunavik(9), and
Greenland(46) exhibit little evidence of selenosis. Since marine
food consumption has declined rapidly following colonial
policies enforced by the Government of Canada (e.g., forced
settlement and introduction of retail foods)(99), it is reasonable to
assume that SeN intake was considerably higher prior to colonial
contact. Although data do not exist prior to 1992, there is no
historical record of selenosis (or symptoms thereof) among Inuit.
It is likely that dietary Se speciation accounts for variations in
perceived tolerances of total Se intake between populations. For
example, it has been shown that selenite ingestion leads to
excess at much lower doses compared to SeMet(25), while SeN
appears to be a non-toxic form of Se, as previously men-
tioned(68). Overall, this research suggests that current DRIs and
recommendations on Se are not relevant for Inuit populations,
and future risk assessments and communications regarding Se
exposure in northern Canada need to be cognizant of dietary
intake of SeN in combination with other Se species.

Future directions for research and risk assessment
incorporating evidence on SeN

There remain several gaps in our understanding of SeN. First,
little is known regarding the natural synthesis and origins of SeN
in the marine food chain. Ergothioneine, the sulfur analogue of
SeN, is synthesized by bacteria and fungi but not plants or
animals(100), and researchers have speculated that the same is
true of SeN(71). Recently, Kayrouz et al. (2022) used a genome-
mining strategy to identify a three-gene cluster that encodes a
dedicated enzymatic pathway for producing selenoneine in
bacteria, disproving prior theories that selenoneine is syn-
thesized due to non-specific incorporation of Se during
ergothioneine production(71). Since animals do not synthesize
SeN, marine species exhibiting high concentrations of SeN (e.g.,
beluga whales and tuna) likely obtain SeN through dietary
sources or through their microbiome(8), however additional
research is necessary to identify and confirm natural sources of
SeN. Furthermore, given the emerging nature of evidence on
SeN, there is a need for research on SeN kinetics, metabolic
pathways, biological functions, and health implications to
appropriately assess the benefits and potential risks of SeN
consumption. Such research must consider Se and SeN
bioavailability and metabolism vis-à-vis consumption of metallic
elements, including MeHg. It is also imperative that researchers,
health practitioners, and public health agencies work together to
identify and appropriately deploy relevant and appropriate
biomarkers of Se status. In particular, whole blood Se
concentration may be a poor measure of Se adequacy for
selenoprotein function, considering SeN accumulates in red
blood cells but does not serve as a Se reservoir for selenoprotein
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synthesis. Researchers should instead measure plasma Se and
selenoproteins (e.g., SELENOP concentration and GPX activity)
as biomarkers of Se functional sufficiency. Meanwhile, there is a
need for more widespread measurement of SeN levels among
humans to determine the concentrations and distribution of this
compound across global populations. Recent advances in SeN
analytical methods published by Achouba and colleagues (2023)
should make this process more accessible, sensitive, specific,
precise, and cost effective(101).

It is important to recognize the value of traditional country
foods of marine origin, which are often high in Se, to the cultural
integrity and food basket of Inuit populations. This recognition
must permeate all research and public health messaging that
occur with Inuit populations in northern Canada. Above all,
country foods play an integral role in Inuit life by providing a
spiritual connection to the land(102) and improving nutritional
status(103,104), food security(105), and mental health(102,106). Thus,
it is important to recognize the dangers of endorsing and
disseminating existing ULs for Se, as such actions may
exacerbate current fears surrounding the consumption of
country foods that have arisen due to zoonotic diseases
(e.g., Giardia spp., Trichinella spp., Toxoplasma gondii, etc.)
and environmental contaminants (e.g., MeHg and persistent
organic pollutants, among others)(107,108). Given the significance
of country foods to Inuit populations, we must be careful to not
discourage country food consumption due to its importance for
food security and nutrition(7). It is therefore crucial to provide the
best evidence on Se and SeN to local public health practitioners
and clinicians (including physicians and midwives) to help them
promote country foods while minimizing the risk of exposure to
harmful contaminants when designing and implementing public
health education and clinical recommendations on environ-
mental contaminants, Se, and other country food nutrients
among Inuit populations.

While this case study has focused primarily on the Inuit
populations, our arguments likely have broader relevance. SeN
is found in high concentrations in many marine animals that
serve as staple food sources for populations globally. Marine
foods are especially crucial to the food security, nutrition, and
cultural traditions of coastal populations, including coastal
Indigenous populations(109). For example, SeN has been also
identified as a major Se compound found in the blood of human
populations consuming large amounts of marine foods in
northern Japan(10,70). Although population-level analyses of
blood SeN concentrations are extremely limited, we posit that
SeN may comprise a large fraction of whole blood Se in coastal
populations around the globe. As such, the evidence reviewed in
this manuscript, and the arguments emerging therefrom, may be
broadly applicable to coastal populations globally. There is a
need for additional research on Se status, Se adequacy, and SeN
sources andwhole blood concentrations in understudied coastal
populations. Following this, there is a need to incorporate such
evidence into our existing body of research, DRIs, and public
health guidance regarding Se to reflect the presence of SeN in
foods and human populations. As a further complication, SeN
andMeHg often occur in high concentrations in the samemarine
foods (e.g., Lemire et al. 2015(7)) and are highly correlated in
human populations (e.g., Achouba et al. 2019(8)). Such evidence

must comprise an important component of any risk assessment
and public health strategy on Se.

Conclusion

In recent years, there have been substantial advancements in the
study of different chemical forms of Se in food sources and
tissues. The recent discovery of SeN, a selenoamino acid and Se-
isologue to the sulfur-containing compound ergothioneine that
accumulates in red blood cells, underscores the importance of Se
speciation in research, risk assessment, and dietary reference
intakes. In this article, we have argued a case to evaluate and
reconsider the relevance of public health recommendations on
Se with a special focus on Inuit in northern Canada, who
consume a large portion of their dietary Se as SeN. Our
arguments may have relevance for other populations who
consumemarine diets high in SeN. Since SeN does not appear to
be as toxic as other dietary Se species and does not contribute to
synthesis of selenoproteins, it is important to consider nuanced
dietary and public health guidelines for Se that are responsive to
emerging evidence. While selenoneine has limited relevance to
Se metabolism involving synthesis of selenoproteins, there is a
need for further research on the health implications of this
compound, including its potential to serve as a strong dietary
antioxidant and detoxifying agent for methylmercury.
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