
IX

Mass mixing and CP violation

Aside from a concluding section on the strong CP problem, this chapter is about
the CP violation of kaons. We set up the general framework for meson–antimeson
mixing, which is also used in the weak interactions of heavy quarks, treated later
in Chap. XIV. In this chapter we apply the formalism to K0–K̄0 mixing and CP-
violating processes involving kaons.

IX–1 K0–K̄
0

mixing

It is clear that K0 and K̄0 should mix with each other. In addition to less obvious
mechanisms discussed later, the most easily seen source of mixing occurs through
their common ππ decays, i.e., K0 ↔ ππ ↔ K̄0. We can use second-order per-
turbation theory to study the phenomenon of mixing. Writing the wavefunctions in
two-component form

|ψ(t)〉 =
(
a(t)

b(t)

)
≡ a(t)|K0〉 + b(t)|K̄0〉, (1.1)

we have the time development

i
d

dt
|ψ(t)〉 =

(
M − i

2
�

)
|ψ(t)〉, (1.2)

where, to second order in perturbation theory, the quantity in parentheses is called
the mass matrix and is given by1

1 The factors 1/2mK are required by the normalization convention of Eq. (C–3.7) for state vectors.
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IX–1 K0–K̄0 mixing 261[
M − i

2
�

]
ij

≡ 〈K
0
i |Heff|K0

j 〉
2mK

= m
(0)
K δij +

〈K0
i |Hw|K0

j 〉
2mK

+ 1

2mK

∑
n

〈K0
i |Hw|n〉〈n|Hw|K0

j 〉
m
(0)
K − En + iε

.

(1.3)

Here, the absorptive piece � arises from use of the identity

1

ω − En + iε = P

(
1

ω − En
)
− iπ δ(En − ω), (1.4)

and hence involves only physical intermediate states

�ij = 1

2mK

∑
n

〈K0
i |Hw|n〉〈n|Hw|K0

j 〉2πδ (En −mK). (1.5)

Because M and � are hermitian, we have M21=M∗
12 and �21=�∗12. The diagonal

elements of the mass matrix are required to be equal by CPT invariance, leading to
a general form

M − i

2
� =

(
A p2

q2 A

)
, (1.6)

where A, p2, and q2 can be complex. The states K̄0 and K0 are related by the
unitary CP operation,

CP|K0〉 = ξK |K̄0〉 (1.7)

with |ξK |2= 1. Our convention will be to choose ξK = − 1. The assumption of CP
invariance would relate the off-diagonal elements in the mass matrix so as to imply
p= q,

〈K0|Heff|K̄0〉 = 〈K0
∣∣(CP )−1CP Heff (CP )−1CP

∣∣ K̄0〉 = 〈K̄0 |Heff|K0〉, (1.8)

where 〈K̄0 |Heff|K0〉 is defined in Eq. (1.3). Combined with the hermiticity of M
and �, this would imply that M12 and �12 are real. In the actual CP-noninvariant
world, this is not the case and we have instead for the eigenstates of the mass
matrix,

|KL
S
〉 = 1√|p|2 + |q|2 [p|K0〉 ± q|K̄0〉] , (1.9)

where, from the above discussion,

p

q
=
√
M12 − i

2�12

M∗
12 − i

2�
∗
12

, M12 − i

2
�12 =

〈
K0 |H| K̄0

〉
. (1.10)
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262 Mass mixing and CP violation

The difference in eigenvalues is given by

2qp = (mL −mS)− i

2
(�L − �S)

= 2

(
M12 − i

2
�12

)1/2 (
M∗

12 −
i

2
�∗12

)1/2

� 2ReM12 − iRe�12, (1.11)

where the final relation is an approximation valid if CP violation is small (1 

ImM12/ReM12). The subscripts in KL and KS , standing for ‘long’ and ‘short’,
refer to their respective lifetimes, whose ratio is substantial, τL/τS � 571. To
understand this large difference, we note that if CP were conserved (p= q), these
states would become CP eigenstatesK0± (not to be confused with the charged kaons
K±!),

|KS〉 −→
p=q |K

0+〉,
|K0±〉 ≡ 1√

2

[|K0〉 ∓ |K̄0〉] , |KL〉 −→
p=q |K

0−〉,
CP|K0±〉 = ±|K0±〉.

(1.12)

In this limit, which well approximates reality, KS would decay only to CP-even
final states like ππ , whereas KL would decay only to CP-odd final states, e.g., 3π .
Since the phase space for the former considerably exceeds that of the latter at the
rather low energy of the kaon mass, KS has much the shorter lifetime. The states
KS,L, expanded in terms of CP eigenstates, are∣∣KL

S

〉 = 1√
1+ |ε̄|2

[|K0
∓〉 + ε̄|K0

±〉
]
,

p

q
= 1+ ε̄

1− ε̄ ,

ε̄ = p − q
p + q �

i

2

ImM12 − iIm�12/2

ReM12 − iRe�12/2
� 1

2

M12 −M21 − i
2(�12 − �21)

mL −mS − i
2(�L − �S)

. (1.13)

K0–K̄0 mixing can be observed experimentally from the time development of a
state which is produced via a strong interaction process, and therefore starts out at
t = 0 as either a pure K0 or K̄0,

|K0(t)〉 = g+(t)|K0〉 + q

p
g−(t)|K̄0〉,

|K̄0(t)〉 = p

q
g−(t)|K0〉 + g+(t)|K̄0〉,

g±(t) = 1

2
e−�Lt/2e−imLt

[
1± e−��t/2ei�mt] , (1.14)

where �� ≡ �S −�L and �m ≡ mL−mS , each defined to be a positive quantity.
From such experiments, the very precise value

�mexpt = (3.484± 0.006)× 10−12 MeV (1.15)

has been obtained.
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Fig. IX–1 Box (a),(b) and other contributions to CP violation.

CP-conserving mixing

There are two main classes of contributions, associated respectively with the short-
distance box diagrams of Fig. IX–1(a),(b) and the long-distance contributions like
those in Fig. IX–2,

�mtheory = (�m)SD
theory + (�m)LD

theory . (1.16a)

We shall consider the first of these here, the short distance component

(�m)SD
theory = 2Re

〈
K0
∣∣Hbox

w

∣∣ K̄0
〉
. (1.16b)

Determining (�m)SD
theory has long been, and continues to be, a significant topic in

kaon physics. It involves almost all the field theory tools we describe in this book.
Our discussion will of necessity include some advanced features in order to present
a realistic picture of the current state of the art.

The construction of Hbox
w follows a standard procedure: to a given order of QCD

perturbation theory, first specify the Wilson coefficient at the scale μ=MW , then
use the renormalization group (RG) to evolve down to a hadronic scale μ < mc

and finally match onto the effective three-quark (i.e. u, d, s) theory. The result of
this is

Hbox
w = C(μ)O�S=2, (1.17)

where O�S=2 is the local four-quark operator

O�S=2 = d̄γμ(1+ γ5)s d̄γ
μ(1+ γ5)s, (1.18)

and C(μ) is the corresponding Wilson coefficient,

K0 K0

(a)

Hw

X X X X
K0 K0π0,η,η′

Hw Hw

π

π
Hw

(b)

Fig. IX–2 Long-distance contributions to K0 − K̄0 mixing.
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264 Mass mixing and CP violation

C(μ) = G2
F

16π2

[
ξ 2
c H(xc)m

2
cηcc + ξ 2

t H (xt )m
2
t ηtt + 2ξcξt Ḡ(xc, xt )m

2
cηct

]
b(μ) ,

(1.19)

with ξi ≡ V ∗idVis (i= c, t) and xi ≡m2
i /M

2
W . The above expression for C(μ) is

more complicated than the C±(μ) encountered in our earlier �S= 1 discussion
(cf. Eq. (VIII–3.11)) because the box amplitude for �S= 2 has loop contribu-
tions from all the u, c, t quarks. Actually, Eq. (1.19) has already been simplified
in that CKM unitarity has allowed removal of ξu and the tiny mass of the u quark
has been neglected with respect to the heavy-quark masses mc,mt . The quanti-
ties H(xt),H(xc) and Ḡ(xc, xt ) in Eq. (1.19) are so-called Inami–Lim functions
[InL 81] that describe the quark-level loop amplitudes of Fig. IX–1(a),(b) in the
no-QCD limit,

H(x) =
[

1

4
+ 9

4

1

1− x −
3

2

1

(1− x)2
]
− 3

2

x2

(1− x)3 ln x,

Ḡ(x, y) = y

[
− 1

y − x
(

1

4
+ 3

2

1

1− x −
3

4

1

(1− x)2
)

ln x

+ (y ↔ x)− 3

4

1

(1− x)(1− y)
]
. (1.20)

This leaves in Eq. (1.19) the factors ηcc, ηtt , ηct , and b(μ). These arise from
calculating perturbative corrections to Hbox

w .2 Such corrections will contain depen-
dence on both the scale (μ) and renormalization scheme (say, the NDR approach,
described in App. C–5). These cannot be present in the full amplitude and must be
cancelled by analogous dependence in the matrix element 〈K0

∣∣O�S= 2
∣∣ K̄0〉. For

convenience, the scale and scheme dependence present in the Wilson coefficient
C(μ) is placed into the factor b(μ), which for K0–K̄0 mixing has the perturbative
form

b(μ) = αs(μ)
−2/9

∞∑
n=0

J (n)
αs(μ)

4π

n

= αs(μ)
−2/9

[
1+ αs(μ)

4π
J (1) + · · ·

]
.

(1.21)

Scheme dependence first appears in J (1) via the anomalous dimension γ (1) of oper-
ator O�S= 2,

2 It is customary to classify corrections according to the order of QCD perturbation theory used to determine
them, e.g. ’leading’ (LO), ’next-to-leading’ (NLO), ’next-to-next-to leading’ (NNLO) and so on. It is
disturbing that ηNNLO

cc � 1.87 is about 36% larger than ηNLO
cc � 1.38. This is an unexpectedly large result,

one which warrants further study.
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IX–1 K0–K̄0 mixing 265

J (1) = γ (0)β(1)

2β2
0

− γ (1)

2β(0)
= 12 · 153− 19nf

(33− 2nf )2
− 1

6
· 4nf − 63

33− 2nf
, (1.22)

shown here for nf flavors and in NDR renormalization. The above expression for
b(μ) serves at the same time to define the perturbative factors ηcc, ηtt , and ηct . For
completeness, we display the most recent determinations [BrG 12] of the {ηi} (with
perturbative order shown as well),

ηNNLO
cc = 1.87(76) ηNLO

t t = 0.5765(65) ηNNLO
ct = 0.496(47). (1.23)

The determination of 〈K0
∣∣O�S= 2(μ)

∣∣ K̄0〉 at a hadronic scale μ < mc involves
nonperturbative physics, so its evaluation by analytical means is problematic. It has
become standard to express this quantity relative to its vacuum saturation value and
introduce a parameter BK as

〈
K0
∣∣O�S=2(μ)

∣∣ K̄0
〉 = 16

3
F 2
Km

2
K BK(μ), (1.24)

with FK = 110.4±0.6 MeV.3 There has been substantial progress in the calculation
of nonperturbative quantities such as BK using lattice QCD methods. The scale-
and scheme-independent version is defined as

B̂K = b(μ)BK(μ) (1.25)

and the value used in [BrG 12] is

B̂K = 0.737± 0.020. (1.26)

Finally, given present values for the CKM elements and the t-quark mass, the
most important contribution to the real part of Hbox

w is found to be from the c
quark. In view of this, and noting that H(xc) � 1 (cf. Eq. (1.20)), we then have

Re Hbox
w � G2

F

16π2
m2
c Re

(
V ∗cdVcs

)2
ηNNLO
cc b(μ) O�S=2. (1.27)

At this point, we have the ingredients for determining (�m)SD
theory and one obtains

[BrG 12]

(�m)SD
theory = (3.1± 1.2)× 10−15 GeV, (1.28)

which is consistent with the value cited for �mexpt in Eq. (1.15) within the quoted
uncertainty.

3 The reader should be wary of occasional notational confusion between FK and fK =
√

2FK .
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Fig. IX–3 Mechanisms for CP violation.

IX–2 The phenomenology of kaon CP violation

The ππ final state of kaon decay is even under CP provided the strong interactions
are invariant under this symmetry. For the π0π0 system, this is clear since π0 is
itself a CP eigenstate, CP|π0〉= − |π0〉, and the two pions must be in an S-wave
(
= 0) state,

CP|π0π0〉 = (−1)2(−1)
|π0π0〉 = +|π0π0〉. (2.1)

The corresponding result for charged pions reflects the fact that π+ and π− are CP-
conjugate partners, CP|π±〉= − |π∓〉. We have seen that if CP were conserved,
the two neutral kaons would organize themselves into CP eigenstates, with only
KS decaying into ππ . Alternatively, KL decays primarily into the πππ final state,
which is CP-odd if the pions are in relative S waves. The observation of both
neutral kaons decaying into ππ is then a signal of CP violation.

There can be two sources of CP violation in KL → ππ decay. We have already
seen that K0−K̄0 mixing can generate a mixture of the CP eigenstates in phys-
ical kaons due to CP violation in the mass matrix. There also exists the possi-
bility of direct CP violation in the weak decay amplitude, such that the CP-odd
kaon eigenstate |K0−〉 makes a transition to ππ . These two mechanisms are pic-
tured in Fig. IX–3. The Kππ decay amplitudes have already been written down
in Eq. (VIII–4.1) in terms of real-valued moduli A0, A2, and pion–pion scatter-
ing phases δ0, δ2. This decomposition is a consequence of Watson’s theorem, and
relies in part upon the assumption of time-reversal invariance. However, if direct
CP violation occurs, A0 and A2 can themselves become complex-valued,

A0 ≡ |A0|eiξ0, A2 ≡ |A2|eiξ2, (2.2)

with CP violation in the decay amplitude being characterized by the phases ξ0 and
ξ2. Consequently, the K0 → ππ and K̄0 → ππ decay amplitudes assume the
modified form

AK0→π+π− = |A0|eiξ0eiδ0 + |A2|√
2
eiξ2eiδ2,

AK̄0→π+π− = −|A0|e−iξ0eiδ0 − |A2|√
2
e−iξ2eiδ2 . (2.3)
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IX–2 The phenomenology of kaon CP violation 267

Using the definitions of KL and KS in Eq. (1.13), a straightforward calculation
leads to the following measures of CP violation:〈

π+π−|Hw|KL

〉
〈π+π− |Hw|KS〉 ≡ η+− ≡ ε + ε′,

〈
π0π0|Hw|KL

〉〈
π0π0|Hw|KS

〉 ≡ η00 ≡ ε − 2ε′, (2.4)

where

ε = ε̄ + iξ0,

ε′ = iei(δ2−δ0)

√
2

∣∣∣∣A2

A0

∣∣∣∣ (ξ2 − ξ0) = iei(δ2−δ0)

√
2

∣∣∣∣A2

A0

∣∣∣∣ ( Im A2

Re A2
− Im A0

Re A0

)
. (2.5)

The expression for ε can be simplified by approximating the numerical value
�m/��= 0.475± 0.001 by�m/��� 1/2. This yields the approximate relation,

i

�m+ i

2
��

� eiπ/4√
2

1

�m
, (2.6)

which we shall use repeatedly in the analysis to follow. In addition, since the rate
for K → ππ is much larger than that for K → πππ , and K0 → ππ is in turn
dominated by the I = 0 final state because of the �I = 1/2 rule, we have

Im �12 � ξ0�S � 2ξ0�m. (2.7)

The above relations allow us to write

ε = ε̄ + iξ0 � ei
π
4√
2

(
Im M12

�m
− iξ0

)
+ iξ0

= ei
π
4√
2

(
Im M12

�m
+ ξ0

)
= ei

π
4√
2

(
Im M12

2Re M12
+ Im A0

Re A0

)
,

ε′ = iω√
2
ei(δ2−δ0)(ξ2 − ξ0) = iωei(δ2−δ0)

√
2

(
ImA2

ReA2
− ImA0

ReA0

)
, (2.8)

where ω ≡ ReA2/ReA0 � 1/22. All CP-violating observables must involve an
interference of two amplitudes. In Eq. (2.8), the quantity ε expresses the interfer-
ence of K0 → ππ with K0 → K̄0 → ππ , while ε′ involves interference of the
I = 0 and I = 2 final states.

The formulae for ε and ε′ exhibit an important theoretical property. Since the
choice of phase convention for any meson M is arbitrary, its state vector may be
modified by the global strangeness transformation |M〉 → eiλS |M〉. For the K̄0

and K0 states, this becomes

|K0〉 → eiλ|K0〉, |K̄0〉 → e−iλ|K̄0〉, (2.9)

which has the effect,
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268 Mass mixing and CP violation

Im AI

Re AI
→ Im AI

Re AI
+ λ, Im M12

Re M12
→ Im M12

Re M12
− 2λ. (2.10)

We see that the values of ε and ε′ are left unchanged. Various phase conventions
appear in the literature. In the Wu–Yang convention, λ is chosen so that the A0

amplitude is real-valued. This is always possible to achieve by properly choosing
the phase of the kaon state. However, it is inconvenient for the Standard Model,
where theA0 amplitude naturally picks up a CP-violating phase. We shall therefore
employ the convention in which no such additional phases occur in the definitions
of the kaon states.

It was in the K → ππ system that CP violation was first observed. The current
status of measurements is

|ε| = (2.228± 0.011)× 10−3,

Re

(
ε′

ε

)
= (1.66± 0.26)× 10−3,

ϕ+− ≡ phase(η+−) = (43.51± 0.05)◦

ϕ00 ≡ phase(η00) = (43.52± 0.05)◦. (2.11)

A violation of CP symmetry has also been observed in the semileptonic decays
of KL and KS . These are related to matrix elements of the weak hadronic currents.
Since K0 must always decay into e+νeπ− while K̄0 goes to e−ν̄eπ+, we have

AKL→π−e+νe =
1+ ε̄√

2
AK0→π−e+νe ,

AKL→π+e−ν̄e =
1− ε̄√

2
AK̄0→π+e−ν̄e . (2.12)

If the semileptonic decays proceed as in the Standard Model, there is no direct CP
violation in the transition amplitude, so that

�KL→π−e+νe
�KL→π+e−ν̄e

= 1+ 2Re ε̄

1− 2Re ε̄
� 1+ 4Re ε̄. (2.13)

Since Re ε̄=Re ε, the above asymmetry is sensitive to the same parameter as
appears in the KL → ππ studies. Here, measurement gives

Re ε = (1.596± 0.013)× 10−3 = |ε| cos(44.3± 0.8)◦, (2.14)

which is consistent with the experimental values from K → ππ .
Finally, precision experiments also probe the CPT transformation. For example,

two such predictions, involving kaon masses (mK0 =mK̄0 ) and phases (ϕ+− =ϕ00

up to very small corrections from ε′), are seen to be consistent with existing data,
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s s dww d

u,c,t u,c,t
γ, Ζ0

(a) (b)
Q Q Q Q

G

Fig. IX–4 (a) Penguin and (b) electroweak-penguin contributions to CP violation
in �S= 1 transitions.

|mK0 −mK̄0 |
mK0

≤ 8× 10−19,

ϕ00 − ϕ+− = (0.2± 0.4)◦. (2.15)

Further study of CPT invariance is left to Prob. IX–2.

IX–3 Kaon CP violation in the Standard Model

After diagonalization, there can remain a single phase in the CKM matrix. This
phase generates the imaginary parts of amplitudes, which are required for CP vio-
lation. It is a physical requirement that results be invariant under rephasing of the
quark fields. As a consequence, all observables must be proportional to

Im �(4)=A2λ6η= c1c2c3s
2
1s2s3sδ, (3.1)

written in the notation of Sect. II–4. This shows that all CP-violating signals must
vanish if any of the CKM angles vanish. We shall now study the path whereby this
phase is transferred from the lagrangian to experimental observables. For kaons,
we have seen that the relevant amplitudes are those for K0–K̄0 mixing (�S= 2)
and for K → ππ decays (�S= 1). Tree-level amplitudes in kaon decay can never
be sensitive to the full rephasing invariant, so that one must consider loops. Typical
diagrams are displayed in Fig. IX–4.

Experiment can help in simplifying the theoretical analysis. Note that ε′ is sensi-
tive to �S= 1 physics through the penguin diagram [GiW 79], while ε is sensitive
to�S= 2 mass-matrix physics as well as to�S= 1 effects. However, since exper-
iment tells us that |ε| 
 |ε′|, it follows that the �S= 1 contributions to ε must be
small. Likewise, the long-distance contributions of Fig. IX–2 and the contribution
of Fig. IX–1(d) must both be small because each also involves the �S= 1 interac-
tion. This leaves the box diagrams of Fig. IX–1(a),(b) as the dominant component
of ε. Moreover, since the CKM phase δ is associated with the heavy-quark cou-
plings, only the heavy-quark parts of the box diagrams are needed. Hence ε is very
clearly short-distance dominated.
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Analysis of |ε|
The evaluation of ε follows directly from Eq. (2.8). To begin, we shall ignore the
tiny ImA0/ReA0 ∼ O(10−5) dependence therein.4 This leaves us with the issue
of calculating Im M12. From the discussion of the ‘box’ hamiltonian Hbox

w given in
Sect. IX–1, we have

Im M12 = G2
F

3π2
F 2
KmKB̂KA

2λ6η̄

× [ηccm2
cH(xc)− ηttm2

t H (xt )A
2λ4(1− ρ̄)− ηctm2

cḠ(xc, xt )
]
. (3.2)

Some CKM-related relations and definitions useful in obtaining the above form are

Re ξc = −λ
(

1− λ2

2

)
, Re ξt = −λ

(
1− λ2

2

)
A2λ4 (1− ρ̄) ,

Im ξc = −Im ξt = −ηA2λ5,

ρ̄ ≡ ρ

(
1− λ2

2

)
, η̄ ≡ η

(
1− λ2

2

)
.

From Eq. (2.8) and Eq. (3.2), we obtain the Standard Model prediction,

|ε|SM = G2
F

3
√

2π2

F 2
KmKB̂KA

2λ6η̄

�mK

× [ηccm2
c − ηttm2

t H (xt )A
2λ4(1− ρ̄)− ηctm2

cḠ(xc, xt )
]
, (3.3)

roughly in accord with the experimental value, given the uncertainties in several of
the above factors, when lattice determinations of the B̂K parameter are used.

Analysis of |ε′|
The importance of ε′ lies in the fact that it proves that CP violation also occurs
in the direct �S= 1 weak transition, which is a hallmark of the Standard Model’s
pattern of CP breaking. For this process, the CP-violating phases from the CKM
elements can occur only in loop diagrams, and these appear in the penguin diagram
and in the electroweak penguin process in which the gluon is replaced by a photon
or a Z0 boson, as shown in Fig. IX–4. At first sight, it appears surprising that the
electroweak penguin plays any significant role, as it is suppressed by a power of α
compared to the gluonic penguin. However, recall from Eq. (2.8), that ε′ measures
the relative phase difference of the K → ππ amplitudes A0 and A2

|ε′| = ω√
2

∣∣∣∣ ImA2

ReA2
− ImA0

ReA0

∣∣∣∣ � 0.032

∣∣∣∣ ImA2

ReA2
− ImA0

ReA0

∣∣∣∣ . (3.4)

4 Besides, the combination ImA0/ReA0 also contributes to ε′ (as seen in Eq. (2.8)) and since |ε′| � |ε|, the
contribution of this ratio to ε is presumably ignorable.
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The gluonic penguin only contributes an imaginary part to A0 because its effect
is purely �I = 1/2. The electroweak penguin involves an extra factor of the elec-
tric charge Q= 1

2λ3 + 1
2
√

3
λ8, which means that the corresponding operator has

both �I = 1/2, 3/2 components and can contribute an imaginary part to A2.
Because the real part of A2 is much smaller than that of A0, by a factor of ω ≡
ReA2/ReA0 ∼ 1/22, the effect of the electroweak penguin is enhanced by the
small denominator. However, while both diagrams make important contributions,
it does appear that the gluonic penguin is the larger effect.

The ingredients to ε′ can be expressed numerically [CiFMRS 95] at the scale
μ= 2 GeV in the MS–NDR scheme as

ε′

ε
= 2 · 10−3

(
Im (V ∗tdVts)

1.3× 10−3

) [
2.0 GeV−3〈(ππ)I=0 |O6|K0〉2 GeV(1−�IB)

− 0.5 GeV−3〈(ππ)I=2 |O8|K0〉2 GeV − 0.06
]
. (3.5)

Here, we see the primary dependence of the gluonic penquin effect in the matrix
elements of the penguin operator O6, while the electroweak-penguin (EWP here-
after) operator isO8. These operators refer back to the decomposition of Eq. (VIII–
3.31). The factor �IB describes isospin breaking.

As we mentioned in Sect. VIII–4, present lattice methods are able to calcu-
late the A2 amplitude with reasonable precision, while the isospin-zero final-state
amplitude A0 remains uncalculable. This means that the EWP contribution can be
obtained, with the result [Bl et al. 12]

Re

(
ε′

ε

)
EWP

= −(6.25± 0.44stat ± 1.19syst)× 10−4, (3.6)

which has the opposite sign from the experimental result and is about one third
the magnitude. A chiral analysis that we will describe shortly agrees with this.
This implies that the phase due to the gluonic penguin ImA0/ReA0 must be the
larger effect and must have the same sign as the experimental determination. This
seems reasonable in estimates which have been made, as discussed in [CiENPP 12].
However, it means that we do not yet have a precise prediction for ε′ within the
Standard Model.

Chiral analysis of (ε′/ε)EWP

The chiral symmetry approach to low-energy hadron dynamics emphasized earlier
in this book can be used to analyze the electroweak-penguin contribution to ε′/ε in
the chiral limit.
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lim
p=0

〈(ππ)I=2 |O8|K0〉μ = − 2

F
(0)
π

[
1

3
〈0|Q1|0〉μ + 1

2
〈0|Q8|0〉μ

]
� − 1

F
(0)
π

〈0|Q8|0〉μ (3.7a)

where Q8 is the four-quark operator

Q8 ≡ q̄γ μλa
τ3

2
qq̄γμλ

a τ3

2
q − q̄γ μγ5λ

a τ3

2
qq̄γμγ5λ

a τ3

2
q, (3.7b)

and, for notational simplicity, we have suppressed dependence on a second four-
quark operator 〈0|Q1|0〉μ since 〈0|Q8|0〉μ 
 〈0|Q1|0〉μ [CiDGM 01].5 This rela-
tion can be found either by constructing effective lagrangians or by use of the
soft-pion theorem of App. B–3.

Thus, a chiral estimate of the EWP part of ε′/ε amounts to determining the
vacuum matrix element of Q8. It turns out that such information is obtainable from
the large Q2 behavior of V − A correlators measured in τ decay (cf. Sect. V–3),

��(Q2) ≡ (�V,3 −�A,3
)
(Q2). (3.8)

The operator-product expansion (OPE) reveals that ��(Q2) obeys the asymptotic
behavior

��(Q2) ∼ 1

Q6

[
a6(μ)+ b6(μ) ln

Q2

μ2

]
+O(Q−8), (3.9a)

where, from a two-loop study [CiDGM 01], we have

a6(μ) = 2π〈0|αsQ8|0〉μ + 25

4
〈0|α2

sQ8|0〉μ + · · · ,
b6(μ) = −〈0|α2

sQ8|0〉μ + · · · , (3.9b)

where the ellipses represent higher-order terms in the OPE. Thus, the needed infor-
mation (i.e. 〈0|Q8|0〉μ) is contained in the large energy component of��(Q2), but
how can we access it? This problem has been solved in two different papers, which
use two alternative approaches. In the first of these [CiDGM 01], one employs sum
rules like

〈0|Q8|0〉μ =
∫ ∞

0
ds s2 μ2

s + μ2
�ρ(s)+ · · · , (3.10)

where the ellipses denote contributions from d > 6 terms in the OPE. This approach
yields a determination

[
ε′/ε

](0)
EWP = (−22± 7)× 10−4, having a 32% uncertainty.

The superscript indicates working in the chiral limit of massless u, d, s quarks. A
second method [CiGM 03], which analyzes tau decay spectral functions by using a
finite-energy sum rule (FESR), leads to

[
ε′/ε

](0)
EWP = (−15.0± 2.7)×10−4, having

5 The effect of 〈0|Q1|0〉μ is, of course, included in the full analysis of [CiDGM 01].
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an 18% percent uncertainty. Upon including chiral corrections, the physical result[
ε′/ε

]
EWP = (−11.0± 3.6) × 10−4 is obtained. Together with the lattice evalua-

tion quoted in Eq. (3.6), these evaluations firmly imply that
[
ε′/ε

]
EWP < 0 and

that the QCD penguin effect must be large and positive in order to reproduce the
experimental value for ε′/ε of Eq. (2.11).

IX–4 The strong CP problem

The possibility of a θ term in the QCD lagrangian raises potential problems (see
Sect. III–5). For θ �= 0, QCD will in general violate parity and, even worse, time-
reversal invariance. The strength of T violation (and hence, by the CPT theorem,
CP violation) is known to be small, even by the standards of the weak interaction.
This knowledge comes from both the observed KL → 2π decay and bounds on
electric dipole moments. From these it becomes clear that QCD must be T invari-
ant to a very high degree. However, there is nothing within the Standard Model
which would force the θ parameter to be small; indeed, it is a free parameter lying
in the range 0 ≤ θ ≤ 2π . The puzzle of why θ � 0 in Nature is called the strong
CP problem.

One is tempted to resolve the issue with an easy remedy first. If QCD were the
only ingredient in our theory, we could remove the strong CP problem by impos-
ing an additional discrete symmetry on theQCD lagrangian, the discrete symmetry
being CP itself. This wouldn’t really explain anything but would at least reduce a
continuous problem to a discrete choice. In reality, this will not work for the full
Standard Model since, as we have seen, the electroweak sector inherently violates
CP. It would thus be improper to impose CP invariance upon the full lagrangian.
Moreover, even if one could set θbare= 0 inQCD, electroweak radiative corrections
would generate a nonzero value. These turn out to occur only at high orders of per-
turbation theory, and are expected to be divergent by power-counting arguments,
although they have not been explicitly calculated. This divergence is not a funda-
mental problem because one could simply absorb θbare plus the divergence into a
definition of a renormalized parameter θren, which could be inferred from experi-
ment. However, we are then back to an arbitrary value of θren and to the problem of
why θren is small.

The parameter θ̄

The situation is actually worse than this in the full Standard Model, as the quark
mass matrix can itself shift the value of θ by an unknown amount. Recall that
CP violation in the Standard Model arises from the Yukawa couplings between
the Higgs doublet and the fermions. When the Higgs field picks up a vacuum
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expectation value, these couplings produce mass matrices for the quarks, which
are neither diagonal nor CP-invariant. The mass matrices are diagonalized by sep-
arate left-handed and right-handed transformations, and CP violation is shifted to
the weak mixing matrix. However, because different left-handed and right-handed
rotations are generally required, one encounters an axial U(1) rotation in this
transformation to the quark mass eigenstates and, as discussed in Sect. III–5, this
produces a shift in the value of θ . Let us determine the magnitude of this shift.
Denoting by primes the original quark basis, one has the transformation to mass
eigenstates given by (cf. Eqs. II–4.5,4.6)

m = S
†
Lm′SR, ψL = S

†
Lψ

′
L, ψR = S

†
Rψ

′
R. (4.1)

Here, we have combined the u and d mass matrices into a single mass matrix.
Expressing SL,R as products of U(1) and SU(N) factors,

SL = eiϕLSL, SR = eiϕRSR, (4.2)

with SL, SR in SU(N), one obtains an axial U(1) transformation angle of ϕR −
ϕL. From the discussion of Sect. III–5, this is seen to lead to a change in the θ
parameter,

θ → θ = θ + 2Nf (ϕL − ϕR) , (4.3)

where Nf = 6 for the three-generation Standard Model. However, noting that the
final mass matrix m is purely real, we have

arg(det m) = 0 = arg
(

det S†
L det m′ det SR

)
= arg

(
det S†

L

)
+ arg

(
det m′)+ arg (det SR)

= 2N (ϕR − ϕL)+ arg
(
det m′) , (4.4)

where we have used the SU(N) property, det SR = det SL= 1. The resultant θ
parameter is then

θ = θ + arg
(
det m′) , (4.5)

with m′ being the original nondiagonal mass matrix. The real strong CP problem
is to understand why θ is small.

One possible solution to the strong CP problem occurs if one of the quark masses
vanishes. In this case, the ability to shift θ by an axial transformation would allow
one to remove the effect of θ by performing an axial phase transformation on the
massless quark. Equivalently stated, any effect of θ must vanish if any quark mass
vanishes. Unfortunately, phenomenology does not favor this solution. The u quark
is the lightest, but a value mu �= 0 is favored.
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Connections with the neutron electric dipole moment

The θ term is not the source of the observed CP violation in K decays. This can
be seen because it occurs in a �S= 0 operator, and while this may ultimately
generate effects in �S= 1 processes, its influence is stronger in the �S= 0 sector.
In particular, it generates an electric dipole moment de for the neutron. Since no
such dipole moment has been detected, one can obtain a bound on the magnitude
of θ .

To determine the effect of θ̄ , it is most convenient to use a chiral rotation to shift
the θ dependence back into the quark mass matrix. A small axial transformation
produces the modified mass matrix

Lmass = ψ̄

⎛⎝mu

md

ms

⎞⎠ψ + iηψ̄T γ5ψ ≡ ψ̄LM̃ψR + ψ̄RM̃†ψL, (4.6)

where η is a small parameter proportional to θ having units of mass, and T is
a 3 × 3 hermitian matrix. Consistency requires T to be proportional to the unit
matrix. If this were not the case, and instead we wrote T ≡ 1+λiTi/2, the effective
lagrangian would start out with a term linear in the meson fields,

Leff ∼ iη Tr
(
T U † − UT †

) = 2
η

Fπ
(T3π0 + T8η8 + · · · ) , (4.7)

rather than the usual quadratic dependence. The vacuum would then be unstable
because it could lower its energy by producing nonzero values of, say, the π0

field. Thus, to incorporate θ-dependence without disturbing vacuum stability, one
chooses T = 1. The act of rotating away any dependence on θ produces a nonzero
value of arg(det M̃), and also determines η,

θ = arg(det M̃) = arg [(mu + iη) (md + iη) (ms + iη)] ,
η � θ

mumdms

mumd +mums +mdms

(for small η), (4.8)

such that the mass terms become

Lmass = muūu+mdd̄d +mss̄s

+ iθ mdmdms

mumd +mums +mdms

(
ūγ5u+ d̄γ5d + s̄γ5s

)
. (4.9)

The last term is the CP-violating operator of the QCD sector. Note that, as
expected, θ vanishes if any quark is massless.
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A nonzero neutron electric dipole moment de requires both the action of the
above CP-odd operator and that of the electromagnetic current,

deū(p′)σμνqνγ5u(p ) =
∑
I

〈n(p′) ∣∣LCP-odd
mass

∣∣ I 〉 1

En − EI 〈I
∣∣J em
μ

∣∣ n(p )〉, (4.10)

where q =p′ − p and we have inserted a complete set of intermediate states {I } in
the neutron-to-neutron matrix element. For intermediate baryon states, the matrix
elements of ψ̄γ5ψ are dimensionless numbers of order unity and magnetic moment
effects are of order the nucleon magneton, μn. Thus, we find for de,

de � θ
mumdms

mumd +mums +mdms

eμn

�M
, (4.11)

where �M is some typical energy denominator. Using �M = 300 MeV, we obtain

de ∼ θ × 10−15 e-cm. (4.12)

Far more sophisticated methods have been used to calculate this, with results that
have a spread of values [EnRV 13]. Our simple estimate is near the average. In
explicit calculations, some subtlety is required because one must be sure that the
evaluation correctly represents the U(1)A behavior of the theory. However, the
precise value is not too important; the significant fact is that bounds on de<∼3 ×
10−26 e-cm require θ to be tiny, θ <∼10−11.

The strong CP problem does not have a good resolution within the Standard
Model. It would appear that the abnormally small value of θ , and of the cosmo-
logical constant as well, are indications that more physics is required beyond that
contained in the Standard Model.

Problems

(1) Strangeness gauge invariance
(a) Physics must be invariant under a global strangeness transformation |M〉 →

exp(iλS)|M〉, where λ is arbitrary. Explain why this is the case.
(b) Demonstrate that such a transformation has the effect

ImAI

ReAI
→ ImAI

ReAI
+ λ, ImM12

ReM12
→ ImM12

ReM12
− 2λ,

as claimed in Eq. (2.10), and that, while unphysical quantities such as ε̄, ξ0

are affected by such a change, physical parameters such as ε, ε′ are not.
(2) Neutral kaon mass matrices and CPT invariance

Some of the ideas discussed in this chapter can be addressed in terms of simple
models of the neutral kaon mass matrix M which appears in Eq. (1.2).
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(a) Consider the following CP-conserving parameterization as defined in the
(K0, K̄0) basis:

M0 =
(
m0 �

� m0

)
,

where � is real-valued. Determine the basis states (K−,K+) in which
M0 → M± becomes diagonal and obtain numerical values for m0, �.

(b) Working in the (K−,K+) basis, extend the model of (a) to allow for CP
violation by introducing a real-valued parameter δ,

M± =
(
m− 0
0 m+

)
→ M±′ =

(
m− −iδ
iδ m+

)
,

and assume there is no direct CP violation. This mass matrix corresponds
to the superweak (SW ) model. By expressing M±′ in the (K0, K̄0) basis,
use the analysis of Sects. IX–1,2 to predict ϕ(SW)

ε ≡ phase ε and determine
δ from the measured value of |ε|.

(c) Finally, extend the model in (b) to

M±′′ =
(
m− χ

χ∗ m+

)
,

where Re χ is a T -conserving, CP-violating, and CPT-violating parameter.
Show that the states which diagonalize M±′′ are

|KS〉 � |K+〉 − χ

D |K−〉,

|KL〉 � |K−〉 + χ∗

D |K+〉,
where D ≡ (mL−mS)/2+ i�S/4. Then evaluate η+− and η00, allowing for
the presence of direct CP violation (i.e. ε′ �= 0), and derive the following
relation between phases,

|χ |
(

2

3
ϕ+− + 1

3
ϕ00 − ϕ(SW)

ε

)
= 1

2mK0
· |mK

0 −mK0 |
mL −mS

sinϕ(SW)
ε .

The result |m
K

0−mK0 |/mK0 < 5×10−18, which follows from this relation,
is the best existing limit on CPT invariance.
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