ON A SUM OF DIVISORS

HISASHI YOKOTA

ABSTRACT. Let l(N, r) be the minimum number of terms needed to express r as a sum of distinct divisors of N. Let $l(N) = \max\{l(N, r) : 1 \le r \le N\}$. Then for Vose's sequence $\{N_k\}$, $l(N_k) \simeq \sqrt{\log N_k}$, improving the result of M. Vose.

1. Introduction. For N a positive integer, we denote by l(N, r) the minimum number of terms needed to express r as a sum of distinct divisors of N. Let $l(N) = \max\{l(N, r) : 1 \le r \le N\}$. Then it is not hard to see that l(N) is defined for all N with the property $d_{j+1} \le \sum_{i=1}^{j} d_i + 1$, where $1 = d_1 < d_2 < \cdots < d_{\tau} = N$ are the divisors of N. For those N having the above property, we are interested in the behavior of l(N). Note that if l(N) is defined, then $l(N) \le \log N / \log 2$. First question arises here is the existence of N satisfying $l(N) = o(\log N)$. Erdős [1, 2] answered this by showing for N = n!

$$l(N) = l(n!) \le n = O(\log N / \log_2 N)$$

and conjectured

 $l(n!) = O(\log_2 n!).$

Furthermore, he asked the existence of N satisfying

$$l(N) = o(\log N / \log_2 N).$$

Vose [5] answered the latter question by constructing a sequence $\{N_k\}$ of positive integers satisfying

$$l(N_k) = O(\sqrt{\log N_k}),$$

and currently this is the best bound known for all sequences $\{N_k\}$ of positive integers. Tenenbaum and the author [4] were able to show that for N = n!

$$l(N) = l(n!) = n / (\log n)^{\frac{1}{2} - \varepsilon} = o(\log N / \log_2 N).$$

In this article, we first characterize a necessary condition for N to have $l(N) = o(\log N / \log_2 N)$ and then show the bound $l(N_k) = O(\sqrt{\log N_k})$ for the Vose's sequence $\{N_k\}$ can not be improved.

Received by the editors January 24, 1991; revised January 29, 1992.

AMS subject classification: 11D85, 11D68.

[©] Canadian Mathematical Society 1992.

HISASHI YOKOTA

2. Main theorems. Before stating results, we establish some notation and terminology. We use the standard notations f = O(g) and $f \ll g$ to mean that |f| < Cg for some positive constant C. The expression f = o(g) means that $f/g \rightarrow 0$, and $f \asymp g$ means that f is of the same order of magnitude as g. As usual, we let \log_j denote the *j*th-fold iterated logarithm. For real x, 1 < x < N, we let $d^-(x)$ and $d^+(x)$ be consecutive divisors of N such that $d^-(x) \le x < d^+(x)$.

By Vose's sequence $\{N_k\}$, we mean by the following: $N_k = 2^{2\alpha k^2} \prod_{l=2}^k p_l^2$, where $p_2 < p_3 < \cdots < p_k$ are odd primes such that

- (1) $\max_{\sqrt{N_{k-1}} < i < \sqrt{N_k}} (\log d^+(i) \log d^-(i)) \ll (2/3)^k$
- (2) $\log p_l \simeq l$
- (3) α may be any sufficiently large integer.

THEOREM 1. Let $\{N_k\}$ be a sequence of positive integers satisfying the following conditions:

1) $N_1 = 1, N_k | N_{k+1}, (k = 1, 2, ...), \log_2 N_k \ll \log k$

2)
$$\max_{1 \le i \le \sqrt{N_{k_0}}} \left(1 - \frac{d(i)}{d^+(i)}\right) \le \frac{1}{2}$$

3) $\max_{\sqrt{N_k} < i \le \sqrt{N_{k+1}}} (d^+(i) - i) \le i\varepsilon_k \text{ for } k \ge k_0, \text{ where } \varepsilon_k = \exp\{-(\log k)^\beta\} \text{ with } 0 < \beta < \log_2 N_k / (\log_3 N_k - \log 2).$

Then

$$l(N_k) \ll \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}.$$

In Theorem 1, the upper bound of l(N) is heavily dependent on the existence of a divisor of N in the small interval near \sqrt{N} . On the other hand, in the following theorem, we obtain the lower bound of l(N) in terms of the number of divisors of N.

THEOREM 2. For all N that defines l(N),

$$l(N) \gg \frac{\log N}{\log \tau(N)} \Big(1 + \frac{\log_2 N - \log_2 \tau(N)}{2 \log \tau(N)} \Big).$$

With Theorem 1, 2, we can show that the bound $l(N_k) = O(\sqrt{\log N_k})$ for Vose's sequence $\{N_k\}$ can not be improved. In other words, the algorithm used to obtain the upper bound of $l(N_k)$ where $\{N_k\}$ is Vose's sequence is best possible.

COROLLARY 1. Let $\{N_k\}$ be Vose's sequence. Then

$$l(N_k) \asymp \sqrt{\log N_k}$$

3. **Proof of theorems.** We start with the proof of Theorem 1. Let *r* be an integer such that $1 \le r \le N_k$. We will construct a strictly decreasing sequence $d_1 > d_2 > \cdots > d_m$ of divisors of N_k such that $r = \sum_{i=1}^m d_i$. Put $r = r_0, r_j = r - \sum_{i=1}^j d_i$ $(j \ge 1)$. Let $Z = \sqrt{N_{k_0+1}}$. Then *r* lies in one of the intervals of the form $(1, Z], (Z, \sqrt{N_k}], (\sqrt{N_k}, N_k/Z], (N_k/Z, N_k]$. We will show that $r_b \le N_k/Z$ with $b \ll 1$. Suppose that $r_0 > N_k/Z$. Otherwise put b = 0. Let d_1 be the largest divisor of N_k not exceeding r_0 . Then by condition (2),

$$r_1=r_0-d_1\leq d_1,$$

and the equality is only possible if r_1 itself is a divisor of N_k . If $r_1 < d_1$, we iterate this procedure and obtain

$$r_b=r-\sum_{i=1}^b d_i\leq \frac{N_k}{Z}.$$

Note that $r_b = r_{b-1} - d_b \leq d_b$ and $b \ll 1$.

We will show that $r_h \leq \sqrt{N_k}$ with $h-b \ll \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}$. Suppose that $r_b > \sqrt{N_k}$. Otherwise put h = b. Since $Z < N_k/r_b < \sqrt{N_k}$, we let m_1 be the unique integer such that

$$\sqrt{N_{m_1}} < \frac{N_k}{r_b} \le \sqrt{N_{m_1+1}}.$$

Note that $k_0 \le m_1 < k$. Now by condition (3), we have

$$d^+\left(\frac{N_k}{r_b}\right) \leq \frac{N_k}{r_b}(1+\varepsilon_{m_1}).$$

Thus

$$(1-\varepsilon_{m_1})d^+\left(\frac{N_k}{r_b}\right) < \frac{N_k}{r_b} < d^+\left(\frac{N_k}{r_b}\right).$$

Set $d_{b+1} = N_k/d^+(N_k/r_b)$. Then we see that d_{b+1} is a divisor of N_k since $d^+(N_k/r_b)|N_{m_1}|N_k$ by condition (1). Now

$$0 \le r_{b+1} = r - \sum_{i=1}^{b+1} d_i = r_b - d_{b+1}$$
$$\le r_b - r_b(1 - \varepsilon_{m_1})$$
$$= r_b \varepsilon_{m_1}.$$

Note that $d_{b+1} < r_b \le d_b$. If $r_{b+1} \le \sqrt{N_k}$, we put h = b + 1, otherwise we repeat the application of condition (3) and produce

$$d^+\left(\frac{N_k}{r_{b+1}}\right) \leq \frac{N_k}{r_{b+1}}(1+\varepsilon_{m_2})$$

with $d_{b+2} = N_k/d^+(N_k/r_{b+1})$ and $0 \le r_{b+2} = r_{b+1} - d_{b+2} \le r_{b+1}\varepsilon_{m_2} \le r_b\varepsilon_{m_1}\varepsilon_{m_2}$ for some m_2 such that $\sqrt{N_{m_2+1}} > N_k/r_{b+1} > r_b/r_{b+1} > 1/\varepsilon_{m_1}$. Since $\log_2 \sqrt{N_{m_2+1}} \ll \log m_2$ by condition (1), we have

$$\varepsilon_{m_2} = \exp\{-(\log m_2)^{\beta}\} \le \exp\{-\left(\frac{1}{c}\log_2\left(\frac{1}{\varepsilon_{m_1}}\right)\right)^{\beta}\}$$

for some positive constant c. Moreover $d_{b+2} < d_{b+1}$ for $r_{b+1} - d_{b+1} \le -(1 - 2\varepsilon_{m_1})r_b < 0 \le r_{b+1} - d_{b+2}$. Iterating the procedure, we eventually obtain $r_h \le \sqrt{N_k}$. Since $r_{b+j} \le r_b\varepsilon_{m_1}\varepsilon_{m_2}\cdots\varepsilon_{m_j}$ and $k_0 \le m_1 \le m_2 \le \cdots \le m_j \le k$, we estimate h by using the inequality

$$r_{b+j} \leq r_b \gamma_j,$$

where $\gamma_i = \varepsilon_{m_1} \varepsilon_{m_2} \cdots \varepsilon_{m_i}$ satisfies

$$\gamma_{j+1} \leq \gamma_j \exp\left\{-\left(\frac{1}{c}\log_2\left(\frac{1}{\gamma_2}\right)\right)^{\beta}\right\}$$

for some positive constant c. A simple computation yields $\log(1/\gamma_j) \gg j(\log j)^{\beta}$. We note that since $r_b < N_k$, $r_{b+j} \le \sqrt{N_k}$ provided $\log(1/\gamma_j) \ge \log N_k/2$. Now let

$$j_0 = \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}.$$

Then

$$\log j_0 + \beta \log_2 j_0 = \log_2 N_k - \beta (\log_3 N_k - \log 2) + \beta \log_3 N_k$$
$$+ \log \left(1 - \frac{\beta (\log_3 N_k - \log 2)}{\log_2 N_k}\right).$$

Since $0 < \beta < \log_2 N_k / (\log_3 N_k - \log 2)$ by condition (3), we have

$$\log j_0 + \beta \log_2 j_0 \ge \log_2 N_k$$

Thus we have $r_{b+j} \leq \sqrt{N_k}$ with $j \ll \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}$.

We now show similarly that $r_{h+1} \leq Z$ holds with $l \ll \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}$. Let q_1 be defined by $\sqrt{N_{q_1}} < r_h \leq \sqrt{N_{q_1+1}}$. Then $q_1 < k$. If $q_1 \leq k_0$, then we are done, so suppose otherwise. Then we can apply condition (3) to obtain

$$0\leq r_{h+1}=r_h-d_{h+1}\leq r_h\varepsilon_{q_1},$$

for some divisor d_{h+1} of $N_{q_1}|N_k$. As before $d_{h+1} < d_h$ since $r_h - d_h < 0$. Iterating, we obtain

$$r_{h+j} = r_h - \sum_{i=h+1}^{h+j} d_i$$
$$\leq r_h \varepsilon_{q_1} \varepsilon_{q_2} \cdots \varepsilon_{q_i},$$

where $k > q_1 \ge q_2 \ge \cdots \ge q_i \ge k_0$. Suppose that *l* can be defined by the condition

$$r_h \varepsilon_{q_1} \cdots \varepsilon_{q_l} < Z \leq r_h \varepsilon_{q_1} \cdots \varepsilon_{q_{l-1}}.$$

We reindex q_i according to increasing size by letting $\varepsilon_{q_i} = \varepsilon_{p_{l-i+1}}$. Let $\delta_j = \varepsilon_{p_1} \varepsilon_{p_2} \cdots \varepsilon_{p_j}$, where $k_0 \le p_1 \le p_2 \le \cdots \le p_j \cdots \le p_l < k$. Then

$$\delta_{j+1} = \delta_j \varepsilon_{p_{j+1}}$$

= $\delta_j \exp\{-(\log q_{l-j})^{\beta}\}$
 $\leq \delta_j \exp\{-(\log q_{l-j+1})^{\beta}\}$
 $\leq \delta_j \exp\{-\left(\frac{1}{c}\log_2 N_{q_{l-j+1}}\right)^{\beta}\}$

for some positive constant c. Since $\sqrt{N_{q_{l-j+1}}} > r_{h+l-j}$ and

$$r_{h+l} \leq r_{h+l-j}\varepsilon_{q_{l-j+1}}\varepsilon_{q_{l-j+2}}\cdots\varepsilon_{q_l}$$
$$= r_{h+l-j}\varepsilon_{p_j}\cdots\varepsilon_{p_2}\varepsilon_{p_1},$$

we have

$$\delta_{j+1} \leq \delta_j \exp\left\{-\left(\frac{1}{c}\log_2\left(\frac{1}{\delta_j}\right)\right)^{\beta}\right\}$$

for some positive constant c. As above we have $\log(1/\delta_j) \gg j(\log j)^{\beta}$. Since $0 < \beta < \log_2 N_k / (\log_3 N_k - \log 2)$ by condition (3), we have $r_{h+l} \leq Z$ with $l \ll \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}$.

It remains to show that $r_m = 0$ with $m - (h + l) \ll 1$. Since $r_{h+l} < Z$ and $d_{h+l} > r_{h+l}$, we let d_{h+l+1} be the largest divisor of N_k not exceeding r_{h+l} . Then by condition (2), we have

$$r_{h+l+1} = r_{h+l} - d_{h+l+1} \le d_{h+l+1} < r_{h+l} < d_{h+l}.$$

We iterate this procedure and obtain in a finite number of steps

$$r_m = r_{h+l} - \sum_{i=h+l+1}^m d_i = 0.$$

Thus $m - (h + l) \ll 1$. Therefore

$$l(N_k) \ll \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}.$$

PROOF OF THEOREM 2. Let $1 = d_1 < d_2 < \cdots < d_{\tau(N)} = N$ be the divisors of N. Then the number of distinct subset sums

$$S(N) := \operatorname{card}\left\{\sum_{i=1}^{\tau(N)} d_i \varepsilon_i : \varepsilon_i = 0 \text{ or } 1\right\}$$

is at most $2^{\tau(N)}$. Since $2^{\tau(N)} \ge N$, we must have $\tau(N) \ge \log N / \log 2$. Now let $\sigma(i, N)$ denote the number of distinct subset sums of *i* distinct divisors of *N* whose sum is less than *N*. Suppose that we can express all $r, 1 \le r \le N$, as a sum of at most *m* distinct divisors of *N*. Then the maximum number of distinct subset sums we can obtain by using at most *m* distinct divisors of *N* whose sum is less than *N* is

$$\sum_{i=1}^m \sigma(i,N).$$

Since $\sigma(i, N) \leq {\tau(N) \choose i}$ for all i = 1, 2, ..., N, we have

$$\sum_{i=1}^{m} \binom{\tau(N)}{i} \ge \sum_{i=1}^{m} \sigma(i, N) \ge N.$$

Note that we can assume $\tau(N) > 3m - 1$, otherwise $m \gg \log N$ and there is nothing to prove. Then

$$\sum_{i=1}^{m} \binom{\tau(N)}{i} \leq 2\binom{\tau(N)}{m}.$$

Thus

$$2\binom{\tau(N)}{m} \ge N.$$

Now

$$\binom{\tau(N)}{m} = \frac{\tau(N)(\tau(N)-1)\cdots(\tau(N)-m+1)}{m!}$$

$$\leq \frac{(\tau(N))^m}{m!}$$

$$\leq \left(\frac{e\tau(N)}{m}\right)^m \frac{1}{\sqrt{2\pi m}}.$$

Thus we have

$$\left(\frac{e\tau(N)}{m}\right)^m \ge \frac{N\sqrt{2\pi m}}{2} \ge N.$$

Let

$$m_0 = \frac{\log N}{\log \tau(N)} \left(1 + \frac{\log_2 N - \log_2 \tau(N)}{2 \log \tau(N)} \right)$$

Then

$$m_0 \left(\log \tau(N) - \log m_0 + 1 \right) \\= \frac{\log N}{\log \tau(N)} \left(1 + \frac{\log_2 N - \log_2 \tau(N)}{2 \log \tau(N)} \right) \left(\log \tau(N) - \log m_0 + 1 \right) \\\leq \log N \left(1 + \frac{\log_2 N - \log_2 \tau(N)}{2 \log \tau(N)} \right) \left(1 - \frac{\log_2 N - \log_2 \tau(N) - 1}{\log \tau(N)} \right) \\< \log N.$$

Thus

$$m \gg \frac{\log N}{\log \tau(N)} \left(1 + \frac{\log_2 N - \log_2 \tau(N)}{2 \log \tau(N)} \right)$$

Therefore

$$l(N) \gg \frac{\log N}{\log \tau(N)} \left(1 + \frac{\log_2 N - \log_2 \tau(N)}{2 \log \tau(N)}\right)$$

PROOF OF COROLLARY. Since $N_k = 2^{2\alpha k^2} \prod_{l=2}^k p_l^2$, where $p_2 < p_3 < \cdots < p_k$ are odd primes such that

- (1) $\max_{\sqrt{N_{k-1}} < i < \sqrt{N_k}} \left(\log d^+(i) \log d^-(i) \right) \ll (2/3)^k$ (2) $\log p_l \simeq l$
- (3) α may be any sufficiently large integer, we have

$$\log \sqrt{N_k} = \alpha k^2 \log 2 + \sum_{l=2}^k \log p_l \le 2\alpha k^2 \log 2$$

for sufficiently large α . Thus

$$\sqrt{N_k} \leq 2^{2lpha k^2}$$

428

Therefore $\max_{1 \le i \le \sqrt{N_k}} (1 - d^-(i)/d^+(i)) \le 1/2$ is satisfied by the divisors of $2^{2\alpha k^2}$. We also have

$$2\alpha k^2 \leq \log N_k \leq 4\alpha k^2.$$

Thus

$$(\log_2 N_k - \log 4\alpha)/2 \le \log k \le (\log_2 N_k - \log 2\alpha)/2$$

Now by (1)

$$\log\Bigl(\frac{d^+(i)}{d^-(i)}\Bigr) \ll \Bigl(\frac{2}{3}\Bigr)^k,$$

where $\sqrt{N_{k-1}} < i < \sqrt{N_k}$. Since $-\log x \ge 1 - x$, we have

$$1 - \frac{i}{d^+(i)} \le \log\left(\frac{d^+(i)}{i}\right) \ll \left(\frac{2}{3}\right)^k$$

which implies that for some constant c

$$\frac{d^+(i)}{i} - 1 \le \frac{c2^k}{3^k - c2^k}.$$

Let $\varepsilon_k = \exp\{-(\log k)^{\beta}\} = c2^k/(3^k - c2^k)$. Then $(\log k)^{\beta} = k \log(3/2) + \log(1 - c(2/3)^k) - \log c$. Thus

$$\beta = \frac{\log k + \log \left(\log(3/2) + \left(\log \left(1 - c(2/3)^k \right) - \log c \right) / k \right)}{\log_2 k}.$$

Since $(\log_2 N_k - \log 4\alpha)/2 \le \log k \le (\log_2 N_k - \log 2\alpha)/2$, we have

$$\beta \geq \frac{\log_2 N_k - \log 4\alpha + \log \left(\log(3/2) + \left(\log \left(1 - c(2/3)^k \right) - \log c \right) / k \right)}{2(\log_3 N_k - \log 2 + \log(1 - \log 2\alpha / \log_2 N_k)}$$

and

$$\beta \leq \frac{\log_2 N_k - \log 2\alpha + \log \left(\log(3/2) + \left(\log (1 - c(2/3)^k) - \log c \right) / k \right)}{2(\log_3 N_k - \log 2 + \log(1 - \log 4\alpha / \log_2 N_k))}$$

yielding

$$\frac{\log_2 N_k - 2\log 4\alpha}{2(\log_3 N_k - \log 2)} \le \beta \le \frac{\log_2 N_k - \log 2\alpha}{2(\log_3 N_k - \log 2 - 3\log 4\alpha/2\log_2 N_k)} \le \frac{\log_2 N_k}{2(\log_3 N_k - \log 2)}.$$

Since $N_k | N_{k+1}$, we may apply Theorem 1 to obtain

$$l(N_k) \ll \exp\{\log_2 N_k - \beta(\log_3 N_k - \log 2)\}$$
$$\leq \exp\{\frac{1}{2}\log_2 N_k + \log 4\alpha\}$$
$$\ll \sqrt{\log N_k}.$$

On the other hand,

$$\log \tau(N_k) = \log ((2\alpha k^2 + 1)3^k) \asymp k$$

and $k \asymp \sqrt{\log N_k}$. Thus by Theorem 2, we have

$$l(N_k) \gg \sqrt{\log N_k}$$

REFERENCES

- **1.** P. Erdős, The solution in whole numbers of the equation: $1/x_1 + 1/x_2 + \cdots + 1/x_n = a/b$, Mat. Lapok 1(1950), 192–210.
- 2. P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monographie 28, L'Enseign. Math. Univ. de Genève (1980), 30–44.
- 3. G. Tenenbaum, Sur un problème extrémal en arithmétique, Ann. Inst. Fourier (22) 37 (1987), 1-18.
- **4.** G. Tenenbaum and H. Yokota, *Length and denominators of Egyptian fractions, III*, J. Number Theory **35**(1990), 150–156.
- 5. M. Vose, Integers with consecutive divisors in small ratio, J. Number Theory 19(1984), 233–238.

Department of Mathematics Hiroshima Institute of Technology Itsukaichi, Hiroshima Japan

430