ON A SUM OF DIVISORS

HISASHI YOKOTA

Abstract

Let $l(N, r)$ be the minimum number of terms needed to express r as a sum of distinct divisors of N. Let $l(N)=\max \{l(N, r): 1 \leq r \leq N\}$. Then for Vose's sequence $\left\{N_{k}\right\}, l\left(N_{k}\right) \asymp \sqrt{\log N_{k}}$, improving the result of M. Vose.

1. Introduction. For N a positive integer, we denote by $l(N, r)$ the minimum number of terms needed to express r as a sum of distinct divisors of N. Let $l(N)=$ $\max \{l(N, r): 1 \leq r \leq N\}$. Then it is not hard to see that $l(N)$ is defined for all N with the property $d_{j+1} \leq \sum_{i=1}^{j} d_{i}+1$, where $1=d_{1}<d_{2}<\cdots<d_{\tau}=N$ are the divisors of N. For those N having the above property, we are interested in the behavior of $l(N)$. Note that if $l(N)$ is defined, then $l(N) \leq \log N / \log 2$. First question arises here is the existence of N satisfying $l(N)=o(\log N)$. Erdős [1, 2] answered this by showing for $N=n$!

$$
l(N)=l(n!) \leq n=O\left(\log N / \log _{2} N\right)
$$

and conjectured

$$
l(n!)=O\left(\log _{2} n!\right)
$$

Furthermore, he asked the existence of N satisfying

$$
l(N)=o\left(\log N / \log _{2} N\right)
$$

Vose [5] answered the latter question by constructing a sequence $\left\{N_{k}\right\}$ of positive integers satisfying

$$
l\left(N_{k}\right)=O\left(\sqrt{\log N_{k}}\right)
$$

and currently this is the best bound known for all sequences $\left\{N_{k}\right\}$ of positive integers. Tenenbaum and the author [4] were able to show that for $N=n$!

$$
l(N)=l(n!)=n /(\log n)^{\frac{1}{2}-\varepsilon}=o\left(\log N / \log _{2} N\right)
$$

In this article, we first characterize a necessary condition for N to have $l(N)=$ $o\left(\log N / \log _{2} N\right)$ and then show the bound $l\left(N_{k}\right)=O\left(\sqrt{\log N_{k}}\right)$ for the Vose's sequence $\left\{N_{k}\right\}$ can not be improved.

[^0]2. Main theorems. Before stating results, we establish some notation and terminology. We use the standard notations $f=O(g)$ and $f \ll g$ to mean that $|f|<C g$ for some positive constant C. The expression $f=o(g)$ means that $f / g \rightarrow 0$, and $f \asymp g$ means that f is of the same order of magnitude as g. As usual, we let $\log _{j}$ denote the j th-fold iterated logarithm. For real $x, 1<x<N$, we let $d^{-}(x)$ and $d^{+}(x)$ be consecutive divisors of N such that $d^{-}(x) \leq x<d^{+}(x)$.

By Vose's sequence $\left\{N_{k}\right\}$, we mean by the following: $N_{k}=2^{2 \alpha k^{2}} \prod_{l=2}^{k} p_{l}^{2}$, where $p_{2}<p_{3}<\cdots<p_{k}$ are odd primes such that
(1) $\max _{\sqrt{N_{k-1}}<i<\sqrt{N_{k}}}\left(\log d^{+}(i)-\log d^{-}(i)\right) \ll(2 / 3)^{k}$
(2) $\log p_{l} \asymp l$
(3) α may be any sufficiently large integer.

ThEOREM 1. Let $\left\{N_{k}\right\}$ be a sequence of positive integers satisfying the following conditions:

1) $N_{1}=1, N_{k} \mid N_{k+1},(k=1,2, \ldots), \log _{2} N_{k} \ll \log k$
2) $\max _{1<i \leq \sqrt{N_{k_{0}}}}\left(1-\frac{d^{-}(i)}{d^{+}(i)}\right) \leq \frac{1}{2}$
3) $\max _{\sqrt{N_{k}}<i \leq \sqrt{N_{k+1}}}\left(d^{+}(i)-i\right) \leq i \varepsilon_{k}$ for $k \geq k_{0}$, where $\varepsilon_{k}=\exp \left\{-(\log k)^{\beta}\right\}$ with $0<\beta<\log _{2} N_{k} /\left(\log _{3} N_{k}-\log 2\right)$.
Then

$$
l\left(N_{k}\right) \ll \exp \left\{\log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\log 2\right)\right\} .
$$

In Theorem 1, the upper bound of $l(N)$ is heavily dependent on the existence of a divisor of N in the small interval near \sqrt{N}. On the other hand, in the following theorem, we obtain the lower bound of $l(N)$ in terms of the number of divisors of N.

Theorem 2. For all N that defines $l(N)$,

$$
l(N) \gg \frac{\log N}{\log \tau(N)}\left(1+\frac{\log _{2} N-\log _{2} \tau(N)}{2 \log \tau(N)}\right) .
$$

With Theorem 1, 2, we can show that the bound $l\left(N_{k}\right)=O\left(\sqrt{\log N_{k}}\right)$ for Vose's sequence $\left\{N_{k}\right\}$ can not be improved. In other words, the algorithm used to obtain the upper bound of $l\left(N_{k}\right)$ where $\left\{N_{k}\right\}$ is Vose's sequence is best possible.

Corollary 1. Let $\left\{N_{k}\right\}$ be Vose's sequence. Then

$$
l\left(N_{k}\right) \asymp \sqrt{\log N_{k}} .
$$

3. Proof of theorems. We start with the proof of Theorem 1. Let r be an integer such that $1 \leq r \leq N_{k}$. We will construct a strictly decreasing sequence $d_{1}>d_{2}>\cdots>d_{m}$ of divisors of N_{k} such that $r=\sum_{i=1}^{m} d_{i}$. Put $r=r_{0}, r_{j}=r-\sum_{i=1}^{j} d_{i}(j \geq 1)$. Let $Z=\sqrt{N_{k_{0}+1}}$. Then r lies in one of the intervals of the form (1,Z], $\left(Z, \sqrt{N_{k}}\right],\left(\sqrt{N_{k}}, N_{k} / Z\right],\left(N_{k} / Z, N_{k}\right]$. We will show that $r_{b} \leq N_{k} / Z$ with $b \ll 1$. Suppose that $r_{0}>N_{k} / Z$. Otherwise put $b=0$. Let d_{1} be the largest divisor of N_{k} not exceeding r_{0}. Then by condition (2),

$$
r_{1}=r_{0}-d_{1} \leq d_{1},
$$

and the equality is only possible if r_{1} itself is a divisor of N_{k}. If $r_{1}<d_{1}$, we iterate this procedure and obtain

$$
r_{b}=r-\sum_{i=1}^{b} d_{i} \leq \frac{N_{k}}{Z}
$$

Note that $r_{b}=r_{b-1}-d_{b} \leq d_{b}$ and $b \ll 1$.
We will show that $r_{h} \leq \sqrt{N_{k}}$ with $h-b \ll \exp \left\{\log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\log 2\right)\right\}$. Suppose that $r_{b}>\sqrt{N_{k}}$. Otherwise put $h=b$. Since $Z<N_{k} / r_{b}<\sqrt{N_{k}}$, we let m_{1} be the unique integer such that

$$
\sqrt{N_{m_{1}}}<\frac{N_{k}}{r_{b}} \leq \sqrt{N_{m_{1}+1}} .
$$

Note that $k_{0} \leq m_{1}<k$. Now by condition (3), we have

$$
d^{+}\left(\frac{N_{k}}{r_{b}}\right) \leq \frac{N_{k}}{r_{b}}\left(1+\varepsilon_{m_{1}}\right) .
$$

Thus

$$
\left(1-\varepsilon_{m_{1}}\right) d^{+}\left(\frac{N_{k}}{r_{b}}\right)<\frac{N_{k}}{r_{b}}<d^{+}\left(\frac{N_{k}}{r_{b}}\right) .
$$

Set $d_{b+1}=N_{k} / d^{+}\left(N_{k} / r_{b}\right)$. Then we see that d_{b+1} is a divisor of N_{k} since $d^{+}\left(N_{k} / r_{b}\right)\left|N_{m_{1}}\right| N_{k}$ by condition (1). Now

$$
\begin{aligned}
0 & \leq r_{b+1}=r-\sum_{i=1}^{b+1} d_{i}=r_{b}-d_{b+1} \\
& \leq r_{b}-r_{b}\left(1-\varepsilon_{m_{1}}\right) \\
& =r_{b} \varepsilon_{m_{1}} .
\end{aligned}
$$

Note that $d_{b+1}<r_{b} \leq d_{b}$. If $r_{b+1} \leq \sqrt{N_{k}}$, we put $h=b+1$, otherwise we repeat the application of condition (3) and produce

$$
d^{+}\left(\frac{N_{k}}{r_{b+1}}\right) \leq \frac{N_{k}}{r_{b+1}}\left(1+\varepsilon_{m_{2}}\right)
$$

with $d_{b+2}=N_{k} / d^{+}\left(N_{k} / r_{b+1}\right)$ and $0 \leq r_{b+2}=r_{b+1}-d_{b+2} \leq r_{b+1} \varepsilon_{m_{2}} \leq r_{b} \varepsilon_{m_{1}} \varepsilon_{m_{2}}$ for some m_{2} such that $\sqrt{N_{m_{2}+1}}>N_{k} / r_{b+1}>r_{b} / r_{b+1}>1 / \varepsilon_{m_{1}}$. Since $\log _{2} \sqrt{N_{m_{2}+1}} \ll \log m_{2}$ by condition (1), we have

$$
\varepsilon_{m_{2}}=\exp \left\{-\left(\log m_{2}\right)^{\beta}\right\} \leq \exp \left\{-\left(\frac{1}{c} \log _{2}\left(\frac{1}{\varepsilon_{m_{1}}}\right)\right)^{\beta}\right\}
$$

for some positive constant c. Moreover $d_{b+2}<d_{b+1}$ for $r_{b+1}-d_{b+1} \leq-\left(1-2 \varepsilon_{m_{1}}\right) r_{b}<$ $0 \leq r_{b+1}-d_{b+2}$. Iterating the procedure, we eventually obtain $r_{h} \leq \sqrt{N_{k}}$. Since $r_{b+j} \leq$ $r_{b} \varepsilon_{m_{1}} \varepsilon_{m_{2}} \cdots \varepsilon_{m_{j}}$ and $k_{0} \leq m_{1} \leq m_{2} \leq \cdots \leq m_{j} \leq k$, we estimate h by using the inequality

$$
r_{b+j} \leq r_{b} \gamma_{j}
$$

where $\gamma_{j}=\varepsilon_{m_{1}} \varepsilon_{m_{2}} \cdots \varepsilon_{m_{j}}$ satisfies

$$
\gamma_{j+1} \leq \gamma_{j} \exp \left\{-\left(\frac{1}{c} \log _{2}\left(\frac{1}{\gamma_{2}}\right)\right)^{\beta}\right\}
$$

for some positive constant c. A simple computation yields $\log \left(1 / \gamma_{j}\right) \gg j(\log j)^{\beta}$. We note that since $r_{b}<N_{k}, r_{b+j} \leq \sqrt{N_{k}}$ provided $\log \left(1 / \gamma_{j}\right) \geq \log N_{k} / 2$. Now let

$$
j_{0}=\exp \left\{\log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\log 2\right)\right\}
$$

Then

$$
\begin{aligned}
\log j_{0}+\beta \log _{2} j_{0}= & \log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\log 2\right)+\beta \log _{3} N_{k} \\
& +\log \left(1-\frac{\beta\left(\log _{3} N_{k}-\log 2\right)}{\log _{2} N_{k}}\right)
\end{aligned}
$$

Since $0<\beta<\log _{2} N_{k} /\left(\log _{3} N_{k}-\log 2\right)$ by condition (3), we have

$$
\log j_{0}+\beta \log _{2} j_{0} \geq \log _{2} N_{k}
$$

Thus we have $r_{b+j} \leq \sqrt{N_{k}}$ with $j \ll \exp \left\{\log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\log 2\right)\right\}$.
We now show similarly that $r_{h+1} \leq Z$ holds with $l \ll \exp \left\{\log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\right.\right.$ $\log 2)\}$. Let q_{1} be defined by $\sqrt{N_{q_{1}}}<r_{h} \leq \sqrt{N_{q_{1}+1}}$. Then $q_{1}<k$. If $q_{1} \leq k_{0}$, then we are done, so suppose otherwise. Then we can apply condition (3) to obtain

$$
0 \leq r_{h+1}=r_{h}-d_{h+1} \leq r_{h} \varepsilon_{q_{1}}
$$

for some divisor d_{h+1} of $N_{q_{1}} \mid N_{k}$. As before $d_{h+1}<d_{h}$ since $r_{h}-d_{h}<0$. Iterating, we obtain

$$
\begin{aligned}
r_{h+j} & =r_{h}-\sum_{i=h+1}^{h+j} d_{i} \\
& \leq r_{h} \varepsilon_{q_{1}} \varepsilon_{q_{2}} \cdots \varepsilon_{q_{j}}
\end{aligned}
$$

where $k>q_{1} \geq q_{2} \geq \cdots \geq q_{j} \geq k_{0}$. Suppose that l can be defined by the condition

$$
r_{h} \varepsilon_{q_{1}} \cdots \varepsilon_{q_{l}}<Z \leq r_{h} \varepsilon_{q_{1}} \cdots \varepsilon_{q_{l-1}} .
$$

We reindex q_{i} according to increasing size by letting $\varepsilon_{q_{i}}=\varepsilon_{p_{l-i+1}}$. Let $\delta_{j}=\varepsilon_{p_{1}} \varepsilon_{p_{2}} \cdots \varepsilon_{p_{j}}$, where $k_{0} \leq p_{1} \leq p_{2} \leq \cdots \leq p_{j} \cdots \leq p_{l}<k$. Then

$$
\begin{aligned}
\delta_{j+1} & =\delta_{j} \varepsilon_{p_{j+1}} \\
& =\delta_{j} \exp \left\{-\left(\log q_{l-j}\right)^{\beta}\right\} \\
& \leq \delta_{j} \exp \left\{-\left(\log q_{l-j+1}\right)^{\beta}\right\} \\
& \leq \delta_{j} \exp \left\{-\left(\frac{1}{c} \log _{2} N_{q_{l-j+1}}\right)^{\beta}\right\}
\end{aligned}
$$

for some positive constant c. Since $\sqrt{N_{q_{l-j+1}}}>r_{h+l-j}$ and

$$
\begin{aligned}
r_{h+l} & \leq r_{h+l-j} \varepsilon_{q_{l-j+1}} \varepsilon_{q_{l-j+2}} \cdots \varepsilon_{q_{l}} \\
& =r_{h+l-j} \varepsilon_{p_{j}} \cdots \varepsilon_{p_{2}} \varepsilon_{p_{1}},
\end{aligned}
$$

we have

$$
\delta_{j+1} \leq \delta_{j} \exp \left\{-\left(\frac{1}{c} \log _{2}\left(\frac{1}{\delta_{j}}\right)\right)^{\beta}\right\}
$$

for some positive constant c. As above we have $\log \left(1 / \delta_{j}\right) \gg j(\log j)^{\beta}$. Since $0<\beta<$ $\log _{2} N_{k} /\left(\log _{3} N_{k}-\log 2\right.$) by condition (3), we have $r_{h+l} \leq Z$ with $l \ll \exp \left\{\log _{2} N_{k}-\right.$ $\left.\beta\left(\log _{3} N_{k}-\log 2\right)\right\}$.

It remains to show that $r_{m}=0$ with $m-(h+l) \ll 1$. Since $r_{h+l}<Z$ and $d_{h+l}>r_{h+l}$, we let d_{h+l+1} be the largest divisor of N_{k} not exceeding r_{h+l}. Then by condition (2), we have

$$
r_{h+l+1}=r_{h+l}-d_{h+l+1} \leq d_{h+l+1}<r_{h+l}<d_{h+l}
$$

We iterate this procedure and obtain in a finite number of steps

$$
r_{m}=r_{h+l}-\sum_{i=h+l+1}^{m} d_{i}=0
$$

Thus $m-(h+l) \ll 1$. Therefore

$$
l\left(N_{k}\right) \ll \exp \left\{\log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\log 2\right)\right\} .
$$

PRoof of Theorem 2. Let $1=d_{1}<d_{2}<\cdots<d_{\tau(N)}=N$ be the divisors of N. Then the number of distinct subset sums

$$
S(N):=\operatorname{card}\left\{\sum_{i=1}^{\tau(N)} d_{i} \varepsilon_{i}: \varepsilon_{i}=0 \text { or } 1\right\}
$$

is at most $2^{\tau(N)}$. Since $2^{\tau(N)} \geq N$, we must have $\tau(N) \geq \log N / \log 2$. Now let $\sigma(i, N)$ denote the number of distinct subset sums of i distinct divisors of N whose sum is less than N. Suppose that we can express all $r, 1 \leq r \leq N$, as a sum of at most m distinct divisors of N. Then the maximum number of distinct subset sums we can obtain by using at most m distinct divisors of N whose sum is less than N is

$$
\sum_{i=1}^{m} \sigma(i, N)
$$

Since $\sigma(i, N) \leq\binom{\tau(N)}{i}$ for all $i=1,2, \ldots, N$, we have

$$
\sum_{i=1}^{m}\binom{\tau(N)}{i} \geq \sum_{i=1}^{m} \sigma(i, N) \geq N
$$

Note that we can assume $\tau(N)>3 m-1$, otherwise $m \gg \log N$ and there is nothing to prove. Then

$$
\sum_{i=1}^{m}\binom{\tau(N)}{i} \leq 2\binom{\tau(N)}{m}
$$

Thus

$$
2\binom{\tau(N)}{m} \geq N
$$

Now

$$
\begin{aligned}
\binom{\tau(N)}{m} & =\frac{\tau(N)(\tau(N)-1) \cdots(\tau(N)-m+1)}{m!} \\
& \leq \frac{(\tau(N))^{m}}{m!} \\
& \leq\left(\frac{e \tau(N)}{m}\right)^{m} \frac{1}{\sqrt{2 \pi m}}
\end{aligned}
$$

Thus we have

$$
\left(\frac{e \tau(N)}{m}\right)^{m} \geq \frac{N \sqrt{2 \pi m}}{2} \geq N
$$

Let

$$
m_{0}=\frac{\log N}{\log \tau(N)}\left(1+\frac{\log _{2} N-\log _{2} \tau(N)}{2 \log \tau(N)}\right)
$$

Then

$$
\begin{aligned}
m_{0}(\log \tau(N)- & \left.\log m_{0}+1\right) \\
& =\frac{\log N}{\log \tau(N)}\left(1+\frac{\log _{2} N-\log _{2} \tau(N)}{2 \log \tau(N)}\right)\left(\log \tau(N)-\log m_{0}+1\right) \\
& \leq \log N\left(1+\frac{\log _{2} N-\log _{2} \tau(N)}{2 \log \tau(N)}\right)\left(1-\frac{\log _{2} N-\log _{2} \tau(N)-1}{\log \tau(N)}\right) \\
& <\log N
\end{aligned}
$$

Thus

$$
m \gg \frac{\log N}{\log \tau(N)}\left(1+\frac{\log _{2} N-\log _{2} \tau(N)}{2 \log \tau(N)}\right)
$$

Therefore

$$
l(N) \gg \frac{\log N}{\log \tau(N)}\left(1+\frac{\log _{2} N-\log _{2} \tau(N)}{2 \log \tau(N)}\right) .
$$

Proof of Corollary. Since $N_{k}=2^{2 \alpha k^{2}} \prod_{l=2}^{k} p_{l}^{2}$, where $p_{2}<p_{3}<\cdots<p_{k}$ are odd primes such that
(1) $\max _{\sqrt{N_{k-1}}<i<\sqrt{N_{k}}}\left(\log d^{+}(i)-\log d^{-}(i)\right) \ll(2 / 3)^{k}$
(2) $\log p_{l} \asymp l$
(3) α may be any sufficiently large integer,
we have

$$
\log \sqrt{N_{k}}=\alpha k^{2} \log 2+\sum_{l=2}^{k} \log p_{l} \leq 2 \alpha k^{2} \log 2
$$

for sufficiently large α. Thus

$$
\sqrt{N_{k}} \leq 2^{2 \alpha k^{2}}
$$

Therefore $\max _{1 \leq i \leq \sqrt{N_{k}}}\left(1-d^{-}(i) / d^{+}(i)\right) \leq 1 / 2$ is satisfied by the divisors of $2^{2 \alpha k^{2}}$. We also have

$$
2 \alpha k^{2} \leq \log N_{k} \leq 4 \alpha k^{2}
$$

Thus

$$
\left(\log _{2} N_{k}-\log 4 \alpha\right) / 2 \leq \log k \leq\left(\log _{2} N_{k}-\log 2 \alpha\right) / 2
$$

Now by (1)

$$
\log \left(\frac{d^{+}(i)}{d^{-}(i)}\right) \ll\left(\frac{2}{3}\right)^{k}
$$

where $\sqrt{N_{k-1}}<i<\sqrt{N_{k}}$. Since $-\log x \geq 1-x$, we have

$$
1-\frac{i}{d^{+}(i)} \leq \log \left(\frac{d^{+}(i)}{i}\right) \ll\left(\frac{2}{3}\right)^{k}
$$

which implies that for some constant c

$$
\frac{d^{+}(i)}{i}-1 \leq \frac{c 2^{k}}{3^{k}-c 2^{k}}
$$

Let $\varepsilon_{k}=\exp \left\{-(\log k)^{\beta}\right\}=c 2^{k} /\left(3^{k}-c 2^{k}\right)$. Then $(\log k)^{\beta}=k \log (3 / 2)+\log (1-$ $\left.c(2 / 3)^{k}\right)-\log c$. Thus

$$
\beta=\frac{\log k+\log \left(\log (3 / 2)+\left(\log \left(1-c(2 / 3)^{k}\right)-\log c\right) / k\right)}{\log _{2} k}
$$

Since $\left(\log _{2} N_{k}-\log 4 \alpha\right) / 2 \leq \log k \leq\left(\log _{2} N_{k}-\log 2 \alpha\right) / 2$, we have

$$
\beta \geq \frac{\log _{2} N_{k}-\log 4 \alpha+\log \left(\log (3 / 2)+\left(\log \left(1-c(2 / 3)^{k}\right)-\log c\right) / k\right)}{2\left(\log _{3} N_{k}-\log 2+\log \left(1-\log 2 \alpha / \log _{2} N_{k}\right)\right.}
$$

and

$$
\beta \leq \frac{\log _{2} N_{k}-\log 2 \alpha+\log \left(\log (3 / 2)+\left(\log \left(1-c(2 / 3)^{k}\right)-\log c\right) / k\right)}{2\left(\log _{3} N_{k}-\log 2+\log \left(1-\log 4 \alpha / \log _{2} N_{k}\right)\right.}
$$

yielding

$$
\begin{aligned}
\frac{\log _{2} N_{k}-2 \log 4 \alpha}{2\left(\log _{3} N_{k}-\log 2\right)} & \leq \beta \leq \frac{\log _{2} N_{k}-\log 2 \alpha}{2\left(\log _{3} N_{k}-\log 2-3 \log 4 \alpha / 2 \log _{2} N_{k}\right)} \\
& \leq \frac{\log _{2} N_{k}}{2\left(\log _{3} N_{k}-\log 2\right)}
\end{aligned}
$$

Since $N_{k} \mid N_{k+1}$, we may apply Theorem 1 to obtain

$$
\begin{aligned}
l\left(N_{k}\right) & \ll \exp \left\{\log _{2} N_{k}-\beta\left(\log _{3} N_{k}-\log 2\right)\right\} \\
& \leq \exp \left\{\frac{1}{2} \log _{2} N_{k}+\log 4 \alpha\right\} \\
& \ll \sqrt{\log N_{k}} .
\end{aligned}
$$

On the other hand,

$$
\log \tau\left(N_{k}\right)=\log \left(\left(2 \alpha k^{2}+1\right) 3^{k}\right) \asymp k
$$

and $k \asymp \sqrt{\log N_{k}}$. Thus by Theorem 2, we have

$$
l\left(N_{k}\right) \gg \sqrt{\log N_{k}} .
$$

References

1. P. Erdôs, The solution in whole numbers of the equation: $1 / x_{1}+1 / x_{2}+\cdots+1 / x_{n}=a / b$, Mat. Lapok 1(1950), 192-210.
2. P. Erdôs and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monographie 28, L’Enseign. Math. Univ. de Genève (1980), 30-44.
3. G. Tenenbaum, Sur un problème extrémal en arithmétique, Ann. Inst. Fourier (22) 37 (1987), 1-18.
4. G. Tenenbaum and H. Yokota, Length and denominators of Egyptian fractions, III, J. Number Theory 35(1990), 150-156.
5. M. Vose, Integers with consecutive divisors in small ratio, J. Number Theory 19(1984), 233-238.

Department of Mathematics

Hiroshima Institute of Technology
Itsukaichi, Hiroshima
Japan

[^0]: Received by the editors January 24, 1991; revised January 29, 1992.
 AMS subject classification: 11D85, 11D68.
 (C) Canadian Mathematical Society 1992.

