An arithmetic remark on entire periodic functions

Kurt Mahler

For every positive number ω, there exists an odd entire transcendental function

$$
f(z)=\sum_{h=0}^{\infty} a_{h} \frac{z^{2 h+1}}{(2 h+1)!}
$$

with rational integral coefficients a_{h} such that $f(z+w)=f(z)$.

1.

Denote by

$$
g(z)=\sum_{h=0}^{\infty} c_{h} \frac{z^{2 h+1}}{(2 h+1)!}
$$

an odd entire function with real coefficients c_{h} where, in particular,

$$
c_{0} \geq 2
$$

The odd powers of $g(z)$ allow the similar developments

$$
\frac{g(z)^{2 n+1}}{(2 n+1)!}=\sum_{h=n}^{\infty} c_{n h} \frac{z^{2 h+1}}{(2 h+1)!}(n=0,1,2, \ldots)
$$

and here

$$
\begin{equation*}
c_{n n} \geq 2^{2 n+1} \quad(n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

Received 23 March 1971.

Next let

$$
f(z)=\sum_{n=0}^{\infty} b_{n} \frac{g(z)^{2 n+1}}{(2 n+1)!}
$$

where $b_{0}, b_{1}, b_{2}, \ldots$ denote real numbers which are determined by the following construction.

We have

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{\infty} b_{n} \sum_{h=0}^{\infty} c_{n h} \frac{z^{2 h+1}}{(2 h+1)!} \\
& =\sum_{h=0}^{\infty} a_{h} \frac{z^{2 h+1}}{(2 h+1)!}
\end{aligned}
$$

say, and here the new coefficients a_{h} are given by

$$
a_{h}=\sum_{n=0}^{\infty} b_{n} c_{n h}(h=0,1,2, \ldots)
$$

It is thus possible to choose the coefficients b_{n} successively such that

$$
0<b_{0} \leq 2^{-1}, \text { and } a_{0} \leq 1 \text { is an integer, }
$$

and that for $n \geq 1$, on account of (1),

$$
\begin{equation*}
0 \leq b_{n} \leq 2^{-(2 n+1)} \text {, and } a_{n} \neq 0 \text { is an integer. } \tag{2}
\end{equation*}
$$

By this construction, $f(z)$ becomes an entire transcendental function of z. On putting

$$
M(r)=\max _{|z|=r}|f(z)|, \quad M_{1}(r)=\max _{|z|=r}|g(z)|
$$

by (2),

$$
M(r) \leq \sum_{n=0}^{\infty} 2^{-(2 n+1)} \frac{M_{0}(r)^{2 n+1}}{(2 n+1)!}
$$

and therefore
(3)

$$
M(r)<\exp \left(M_{0}(r) / 2\right)
$$

2.

In the result so obtained, choose now

$$
g(z)=\sin (2 \pi z / \Omega)
$$

where Ω is a constant satisfying

$$
0<\Omega \leq \pi
$$

Then $g(z)$ is an odd entire function with the period Ω,

$$
g(z+\Omega)=g(z)
$$

and it has a power series

$$
g(z)=\sum_{h=0}^{\infty} c_{h} \frac{z^{2 h+1}}{(2 h+1)!}
$$

where $c_{0}=2 \pi / \Omega \geq 2$ as required. The preceding construction leads therefore to an odd entire transcendental function

$$
f(z)=\sum_{n=0}^{\infty} b_{n} \frac{\left(\sin \left(\frac{2 \pi z}{\Omega}\right)\right)^{2 n+1}}{(2 n+1)!}
$$

of period Ω, and with non-vanishing integral coefficients a_{h}. The maximum modulus $M(r)$ of this function evidently satisfies the inequality

$$
M(r)<\exp \left(\frac{e^{2 \pi r / \Omega}}{2}\right)
$$

for by the choice of $g(z)$,

$$
M_{1}(r)<e^{2 \pi r / \Omega}
$$

3.

The following result can now be proved.
THEOREM. Let ω be an arbitrary positive constant. There exist two positive constants c and r_{0} and an odd entire transcendental function $f(z)$ of period ω,

$$
f(z+\omega)=f(z)
$$

such that the coefficients a_{h} in

$$
f(z)=\sum_{h=0}^{\infty} a_{h} \frac{z^{2 h+1}}{(2 h+1)!}
$$

are rational integers not zero, and that further

$$
|f(z)|<e^{e^{c|z|}} \text { if }|z| \geq r_{0}
$$

Proof. The assertion has already been established if $0<\omega \leq \pi$. If, however, $\omega>\pi$, then choose for k so large a positive integer that the quantity $\Omega=\omega / k$ satisfies the inequality $0<\Omega \leq \pi$. The theorem is then valid with Ω instead of ω; but a function of period Ω has also the period $\omega=k \Omega$.

The interest of the theorem lies in the fact that all the function values

$$
f^{(\tau)}(\lambda \omega),\binom{\lambda=0,1,2, \ldots}{\tau=0,1,2, \ldots}
$$

are rational integers. It is implicit in a theorem by Schneider [1, p. 49, Satz 12$]$ that an entire transcendental function of bounded order and of period ω cannot have this property.

A similar proof allows to show that there exists an entire function $G(z)$ such that the function

$$
F(z)=\frac{e^{G(z)}}{\Gamma(z)}
$$

and all its derivatives assume rational integral values at all integral points.

Reference

[1] Theodor Schneider, Einführung in die transzendenten Zahlen (Grundlehren der mathematischen Wissenschaften, Band 81. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1957).

Department of Mathematics,
Ohio State University,
Columbus,
Ohio, USA.

