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Abstract

We study abelian varieties and K3 surfaces with complex multiplication defined over
number fields of fixed degree. We show that these varieties fall into finitely many
isomorphism classes over an algebraic closure of the field of rational numbers. As an
application we confirm finiteness conjectures of Shafarevich and Coleman in the CM
case. In addition we prove the uniform boundedness of the Galois invariant subgroup
of the geometric Brauer group for forms of a smooth projective variety satisfying
the integral Mumford–Tate conjecture. When applied to K3 surfaces, this affirms a
conjecture of Várilly-Alvarado in the CM case.

1. Introduction

In a recent paper Tsimerman [Tsi18], building on the work of Andreatta et al. [AGHM18] and
of Yuan and Zhang [YZ18], obtained a lower bound for the size of Galois orbits of CM points,
reproduced below as Theorem 2.1. We view this inequality as an upper bound for the discriminant
of the centre of the endomorphism ring of a principally polarised CM abelian variety in terms of
the degree of a field of definition. With a little extra work, using the classical Masser–Wüstholz
bound for the minimal degree of an isogeny between abelian varieties, and Zarhin’s quaternion
trick, we deduce the following result (see Theorem 2.5).

Theorem A. There are only finitely many Q-isomorphism classes of abelian varieties of CM
type of given dimension which can be defined over number fields of given degree.

Robert Coleman conjectured that for a given number field k only finitely many rings, up to
isomorphism, can be realised as the ring of Q-endomorphisms of an abelian variety defined over
k (see Remark 4 at the end of [Sha96] and conjecture C(e, g) in [BFGR06, p. 384]). For abelian
varieties of CM type this conjecture follows from Theorem A.

Corollary A.1. Let g and d be positive integers. There are only finitely many rings R, up
to isomorphism, for which there exists an abelian variety A of CM type over a number field of
degree d such that dim(A) = g and End(A×k Q) ∼= R.

Under the generalised Riemann hypothesis this had been proved by Greenberg, see [BFGR06,
p. 384].

Using Theorem A we show that any Shimura variety of abelian type has only finitely many
CM points defined over number fields of bounded degree, see Proposition 3.1. By the work of
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Rizov and Madapusi Pera, a double cover of the moduli space of K3 surfaces with a polarisation
of fixed degree is an open subset of a Shimura variety of abelian type. Hence we get a finiteness
theorem for K3 surfaces of CM type with a polarisation of fixed degree defined over number
fields of bounded degree.

Using an idea suggested to us by François Charles we develop a lattice-theoretic device that
plays the role of Zarhin’s trick for K3 surfaces, related to the method of [Cha16]. The analogy
with Zarhin’s trick becomes apparent when stated in terms of Shimura varieties, see § 4.1. This
allows us to remove the dependence on the degree of polarisation and prove the following main
result of this paper (Theorem 4.1).

Theorem B. There are only finitely many Q-isomorphism classes of K3 surfaces of CM type
which can be defined over number fields of given degree.

Recall that a K3 surface has CM type if its Mumford–Tate group is commutative. K3 surfaces
of CM type were introduced by Piatetski-Shapiro and Shafarevich in [PS73]. They proved that
such a surface is always defined over a number field [PS73, Theorem 4]. Examples of K3 surfaces
of CM type are diagonal quartic surfaces in P3 and, more generally, arbitrary K3 surfaces of
Picard rank 20, as well as the Kummer surfaces attached to simple abelian surfaces of CM type.
In the latter case the Picard rank is 18. Taelman proved that there exist K3 surfaces of CM type
over C with arbitrary even Picard rank from 2 to 20 [Tae16].

Let us understand by a lattice a free abelian group of finite rank with an integral symmetric
bilinear form. Shafarevich conjectured that only finitely many lattices, up to isomorphism, can
be realised as the Néron–Severi lattice of a K3 surface defined over a number field of fixed
degree [Sha96]. Equivalently, the discriminants of the Néron–Severi lattices of such K3 surfaces
are bounded. Theorem B confirms this conjecture in the case of K3 surfaces of CM type.

Corollary B.1. Only finitely many lattices, up to isomorphism, can be realised as the Néron–
Severi lattice NS(X) where X is a K3 surface of CM type defined over a number field of given
degree.

In [Sha96] Shafarevich proved this conjecture for K3 surfaces of Picard rank 20. In fact, he
proved that K3 surfaces of Picard rank 20 that can be defined over a number field of fixed degree
fall into finitely many isomorphism classes over Q. This paper was born from our reflections on
this theorem of Shafarevich.

In contrast to the above results, the following statement does not use the assumption of
complex multiplication. The main ingredients of its proof are the results of Cadoret and Moonen
on the Mumford–Tate conjecture [CM15, Theorems A and B], which build on the previous work
of many authors, including Serre, Wintenberger, Larsen, Pink, Cadoret and Kret, and the proof
of the Mumford–Tate conjecture for K3 surfaces by Tankeev and André.

Theorem C. Let k be a field finitely generated over Q. Let X over k be either an abelian variety
satisfying the Mumford–Tate conjecture or a K3 surface. For each positive integer n, there exists
a constant C = Cn,X such that for every (k̄/L)-form Y of X defined over a field extension L of

degree [L : k] 6 n, we have |Br(Y )Gal(k̄/L)| < C.

Here and elsewhere in this paper we write k̄ for an algebraic closure of k and Y = Y ×L k̄.
A (k̄/L)-form of X is a variety Y over a field L, where k ⊂ L ⊂ k̄, such that Y ∼= X.
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Although the finiteness of Br(Y )Gal(k̄/L) in Theorem C follows from the main results of [SZ08],

they are not used in the present proof, so Theorem C also gives a new proof of [SZ08,

Theorem 1.2].

Theorem C is the combination of Corollaries 5.2 and 5.3 of a more general Theorem 5.1. For

an analogue of Theorem C concerning torsion of abelian varieties which are (k̄/L)-forms of a

given abelian variety, see the remark at the end of the paper.

When Y is a (k̄/L)-form of a K3 surface X, Theorem C together with a classical observation

of Minkowski [Min87] that there are only finitely many isomorphism classes of finite subgroups

in GLn(Z) gives the boundedness of |Br(Y )/Br0(Y )|, where Br0(Y ) is the image of the canonical

map Br(k)→ Br(Y ) (see [VV17, Lemma 6.4]). For example, this can be applied to the diagonal

quartic surface X ⊂ P3
Q given by x4 + y4 + z4 + w4 = 0. Any surface Y ⊂ P3

L given by

ax4 + by4 + cz4 + dw4 = 0,

where a, b, c, d ∈ L∗, is a (Q/L)-form of X. In the particular case L = Q a bound for

|Br(Y )/Br0(Y )| was obtained with an explicit constant in [ISZ11, Corollary 4.6], see also [Ier10,

IS15, New16] for related work.

Recently, Tony Várilly-Alvarado conjectured that for any positive integer n and any

isomorphism class of a primitive sublattice Λ of the K3 lattice ΛK3, there is a constant c(n,Λ)

such that for any K3 surface X defined over a number field of degree n with NS(X) ∼= Λ we have

|Br(X)/Br0(X)| < c(n,Λ); see [Vár17, Conjecture 4.6] and [VV17, Question 1.1]. Combining

Theorems B and C we confirm this conjecture in the case of K3 surfaces of CM type, even

without fixing the isomorphism type of the Néron–Severi lattice.

Corollary C.1. For any positive integer n there is a constant C = Cn such that

|Br(X)/Br0(X)| < C and |Br(X)Gal(Q/k)| < C for any K3 surface X of CM type defined over a

number field k of degree n.

Combining Theorems A and C with the fact that the Mumford–Tate conjecture holds for

abelian varieties of CM type, we obtain the following.

Corollary C.2. For any positive integers n and g there is a constant C = Cn,g such that

|Br(X)Gal(Q/k)| < C for any form X of an abelian variety of dimension g of CM type, where X

is defined over a number field k of degree n.

It would be interesting to find explicit expressions for the constants in Corollaries C.1 and C.2.

Theorem A is proved in § 2, see Theorem 2.5. In § 3 we recall the background on Shimura

varieties used to prove Theorem B in § 4, see Theorem 4.1. Finally, in § 5 we discuss the Brauer

groups of (k̄/L)-forms of projective varieties in relation with the Mumford–Tate conjecture and

prove Theorem 5.1 and its corollaries, including Theorem C.

2. Finiteness theorem for abelian varieties of CM type

In this section, we prove a finiteness theorem for abelian varieties of CM type. The proof relies

on the following recent theorem of Tsimerman.
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Theorem 2.1 [Tsi18, Theorem 5.1]. Let g be a positive integer. There exist constants bg, Cg > 0

such that, for every principally polarised abelian variety A of dimension g defined over a number

field k, if A is of CM type, then

|disc(R)| < Cg[k : Q]bg ,

where R is the centre of End(A).

The exact form of the bound in Theorem 2.1 is not important for our application: it only

matters that when we fix k and g, we get a uniform bound for |disc(R)|.
It is straightforward to deduce a finiteness theorem for absolutely simple principally polarised

abelian varieties of CM type from Theorem 2.1 and classical results.

Corollary 2.2. For all positive integers g and n, there are only finitely many Q-isomorphism

classes of absolutely simple principally polarised abelian varieties of dimension g of CM type

which can be defined over number fields of degree n.

Proof. If A is an absolutely simple principally polarised abelian variety of dimension g of CM

type, then the endomorphism ring R = End(A) is an order in a CM field of degree 2g. By

Theorem 2.1, the discriminant of this ring is bounded in terms of g and n.

It follows from the Hermite–Minkowski theorem that there are only finitely many orders

R in number fields with a given value of disc(R) [Wei67, ch. V, Proposition 7, Corollary 2].

By the classical theory of abelian varieties of CM type, an absolutely simple abelian variety of

CM type with endomorphism ring R is determined (up to Q-isomorphism) by a class in the

ideal class group of R and a CM type for R ⊗Z Q [Mil, 3.11]. Hence there are only finitely

many Q-isomorphism classes of absolutely simple abelian varieties of CM type with a given

endomorphism ring. 2

To generalise Corollary 2.2 to non-simple abelian varieties one needs to do a little more

work because the endomorphism ring may not be commutative so its centre R does not contain

enough information to determine the abelian variety up to finite ambiguity. Our proof of this

generalisation is based on Shafarevich’s proof for the case of abelian surfaces isogenous to the

square of a CM elliptic curve [Sha96].

There is an alternative approach which also proves Proposition 2.4 from Theorem 2.1, using

Pila and Tsimerman’s height bound for the preimages of CM points in a fundamental set of

Hg [PT13, Theorem 3.1].1 The final step, using Zarhin’s trick to deduce Theorem 2.5 from

Proposition 2.4, has an interpretation in terms of Shimura varieties which we describe below in

§ 4.1. However we preferred to give a proof here which does not require the machinery of Shimura

varieties.

Proposition 2.3. Let g and n be positive integers. Consider abelian varieties of dimension g

of CM type which are defined over a number field of degree n and have a principal polarisation

defined over the same number field. For each g and n, such abelian varieties fall into only finitely

many isogeny classes over Q.

1 This alternative approach was carried out at [PT14, Lemma 7.4].
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Proof. Let A be a principally polarised abelian variety of dimension g of CM type defined over
a number field of degree n. Then A is isogenous to

t∏
i=1

Ani
i (2.1)

for some pairwise non-isogenous simple abelian varieties A1, . . . , At over Q of CM type, where
n1, . . . , nt are positive integers. Then Fi = End(Ai)⊗Q is a CM field. We have

End(A)⊗Q =
t∏
i=1

Mni(Fi).

Let R be the centre of End(A). Then R is an order in
∏t
i=1 Fi. It follows that

|disc(R)| >
t∏
i=1

|disc(Fi)|.

By Theorem 2.1, |disc(R)| is bounded by a value depending only on g and n. (This uses the
hypothesis that A has a principal polarisation defined over k.) Hence the discriminants |disc(Fi)|
are also bounded. Therefore the Hermite–Minkowski theorem [Wei67, ch. V, Proposition 7,
Corollary 2] implies that there are finitely many possible choices for the Fi.

For each possible field Fi there is a bijection between isogeny classes of simple CM
abelian varieties over Q with endomorphism algebra Fi and primitive CM types for Fi [Mil,
Proposition 3.13]. Each field has finitely many primitive CM types, so we conclude that the
simple CM abelian varieties Ai which can appear in (2.1) lie in finitely many Q-isogeny classes.
Because the integers ni and t in (2.1) are bounded by g, this proves that A itself must lie in one
of finitely many Q-isogeny classes. 2

Proposition 2.4. For all positive integers g and n there are only finitely many Q-isomorphism
classes of principally polarised abelian varieties of dimension g of CM type defined over number
fields of degree n.

Proof. Let (A, λ) be a principally polarised abelian variety of CM type of dimension g defined
over a number field k of degree n.

By Proposition 2.3 there is a finite set S of principally polarised CM abelian varieties of
dimension g defined over number fields of degree n, which contains one representative from each
Q-isogeny class of such abelian varieties. Let B be an abelian variety in S which is Q-isogenous
to A. Let K be a common field of definition of A and B. We can choose K such that [K : Q] 6 n2.
The main theorem of [MW93] tells us that there are constants c and κ depending only on g such
that there exists an isogeny f : B→ A of degree at most

cmax(1, hF (B), [K : Q], δ(A), δ(B))κ.

Here hF denotes the Faltings height and δ denotes the minimum degree of a polarisation of an
abelian variety. The value of hF (B) is bounded because B comes from the finite set S. Since A
and B are principally polarised, we have δ(A) = δ(B) = 1. We conclude that there is a bound
for the degree of f depending only on g and n.

The kernel of f is a subgroup of B(Q) of order deg(f). Since deg(f) is bounded, there are
finitely many possible subgroups. If we know B and ker(f), then the Q-isomorphism class of A is
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determined because A ∼= B/ ker(f). Thus we conclude that there are only finitely many possible
Q-isomorphism classes for the abelian variety A.

By [Mil86, Theorem 18.1], each of these abelian varieties has finitely many principal
polarisations, up to isomorphisms of polarised abelian varieties. 2

Theorem 2.5. For all positive integers g and n there are only finitely many Q-isomorphism
classes of abelian varieties of dimension g of CM type defined over number fields of degree n.

Proof. Let A be an abelian variety of CM type of dimension g defined over a number field k
of degree n. According to [Zar85, § 5.3], (A × A∨)4 has a principal polarisation over k. Hence

by Proposition 2.4, there are only finitely many possible isomorphism classes for (A × A
∨

)4.

By [Mil86, Theorem 18.7], (A×A∨)4 has finitely many direct factors up to isomorphism, which
proves that there are finitely many possibilities for the Q-isomorphism class of A. 2

3. Shimura varieties

The purposes of this section are both to assist the reader who is not familiar with the theory of
Shimura varieties and to set out the notation and terminology.

3.1 Definition of Shimura variety components
For the purposes of this paper, we do not need to worry about multiple connected components of
a Shimura variety or about their exact field of definition. We shall therefore omit the complexities
of the adelic definition of Shimura varieties. We simply define a ‘Shimura variety component’,
which is a geometrically connected component of the canonical model of a Shimura variety. One
can describe the complex points of a Shimura variety component as follows.

A Shimura datum is a pair (G, X) where G is a connected reductive Q-algebraic group and
X is a G(R)-conjugacy class in Hom(S,GR) satisfying [Del79, Axioms 2.1.1.1–2.1.1.3]. Here S
denotes the Deligne torus ResC/RGm. These axioms imply that X is a finite disjoint union of
Hermitian symmetric domains [Del79, Corollaire 1.1.17].

Since we only wish to define connected components of Shimura varieties, we choose a
connected componentX+ ⊂X. Let G(Q)+ denote the stabiliser ofX+ in G(Q). In order to define
congruence subgroups of G(Q)+, pick a representation of Q-algebraic groups ρ : G→ GL(VQ)
and a lattice VZ ⊂ VQ. For each positive integer N , let

Γ(VZ, N) = ker(GL(VZ)→ GL(VZ/NVZ)).

A congruence subgroup of G(Q)+ is defined to be a subgroup of G(Q)+ which contains the
intersection of G(Q)+ with ρ−1(Γ(VZ, N)) as a finite index subgroup for some N . By [Mil05,
Proposition 4.1], this is equivalent to defining a congruence subgroup of G(Q)+ to be the
intersection of G(Q)+ with a compact open subgroup of G(Af). Hence the definition of
congruence subgroups is independent of the choice of ρ and VZ.

If Γ is a congruence subgroup of G(Q)+, then the quotient space SC = Γ\X+ has a
canonical structure as a quasi-projective variety over C, by [BB66]. This variety SC is a connected
component of a Shimura variety MC.

According to Deligne’s theory of canonical models ([Del79], completed in [Mil83]
and [Bor83/84]), the Shimura variety MC has a canonical model over a number field. Hence
the connected component SC also has a model over a number field. The field of definition of the
canonical model of the disconnected Shimura variety is the reflex field E of (G, X). The field
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of definition for the model of SC is an extension of the reflex field determined by the action of
Gal(E/E) on components of MC.

We use the phrase Shimura variety component to mean a variety over a number field whose
extension to C is of the form Γ\X+ and whose structure over a number field comes from the
theory of canonical models, as described above.

A morphism of Shimura data f : (G, X)→ (H, Y ) is a homomorphism of algebraic groups
f : G→ H such that composition with f induces a map f∗ : X → Y . If f∗(X

+) ⊂ Y + and we
have congruence subgroups Γ ⊂ G(Q)+ and ΓH ⊂ H(Q)+ such that f(Γ) ⊂ ΓH, then f induces
a morphism of algebraic varieties

[f ] : Γ\X+
→ ΓH\Y +.

The morphism [f ] is defined over the compositum of the natural fields of definition of the Shimura
variety components Γ\X+ and ΓH\Y +.

3.2 Shimura varieties of Hodge and of abelian type
A fundamental example of a Shimura variety component is Ag, the coarse moduli space of
principally polarised abelian varieties of dimension g. This arises from the Shimura datum
(GSp2g,H±g ), where H±g denotes a certain conjugacy class in Hom(S,GSp2g,R). Using period
matrices, there is a natural identification betweenH±g and the union of the upper and lower Siegel
half-spaces. The complex points of Ag are obtained as the quotient of a connected component
Hg ⊂ H±g by the congruence subgroup Sp2g(Z). The canonical model of Ag is defined over Q,
and the model of Ag over Q which comes from the theory of Shimura varieties is the same as
the model over Q which comes from the interpretation as a moduli space (Deligne’s definition of
canonical models of Shimura varieties was motivated by this case).

A Shimura datum (G, X) is said to be of Hodge type if there exists a morphism of Shimura
data

i : (G, X)→ (GSp2g,H±g )

such that the underlying homomorphism of algebraic groups G → GSp2g is injective. If Γ ⊂
G(Q)+ is a congruence subgroup such that i(Γ) ⊂ Sp2g(Z), then the induced morphism of
Shimura variety components

[i] : Γ\X+
→ Ag

is finite by [Pin90, Proposition 3.8(a)]. Shimura varieties of Hodge type can be described as
moduli spaces of abelian varieties with prescribed Hodge classes (for example, polarisations and
endomorphisms) and a level structure.

A Shimura datum (H, Y ) is said to be of abelian type if there exists a Shimura datum (G, X)
of Hodge type and a morphism of Shimura data

p : (G, X)→ (H, Y )

such that the underlying homomorphism of algebraic groups is surjective and has kernel contained
in the centre of G. If Γ ⊂G(Q)+ and ΓH ⊂ H(Q)+ are congruence subgroups such that p(Γ) ⊂
ΓH, then the resulting morphism of Shimura varieties

[p] : Γ\X+
→ ΓH\Y +

is finite and surjective by [Pin05, Facts 2.6].
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3.3 Orthogonal Shimura varieties
Moduli spaces of K3 surfaces are closely related to Shimura varieties of abelian type associated
with orthogonal groups.

Let Λ be a lattice, that is, a finitely generated free Z-module equipped with a non-degenerate
symmetric bilinear form ψ : Λ × Λ → Z. For any ring R, we shall write ΛR = Λ ⊗Z R. The
orthogonal group O(Λ) is the group of automorphisms of Λ which preserve the bilinear form ψ.
We write O(Λ)Q for the Q-algebraic group whose functor of points is given by

O(Λ)Q(R) = O(ΛR).

Let SO(Λ) ⊂ O(Λ) be the subgroup of automorphisms with determinant +1. The Q-algebraic
group SO(Λ)Q is defined in the obvious fashion. Observe that SO(Λ)Q is geometrically connected
and absolutely almost simple as an algebraic group.

Each homomorphism h : S→ SO(Λ)R induces a Z-Hodge structure Λh with underlying Z-
module Λ. Therefore it makes sense to define ΩΛ to be the set of h ∈ Hom(S,SO(Λ)R) which
satisfy:

(1) dim Λ−1,1
h = dim Λ1,−1

h = 1 and dim Λ0,0
h = rk Λ− 2;

(2) for every non-zero v ∈ Λ1,−1
h we have ψ(v, v) = 0 and ψ(v, v̄) > 0;

(3) ψ(Λ0,0
h ,Λ1,−1

h ) = 0.

By [Huy16, Proposition 6.1.2], the map h 7→ Λ−1,1
h is a bijection between ΩΛ and

{[v] ∈ P(ΛC) : ψ(v, v) = 0, ψ(v, v̄) > 0}.

Note that we have shifted the labelling of the Hodge structures to have type {(1,−1), (0, 0),
(−1, 1)} instead of type {(2, 0), (1, 1), (0, 2)} as in [Huy16, Proposition 6.1.2]. This is necessary
to ensure that the associated homomorphisms S→ GL(Λ)R factor through SO(Λ)R.

If Λ has signature (2, n), then (SO(Λ)Q,ΩΛ) forms a Shimura datum. One can use the
Kuga–Satake construction to show that this is a Shimura datum of abelian type: (SO(Λ)Q,ΩΛ)
can be covered by a Shimura datum associated with the group GSpin(Λ)Q, and this embeds into
the Shimura datum (GSp2g,H±g ) where g = 2n = 2rk Λ−2 (for more details, see [Riz10, § 5.5]).

For future use we note that if Λ has signature (2, n), then ΩΛ has two connected components
interchanged by complex conjugation.

3.4 Finiteness theorem for CM points
We recall the definition of CM points in a Shimura variety component. Let (G, X) be a Shimura
datum and let S be a Shimura variety component whose C-points are Γ\X+. A point s ∈ S(C)
is said to be a CM point if it is the image (under X+

→ Γ\X+) of a homomorphism h ∈ X+

which factors through TR for some Q-torus T ⊂G. This terminology is used because CM points
in Ag are precisely the points which correspond to abelian varieties of CM type. It is part of
the definition of canonical models of Shimura varieties that CM points are defined over number
fields.

Proposition 3.1. Let S be a Shimura variety component of abelian type. For every positive
integer n the set of CM points in S defined over number fields of degree n is finite.

Proof. Proposition 2.4 is precisely the statement of this proposition for Ag. We will use this to
prove the proposition for other cases.
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Consider a Shimura variety component S of abelian type. Let (H, Y ) be the associated
Shimura datum. By the definition of Shimura data of abelian type, there exists a Shimura
datum (G, X) of Hodge type and a morphism of Shimura data

p : (G, X)→ (H, Y )

such that the underlying homomorphism of algebraic groups is surjective and has kernel contained
in the centre of G. Because (G, X) is of Hodge type, there is an injective morphism of Shimura
data

i : (G, X)→ (GSp2g,H±g )

for some positive integer g.
From the definition of Shimura variety components, S(C) = ΓH\Y + for some connected

component Y + ⊂ Y and some congruence subgroup ΓH ⊂ H(Q)+. Let X+ be a connected
component of X which maps onto Y +.

By [Mar91, Lemma I.3.1.1(ii)] there exist congruence subgroups Γ1,Γ2 ⊂ G(Q)+ such that

i(Γ1) ⊂ Sp2g(Z) and p(Γ2) ⊂ ΓH.

Let Γ = Γ1 ∩Γ2. Let S′ be the Shimura variety component whose C-points are Γ\X+. As
discussed in § 3.2, p induces a finite surjective morphism [p] : S′ → S. Let d be the degree of
[p]. Because the kernel of p is contained in the centre of G, a point s ∈ S′(C) is a CM point if
and only if [p](s) is a CM point of S. Hence every CM point of S defined over a number field of
degree n has a preimage in S′ which is a CM point defined over a number field of degree dn. Thus
it suffices to show that S′ has finitely many CM points defined over number fields of degree dn.

As discussed in § 3.2, i induces a finite morphism [i] : S′ → Ag. Any morphism of Shimura
variety components induced by a morphism of Shimura data maps CM points to CM points.
Because the proposition holds for Ag and because [i] is finite, S′ has finitely many CM points
defined over number fields of degree dn. This completes the proof of the proposition. 2

4. Finiteness theorem for K3 surfaces of CM type

In this section, we prove our finiteness theorem for K3 surfaces of CM type defined over number
fields.

Theorem 4.1. For each positive integer n there are only finitely many Q-isomorphism classes
of K3 surfaces of CM type defined over number fields of degree n.

We prove Theorem 4.1 by using orthogonal Shimura varieties. Before discussing the proof
further, we recall the definition of a polarisation of a K3 surface. Let X be a K3 surface over a
perfect field k. A polarisation of X is a k-point of the relative Picard scheme PicX/k (equivalently,

by [Huy16, Proposition 1.2.4], an element of NS(X)Gal(k̄/k)) which over k̄ is the class of a primitive
ample line bundle on X.

For each positive integer d there is a coarse moduli space over Q of polarised K3 surfaces of
degree 2d, which is a quasi-projective variety M2d defined over Q [Huy16, ch. 5]. There is a degree-
2 covering M̃2d→M2d such that M̃2d is a Zariski open subset of an orthogonal Shimura variety
component S2d. The K3 surfaces of CM type are precisely those which correspond to CM points
in S2d. The Shimura variety component S2d is of abelian type, and therefore Proposition 3.1 tells
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us that each S2d contains finitely many CM points defined over number fields of degree n. This

proves Theorem 4.1 if we restrict to K3 surfaces with a polarisation of degree 2d.

However Theorem 4.1 does not require an a priori restriction on the degree of polarisation

of the K3 surfaces involved. Indeed, Theorem 4.1 implies that there is a bound d(n) such that

every CM K3 surface defined over a number field of degree n possesses a polarisation (over Q)

of degree at most d(n).

In order to remove the dependence on the degree of the polarisation, we use Nikulin’s results

on lattices to construct a Shimura variety component S# associated with an orthogonal group of

greater rank, such that there is a finite map S2d→ S# for every d. The idea of constructing such

an S# was suggested to the authors by François Charles, who used a similar method in [Cha16].

Our construction of S# differs from the construction in [Cha16] because we require S2d to map

into S# for every positive integer d, while [Cha16] requires this only for an infinite set of values

of d. On the other hand, the Shimura variety constructed in [Cha16] has an interpretation as a

moduli space of irreducible holomorphic symplectic varieties whereas our S# does not appear to

have a natural interpretation as a moduli space of geometric objects.

The Shimura variety component S# is again of abelian type, and hence there are finitely

many CM points in S# defined over number fields of given degree. This is not sufficient to prove

Theorem 4.1, because a single point in S# might be in the image of S2d for infinitely many values

of d. We shall use some calculations with Hodge structures to show that whenever different K3

surfaces correspond to the same point in S#, they must have isometric transcendental lattices.

Finally a result of Bridgeland and Maciocia [BM01] allows us to conclude that each point in S#

can only come from finitely many K3 surfaces, completing the proof of Theorem 4.1.

4.1 Comparison with the case of abelian varieties

The structure of the proof of Theorem 4.1, for K3 surfaces, can be compared with the proof of

Theorem 2.5, for abelian varieties. In both cases, we can use Proposition 3.1 to easily deduce

that there are finitely many Q-isomorphism classes of the appropriate object equipped with a

polarisation of given degree.

In the abelian varieties case, in order to get a finiteness statement without restricting the

degree of a polarisation, we used Zarhin’s trick (Theorem 2.5). This can be described in terms

of Shimura varieties as follows.

Define a polarisation type to be a sequence of g positive integers (d1, . . . , dg) such that di
divides di+1 for each i. For any polarised abelian variety (A, λ), the elementary divisors of the

associated symplectic form on H1(A(C),Z) form a polarisation type.

For each polarisation type D = (d1, . . . , dg), let Ag,D denote the moduli space of abelian

varieties of dimension g with a polarisation of type D. This is a Shimura variety component.

Zarhin’s trick [Zar85, § 5.3] can be interpreted as constructing a morphism of Shimura variety

components fg,D : Ag,D → A8g. (Note that Zarhin’s trick involves the choice of an integer

quaternion of norm
∏g
i=1 dg. We can make this choice once for each D, thus ensuring that

Zarhin’s construction of a principal polarisation on (A×A∨)4 is sufficiently functorial to give us

a morphism fg,D for each D. Due to this choice, the morphisms fg,D are not unique.)

Thus our construction of morphisms from S2d to a single Shimura variety component S# is

analogous to Zarhin’s trick. The proof of Theorem 2.5 (from Proposition 2.4) plays the same role

for the abelian varieties case as Lemma 4.3 and Proposition 4.4 do for the K3 case.
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4.2 Moduli spaces of polarised K3 surfaces
We define a Shimura variety component S2d as follows. Let Λ2d denote the lattice

Λ2d = E8(−1)⊕2 ⊕ U⊕2 ⊕ 〈−2d〉.

The significance of this lattice is that if X is a K3 surface over C and λ ∈ H2(X,Z(1)) is
a polarisation of degree 2d, then the orthogonal complement λ⊥ ⊂ H2(X,Z(1)) is a lattice
isomorphic to Λ2d (where H2(X,Z(1)) is equipped with the intersection pairing), see [Huy16,
Example 14.1.11]. The lattice Λ2d has signature (2, 19), so it gives rise to an orthogonal Shimura
datum (SO(Λ2d)Q,Ω2d).

For any lattice Λ, the dual lattice is

Λ∨ = {v ∈ ΛQ : ψ(v,Λ) ⊂ Z}.

The discriminant group AΛ is the quotient Λ∨/Λ. This is a finite abelian group. The orthogonal
group O(Λ) acts on AΛ. We define Õ(Λ) ⊂ O(Λ) to be the kernel of the action on the discriminant
group.

We write Ω2d for the period domain ΩΛ2d
, as defined in § 3.3. Pick a connected component

Ω+
2d ⊂ Ω2d. Let

S̃O(Λ2d)+ = SO(Λ2d)+ ∩ Õ(Λ2d).

Let S2d be the Shimura variety component whose complex points are given by S̃O(Λ2d)+\Ω+
2d.

Knowing exactly which congruence subgroup is used to define S2d will be important at the end
of § 4.3. As discussed in [MP15, § 3.1], this Shimura variety component is defined over Q.

As described in [Huy16, Corollary 6.4.3], the moduli space M2d,C can be embedded as a

Zariski open subset of the quotient Õ(Λ2d)\Ω2d. This is a quotient of a Hermitian symmetric
domain by an arithmetic group, and therefore is very similar to a Shimura variety. However
the reductive group used in the definition of a Shimura datum is required to be connected and
therefore we must use SO(Λ2d)Q rather than O(Λ2d)Q. Hence M2d,C does not itself embed in a
Shimura variety component but rather we must use a double cover M̃2d →M2d (corresponding

to the fact that S̃O(Λ2d) is an index-2 subgroup of Õ(Λ2d)).
The double cover M̃2d is defined to be the coarse moduli space of triples (X,λ, u) where X

is a K3 surface, λ is a polarisation of X of degree 2d and u is an isometry

det(P 2(X,Z2(1)))→ det(Λ2d ⊗Z Z2).

Here P 2(X,Z2(1)) denotes the orthogonal complement of the image of λ in the 2-adic cohomology
H2(X,Z2(1)).

There is an embedding of algebraic varieties M̃2d→ S2d which realises M̃2d as a Zariski open
subset of S2d. The fact that this embedding is defined over Q was essentially first proved by
Rizov ([Riz10, Theorem 3.9.1]; see also [MP15, Corollary 4.4]).

4.3 Construction of S#

We now construct a Shimura variety component S# such that there is a finite morphism
f2d : S2d→ S# for every d ∈ N. We do this by producing a lattice Λ# with a primitive embedding
Λ2d→ Λ# for every d ∈ N, using the following theorem of Nikulin.2

2 A simpler construction based on Lagrange’s theorem was more recently used by Yiwei She in [She17, Lemma
3.3.1].
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Theorem 4.2 [Nik79, Corollary 1.12.3]. Let Λ be an even lattice of signature (m+,m−) with
discriminant group AΛ. Let s(AΛ) be the minimum size of a generating set for AΛ. There exists
a primitive embedding of Λ into an even unimodular lattice of signature (n+, n−) if the following
conditions are simultaneously satisfied:

(i) n+ − n− ≡ 0 (mod 8);

(ii) n+ > m+, n− > m−;

(iii) (n+ + n−)− (m+ +m−) > s(AΛ).

In the case Λ = Λ2d the discriminant group is Z/2dZ and so s(AΛ2d
) = 1. Thus in order to

apply this theorem to obtain embeddings Λ2d ↪→ Λ#, the signature (n+, n−) of Λ# must satisfy

n+ − n− ≡ 0 (mod 8); n+ > 2, n− > 19; n+ + n− > 22.

Furthermore, in order for Λ# to give rise to an orthogonal Shimura variety component, we must
have n+ = 2. The conditions therefore reduce to n− ≡ 2 (mod 8) and n− > 20, so we can choose
n− = 26 to satisfy them.

According to [Ser70, ch. V, Theorem 5], there is a unique even unimodular lattice of signature
(2, 26), namely

Λ# = E8(−1)⊕3 ⊕ U⊕2.

Since Λ# is unimodular, we have SO(Λ#) = S̃O(Λ#). By Theorem 4.2, there is a primitive
embedding ι2d : Λ2d ↪→ Λ# for every d ∈ N. These embeddings are not unique, we simply pick
one for each d.

The embedding ι2d induces an injection of special orthogonal groups over Q

r2d : SO(Λ2d)Q→ SO(Λ#)Q,

extending isometries of Λ2d,Q to Λ#,Q by letting them act trivially on the orthogonal complement
of Λ2d,Q. Hence we get an injective morphism of Shimura data

(SO(Λ2d)Q,Ω2d)→ (SO(Λ#)Q,Ω#),

where we write Ω# = ΩΛ#
. The map Ω2d → Ω# commutes with complex conjugation, hence it

induces a bijection π0(Ω2d)−̃→π0(Ω#). Thus we can choose Ω+
2d for each d in such a way that

the images of all Ω+
2d in Ω# are contained in the same connected component. Let us call this

component Ω+
#.

Let S# be the Shimura variety component whose C-points are SO(Λ#)+\Ω+
#.

According to [Huy16, Proposition 14.2.6], r2d maps the congruence subgroup S̃O(Λ2d) into
SO(Λ#). Hence r2d induces a morphism of Shimura variety components

f2d : S2d→ S#.

Because r2d is an injective homomorphism of algebraic groups, f2d is finite by [Pin90,
Proposition 3.8(a)].

Note that r2d does not map SO(Λ2d) into SO(Λ#), because the embedding Λ2d ↪→ Λ# is not
split over Z. Thus it is important to us exactly which congruence subgroup is used in defining
the Shimura variety component S2d (namely S̃O(Λ2d)+), and that r2d maps this subgroup into
SO(Λ#)+, so that we can deduce that the Shimura variety components S2d (and not just covers
of them) map into S#.
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4.4 The transcendental lattice and S#

By Proposition 3.1, S# has finitely many CM points defined over number fields of given degree n.
However this is not enough to establish that⋃

d∈N
{x ∈ S2d : x is a CM point and x is defined over a number field of degree n}

is finite, because a single point of S# might lie in the image of infinitely many S2d.
Indeed, the union described above is infinite. To see this, consider any K3 surface X of CM

type. Then NS(X) has even rank and in particular has rank at least two. Pick two linearly
independent polarisations λ1, λ2 of X and choose a number field k over which both polarisations
are defined. Now infinitely many integer combinations of these polarisations will be primitive
elements of NS(Xk). It follows that Xk has polarisations of arbitrarily large degree, giving rise
to CM points in infinitely many varieties S2d all defined over the same number field.

If X is a K3 surface over C, its transcendental lattice T (X) is the orthogonal complement of
the Néron–Severi lattice NS(X) in H2(X,Z(1)).

We shall show that if two polarised K3 surfaces give rise to the same point in S#, then
their transcendental lattices are Hodge isometric, that is, isomorphic in the category of Z-Hodge
structures with a quadratic form. A result of Bridgeland and Maciocia [BM01] says that only
finitely many K3 surfaces can have transcendental lattices in a given Hodge isometry class. Thus
the points in all the moduli spaces M̃2d which map to a single point in S# can only be associated
with finitely many isomorphism classes of complex K3 surfaces (forgetting the polarisations).

Lemma 4.3. Let (X,λ) and (X ′, λ′) be polarised K3 surfaces over C of degrees 2d and 2d′

respectively. Let x ∈ M̃2d(C) and x′ ∈ M̃2d′(C) be points whose images in the moduli spaces
M2d(C) and M2d′(C) correspond to (X,λ) and (X ′, λ′), respectively. If f2d(x) = f2d′(x

′) in S#(C),
then the transcendental lattices T (X) and T (X ′) are Hodge isometric.

Proof. Choose points x̃ ∈ Ω+
2d and x̃′ ∈ Ω+

2d′ which lift x and x′ respectively. Let

s̃ = (r2d)∗(x̃) ∈ Ω+
#, s̃′ = (r2d′)∗(x̃

′) ∈ Ω+
#.

The points x̃, x̃′, s̃ and s̃′ induce Z-Hodge structures Hx, Hx′ , Hs and Hs′ which have underlying
Z-modules Λ2d, Λ2d′ , Λ# and Λ#, respectively.

By [Zar83, Theorem 1.4.1], T (X)Q is an irreducible Q-Hodge structure. By construction,
T (X) is a primitive lattice in P 2(X,Z(1)). Consequently, if we choose an isometry of Z-Hodge
structures P 2(X,Z(1)) ∼= Hx, it will identify T (X) with the smallest primitive sub-Z-Hodge
structure of Hx whose complexification contains H−1,1

x .
Via the primitive embedding ι2d : Λ2d → Λ#, we can view Hx as a sub-Hodge structure

of Hs. Because Hx and Hs are Hodge structures coming from orthogonal Shimura data, their
(−1, 1)-parts have dimension 1, and so H−1,1

x = H−1,1
s . Hence T (X) is isometric to the smallest

primitive sub-Z-Hodge structure of Hs whose complexification contains H−1,1
s .

Similarly, T (X ′) is isometric to the smallest primitive sub-Z-Hodge structure of Hs′ whose
complexification contains H−1,1

s′ .
Because f2d(x) = f2d′(x

′), there is a γ ∈ SO(Λ#)+ such that s̃′ = γs̃. It induces a Hodge
isometry Hs→ Hs′ . Therefore T (X) is Hodge isometric to T (X ′). 2

The following proposition is stated in [BM01] in the form ‘a K3 surface over C has only finitely
many Fourier–Mukai partners.’ It was shown by Orlov [Orl97, Theorem 3.3] that K3 surfaces
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are Fourier–Mukai partners if and only if they have Hodge isometric transcendental lattices. In
fact, the proof of the proposition in [BM01] is entirely in terms of lattices, and therefore we do
not really need the notion of Fourier–Mukai partners at all. Since the proof is short and relies
on similar techniques to the manipulations of lattices used elsewhere in this paper, we have
reproduced a version of it here.

Proposition 4.4 [BM01, Proposition 5.3]. Let T be a Z-Hodge structure with a quadratic form.
There are finitely many isomorphism classes of K3 surfaces X over C for which the transcendental
lattice T (X) is Hodge isometric to T .

Proof. The Néron–Severi group NS(X) is the orthogonal complement of T (X) in H2(X,Z(1)),
which is an even unimodular lattice. Thus the discriminant groups of T (X) and NS(X) are
canonically isomorphic, whereas their discriminant forms differ by a sign [Nik79, Corollary 1.6.2].
According to [Cas78, ch. 9, Theorem 1.1] there are only finitely many isometry classes of lattices
with given rank and discriminant. Hence there are finitely many choices for NS(X).

We know that

T (X)⊕NS(X) ⊂ H2(X,Z(1)) ⊂ (T (X)⊕NS(X))∨.

The index of T (X) ⊕ NS(X) in (T (X) ⊕ NS(X))∨ is finite. Hence for each possible isometry
class of NS(X), there are finitely many possibilities for H2(X,Z(1)) as a subgroup of the group
(T (X)⊕NS(X))∨.

Because NS(X) is purely of Hodge type (0, 0), the Hodge structure on T (X) determines the
Hodge structure on (T (X)⊕NS(X))∨ and hence on H2(X,Z(1)).

Hence if we fix T (X) up to Hodge isometry, then there are finitely many possibilities for
H2(X,Z(1)) up to Hodge isometry. Finally, by the global Torelli theorem for unpolarised K3
surfaces ([Huy16, Theorem 7.5.3], building on [PS71]), the Hodge isometry class of H2(X,Z(1))
determines X. 2

To complete the proof of Theorem 4.1, note that if X is a K3 surface defined over a number
field k of degree n, then X has a polarisation of some degree 2d defined over k and therefore
gives rise to a point in M2d(k). We can lift this to a point x ∈ M̃2d(Q) defined over a number
field of degree 2n. If X is a K3 surface of CM type, then x is a CM point in M̃2d. It follows that
f2d(x) is a CM point in S# defined over a number field of degree 2n. By Proposition 3.1, there
are finitely many such CM points in S#. Combining Lemma 4.3 and Proposition 4.4 we see that
each point in S# comes from only finitely many Q-isomorphism classes of K3 surfaces.

5. Brauer groups of forms and the Mumford–Tate conjecture

5.1 Mumford–Tate conjecture
Let X be a smooth, projective and geometrically integral variety over a field k that is finitely
generated over Q. We choose an embedding k ↪→ C and define H as the quotient of H2(XC,Z(1))
by its torsion subgroup. We write HQ = H ⊗Z Q, HR = H ⊗Z R, HC = H ⊗Z C, and for a prime
` write H` = H ⊗Z Z`.

Let GL(H) be the group Z-scheme such that for any commutative ring R we have
GL(H)(R) = GL(H ⊗Z R). The generic fibre GL(H)Q is the algebraic group GL(HQ) over Q.
The Mumford–Tate group GQ ⊂GL(HQ) of the natural weight zero Hodge structure on H is the
smallest connected algebraic group over Q such that GR contains the image of the homomorphism
h : S→GL(H)R. It is well known that GQ is reductive so that HQ is a semisimple GQ-module.
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Let G be the group Z-scheme which is the Zariski closure of the Mumford–Tate group GQ in
GL(H).

Let N be the quotient of NS(X) by its torsion subgroup. By the Lefschetz (1, 1)-theorem
one has

(HQ)GQ = H0,0 ∩HQ = NQ. (5.1)

For a field L such that k ⊂ L ⊂ k̄ we write ΓL for the Galois group Gal(k̄/L).
The comparison theorems between Betti and étale cohomology provide an isomorphism H`

∼=
H2

ét(X,Z`(1)). Let ρ` : Γk → GL(H)(Z`) be the resulting continuous representation. We define
Gk,` to be the Zariski closure of ρ`(Γk) in GL(H)Z`

. By a result of Serre there exists a finite
field extension kconn of k such that for every field K ⊂ k̄ containing kconn and every prime ` the
group GK,`,Q`

is connected, see [LP97].
Let us recall the Mumford–Tate conjecture, together with its integral and adelic variants.

Let ρ : Γk → GL(H)(Ẑ) be the continuous representation of Γk whose `-adic component is ρ`.
The Mumford–Tate conjecture at a prime ` says that GZ`

= Gkconn,`. By theorems of
Bogomolov [Bog80], Serre [Ser00] and Henniart [Hen82] this implies that ρ`(Γkconn) is an open
subgroup of G(Z`) of finite index.

The integral Mumford–Tate conjecture says that there is a constant C such that for all primes
` the image ρ`(Γkconn) is a subgroup of G(Z`) of index at most C. This was conjectured by Serre
to hold for any X, see [Ser77, Conjecture C.3.7] and [Ser94, 10.3].

The adelic Mumford–Tate conjecture says that ρ(Γkconn) is an open subgroup of G(Ẑ) and
therefore (since G(Ẑ) is compact) has finite index. This conjecture can only be expected to hold
if the Hodge structure on H is Hodge-maximal [CM15, 2.6], which is the case when X is a K3
surface [CM15, Proposition 6.2].

When X is an abelian variety, the classical Mumford–Tate conjecture for X is stated in terms
of the natural Hodge structure on the first homology group H1 = H1(XC,Z). Then H1 ⊗Z Z` is
identified with the `-adic Tate module of X and so carries a natural Galois representation. The
classical Mumford–Tate conjecture has integral and adelic versions.

It is clear that the adelic variant of the Mumford–Tate conjecture implies its integral variant,
which implies the usual Mumford–Tate conjecture for any `.

5.2 Brauer groups
Grothendieck [Gro68] defines the (cohomological) Brauer group of X as Br(X) = H2

ét(X,Gm).
We call Br(X) the geometric Brauer group of X. By [CS13, Théorème 2.1] the image of the
natural map Br(X)→ Br(X) is contained in Br(X)Γk as a subgroup of finite index, which can
be explicitly bounded when k is a number field [CS13, Théorèmes 2.2 et 4.3].

Grothendieck’s classical computation [Gro68, § 8] shows that Br(X) is a torsion abelian group
which is an extension of a finite group by a divisible group Br(X)div isomorphic to (Q/Z)b2−n,
where b2 = rk(H) and n = rk(NS(X)). Let

T`(Br(X)) = lim
←−Br(X)[`a], V`(Br(X)) = T`(Br(X))⊗Z`

Q`.

Then Br(X)div is the direct sum of its `-primary torsion subgroups

Br(X)div{`} = T`(Br(X))⊗Z`
Q`/Z`.

For n > 1 the Kummer exact sequence gives rise to exact sequences of Γk-modules

0→ NS(X)/`n→ H2
ét(X,µ`n)→ Br(X)[`n]→ 0.

Let N` = N ⊗Z Z`. Taking the projective limit in n we obtain the exact sequence of Γk-modules

0→ N`→ H`→ T`(Br(X))→ 0.
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5.3 Uniform boundedness of Brauer groups
Recall that a variety Y over a field L such that k ⊂ L ⊂ k̄ is called a (k̄/L)-form of X if
Y ×L k̄ ∼= X.

Definition. We say that the Galois invariant subgroups of the geometric Brauer groups of
forms of X are uniformly bounded if for each positive integer n there exists a constant C = Cn,X
such that for every (k̄/L)-form Y of X defined over a field extension L/k of degree [L : k] 6 n
we have |Br(Y )ΓL | < C.

The main result of this section is the following theorem.

Theorem 5.1. Let X be a smooth, projective and geometrically integral variety defined over a
field k which is finitely generated over Q. If the integral Mumford–Tate conjecture is true for X,
then the Galois invariant subgroups of the geometric Brauer groups of forms of X are uniformly
bounded.

Corollary 5.2. Let A be an abelian variety over a field k finitely generated over Q for which
the classical Mumford–Tate conjecture holds at a prime `, for example an abelian variety of CM
type. Then the Galois invariant subgroups of the geometric Brauer groups of forms of A are
uniformly bounded.

Proof. For an abelian variety, Cadoret and Moonen show in [CM15, Theorem A(i)] that the
classical Mumford–Tate conjecture for one prime ` implies the integral classical Mumford–Tate
conjecture. Let G1,Q be the Mumford–Tate group of A defined by the Hodge structure on H1.
There is a natural surjective homomorphism G1→G and it is not hard to see that the integral
classical Mumford–Tate conjecture implies the integral Mumford–Tate conjecture for H as stated
above.

We note that the Mumford–Tate conjecture holds for abelian varieties of CM type. This
was proved by Pohlmann [Poh68] for abelian varieties which are isogenous to a power of an
absolutely simple abelian variety of CM type. For general abelian varieties of CM type, it follows
from [Vas08, Theorem 1.3.1].

Thus we can conclude by appealing to Theorem 5.1. 2

Corollary 5.3. Let X be a K3 surface over a field k finitely generated over Q. Then the Galois
invariant subgroups of the geometric Brauer groups of forms of X are uniformly bounded.

Proof. The adelic Mumford–Tate conjecture is true for K3 surfaces by [CM15, Theorem
6.6]. (This result builds on the proof of the Mumford–Tate conjecture for K3 surfaces by
Tankeev [Tan95] and André [And96], as well as on previous work of Cadoret and Kret [CK16].)
Thus the integral Mumford–Tate conjecture holds for X. 2

In particular, for a K3 surface X over k, Corollary 5.3 allows one to recover the finiteness of
Br(X)Γk established earlier in [SZ08].

5.4 Proof of Theorem 5.1
The proof of Theorem 5.1 has two steps. In Proposition 5.4 we show that it is possible to find
a finite extension k′ of L such that Br(X) ∼= Br(Y ) as Γk′-modules and such that the degree
m = [k′ : L] is bounded in terms of X. For this we can assume without loss of generality that
k = L. Then we have Br(Y )ΓL ⊂ Br(Y )Γ′

= Br(X)Γ′
, where Γ′ = Γk′ . Hence it suffices to bound

the size of Br(X)Γ′
in terms of m. This is what we do in Proposition 5.5, which is the second

step of the proof.
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Proposition 5.4. Let X be a smooth, proper and geometrically integral variety defined over a
field k of characteristic zero. Then there exists a constant m = mX such that for every (k̄/k)-form
Y of X we have an isomorphism Br(Y )div

∼= Br(X)div of Γk′-modules, where k′ is a field extension
of k of degree [k′ : k] 6 m.

Proof. The varieties X and Y are defined over a subfield k0 ⊂ k which is finitely generated
over Q. Furthermore, k0 can be chosen so that the isomorphism Y ∼= X is defined over a finite
extension of k0. Thus without loss of generality we can assume that k is finitely generated over Q.
Let us choose an embedding k̄ ↪→ C. This allows us to define H as the quotient of H2(XC,Z(1))
by its torsion subgroup. The automorphism group Aut(X) is a subgroup of Aut(XC), so we have
a natural action of Aut(X) on H.

The group Aut(X) has a natural structure of a k-scheme which is locally of finite type. The
action of Γk on Aut(X) is continuous when Aut(X) is given discrete topology, which means that
the stabilisers of the elements of Aut(X) are open subgroups of the profinite group Γk. By the
comparison theorems between Betti and `-adic étale cohomology, the action of Aut(X) on H is
compatible with the natural action of Aut(X) on H` identified with the quotient of H2

ét(X,Z`(1))
by its torsion subgroup. Thus the images of both actions are canonically isomorphic.

We define A(X) as the image of the natural action of Aut(X) on H. Since A(X) is identified
with the image of the action of Aut(X) on H`, the discrete group A(X) inherits a continuous
action of Γk so that the natural surjective homomorphism Aut(X)→ A(X) is Γk-equivariant.
The action of Γk on A(X) is a continuous homomorphism Γk → Aut(A(X)), where the group
of automorphisms Aut(A(X)) of the group A(X) is given discrete topology. Since Γk is compact
and Aut(A(X)) is discrete, this homomorphism has finite image. Replacing k by a finite field
extension, we can assume that Γk acts trivially on A(X).

Since Y is a (k̄/k)-form of X, by Galois descent Y can be obtained by twisting X with a
continuous 1-cocycle c : Γk → Aut(X). Composing c with Aut(X)→ A(X) we obtain a cocycle
c̃ : Γk → A(X). The action of Aut(X) on T`(Br(X)) = H`/N` factors through A(X). Hence the
Γk-module T`(Br(Y )) is the twist of the Γk-module T`(Br(X)) by c̃ composed with the natural
homomorphism A(X)→ GL(T`(Br(X))).

We have arranged that the action of Γk on A(X) is trivial, therefore the cocycle c̃ is a
homomorphism Γk → A(X). Since Γk is compact and A(X) is discrete, the image G = c̃(Γk)
is finite. Let k′ ⊂ k̄ be the invariant field of the kernel of c̃. The group G is a finite subgroup
of GL(b2,Z), where b2 is the rank of H. Minkowski’s lemma [Min87] says that there exists a
constant m depending only on b2 such that |G| = [k′ : k] 6 m. The cocycle c̃ is trivialised by the
base change from k to k′, hence Br(X)div and Br(Y )div are isomorphic Γk′-modules. 2

Proposition 5.5. Let X be a smooth, projective and geometrically integral variety defined over
a field k which is finitely generated over Q. Assume that the integral Mumford–Tate conjecture
is true for X. Then for each positive integer m there exists a constant C ′ = C ′m,X such that for

every subgroup Γ′ ⊂ Γk of index m we have |Br(X̄)Γ′ | < C ′.

In order to prove Proposition 5.5, it is clear that we can replace k by a finite field extension,
so we assume that k = kconn. Since Br(X) is an extension of a finite abelian group by Br(X)div,
the proposition follows from the following two claims.

Claim 1. There is a positive `0 = `0(X,m) such that Br(X)div[`]Γ
′

= 0 for ` > `0.

Claim 2. For each ` there is a positive integer a = a(X,m, `) such that `a Br(X)div{`}Γ
′

= 0.
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Note that `0 and a do not depend on Γ′ but only on the index m = [Γk : Γ′].

Proof of Claim 1. Since the integral Mumford–Tate conjecture is true for X, there is a constant
C such that for all primes ` the image ρ`(Γk) is a subgroup of G(Z`) of index at most C. The
isomorphism of Γ-modules Br(X)[`] = T`(Br(X))/` shows that to prove Claim 1, it is enough
to prove that there exists `0 such that (T`(Br(X))/`)S = 0 for any ` > `0 and any subgroup
S ⊂ G(Z`) of index at most mC.

The generic fibre of G → Spec(Z) is the connected algebraic group GQ. By [EGAIV,
Proposition 9.7.8] we can assume that `0 is large enough so that for any prime ` > `0 the
fibre G ×Z Spec(F`) is a connected algebraic group over F`. We identify H/N ∼= Zr with the
Z-points of the affine space ArZ over Spec(Z). Then T`(Br(X))/` = (H/N)/` is identified with
ArZ(F`). The representation G→ GL(HQ/NQ) extends to a natural action of G on ArZ. Let us
denote the corresponding morphism by

σ : G× ArZ→ ArZ.

Consider the morphism

(σ, p2) : G× ArZ −→ ArZ × ArZ.

Let W be the closed subscheme of G×ArZ defined as the inverse image of the diagonal in ArZ×ArZ.
The geometric fibres of p2 : W → ArZ are the stabilisers of geometric points. The geometric points
x̄ ∈ ArZ that are fixed by the action of G are those for which the fibre of p2 : W → ArZ is the
whole of G×Z Spec(k(x̄)).

We write P for the product of all primes less than `0. Then G ×Z Spec(F`) is a connected
algebraic group over F` whenever (`, P ) = 1. Thus a geometric point x̄ ∈ ArZ[1/P ] is a fixed point

if and only if the dimension of its stabiliser is d = dim(G).
By [EGAIV, Théorème 13.1.3], the dimension of the fibres of p2 : W → ArZ is upper semi-

continuous on the source W . Since the identity section of G×ArZ→ ArZ factors through W , we
can pull back by this section to conclude that the dimension of the fibres of p2 : W → ArZ is upper
semi-continuous on the target ArZ. Therefore we have a closed subscheme F ⊂ ArZ[1/P ] defined as
the scheme of points whose stabilisers have maximal dimension d. The geometric points of F are
the fixed geometric points for the action of G×Z Z[1/P ].

By (5.1) we have (HC)GC = NC. Since HC is a semisimple GC-module, this implies
(HC/NC)GC = 0. Thus the generic fibre FQ ⊂ ArQ is one point {0}. The scheme F has finite
type, so it has only finitely many irreducible components. Exactly one of them dominates
Spec(Z[1/P ]), namely, the image of the section Spec(Z[1/P ]) → ArZ[1/P ] corresponding to the

origin in Ar(Z[1/P ]). Let us write ArZ[1/P ]\{0} for the complement to the image of this section.
Other irreducible components of F do not meet the generic fibre FQ, so they are contained in the
fibres of the structure morphism F → Spec(Z[1/P ]). Therefore, after increasing `0 we can assume
that the stabiliser of every geometric point x̄ ∈ ArZ[1/P ]\{0} is a subgroup of G×Z Spec(k(x̄)) of
dimension at most d− 1.

Let W ′ be the inverse image of ArZ[1/P ]\{0} in W ×Z Z[1/P ], and let

π : W ′ −→ ArZ[1/P ]\{0}

be the natural projection. The number of geometric connected components of the fibres of π
is a constructible function [EGAIV, Corollaire 9.7.9], hence there exists a constant h such that
for any M ∈ ArZ[1/P ](F`), M 6= 0, the fibre WM = π−1(M) has at most h geometric connected
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components. By a result of Nori [Nor87, Lemma 3.5], the number of F`-points of a connected
algebraic group G over F` satisfies

(`− 1)dim(G) 6 |G(F`)| 6 (`+ 1)dim(G).

By the choice of `0 each geometric fibre of π has dimension at most d − 1. Thus |WM (F`)| 6
h(`+1)d−1. On the other hand, we have |G(F`)|> (`−1)d. After increasing `0 we obtain that there
exists an ε > 0 such that for any prime ` > `0 and any F`-point M ∈ ArZ[1/P ], M 6= 0, the index

of the stabiliser of M in G(F`) is greater than ε`. Take `0 > ε−1mC. Then no non-zero point of
T`(Br(X))/` is fixed by a subgroup S ⊂G(F`) of index at most mC, hence (T`(Br(X))/`)S = 0.
This finishes the proof of Claim 1. 2

Proof of Claim 2. We now fix `. By the Mumford–Tate conjecture ρ`(Γ) is a subgroup of finite
index in G(Z`). Since G(Z`) is a compact `-adic analytic Lie group, by Lazard’s theory it is a
topologically finitely generated profinite group (see, for example, [DdSMS91, Corollary 9.36]).
Then G(Z`) has only finitely many open subgroups of fixed index [DdSMS91, Proposition 1.6].
Thus ρ`(Γ) has only finitely many subgroups S of index at most m. It suffices to show that
Br(X){`}S is finite for each of these subgroups S.

It is well known that Br(X)div{`}S is finite if V`(Br(X))S = 0. Indeed, if Br(X){`}S is
infinite, then Br(X) has an S-stable element of order `n for each positive integer n. The limit of
a projective system of non-empty finite sets is non-empty. Applying this to the limit of the sets
of elements of order `n in Br(X)S we obtain a non-zero element of T`(Br(X))S , hence a non-zero
element of V`(Br(X))S .

We claim that we have the following equalities

V`(Br(X))S = (HQ`
/NQ`

)S = (HQ`
/NQ`

)GQ` = (HQ`
)GQ`/NQ`

= 0.

The second one is due to the fact that S is a Zariski dense subset of the algebraic group GQ`
. Since

GQ`
is reductive, the GQ`

-module HQ`
is semisimple, and this implies the third equality. The last

equality follows from (5.1). This proves Claim 2, and so finishes the proof of Theorem 5.1. 2

Remark. The same proof can be used to prove the following statement. Let A be an abelian
variety over a field k finitely generated over Q for which the classical Mumford–Tate conjecture
holds at a prime `. For each positive integer n there exists a constant C = Cn,A such that for
every abelian variety B over a field L, where k ⊂ L ⊂ k̄ and [L : k] 6 n, if B is a (k̄/L)-form of
A, then |B(L)tors| < C.
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And96 Y. André, On the Shafarevich and Tate conjectures for hyperkähler varieties, Math. Ann. 305
(1996), 205–248.

AGHM18 F. Andreatta, E. Z. Goren, B. Howard and K. Madapusi Pera, Faltings heights of abelian
varieties with complex multiplication, Ann. of Math. (2) 187 (2018), 391–531.

1589

https://doi.org/10.1112/S0010437X18007169 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007169


M. Orr and A. N. Skorobogatov

BB66 W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric
domains, Ann. of Math. (2) 84 (1966), 442–528.

Bog80 F. A. Bogomolov, Points of finite order on abelian varieties (Russian), Izv. Akad. Nauk SSSR
Ser. Mat. 44 (1980), 782–804.

Bor83/84 M. V. Borovoi, Langlands’ conjecture concerning conjugation of connected Shimura varieties,
Selecta Math. Soviet. 3 (1983/84), 3–39.

BM01 T. Bridgeland and A. Maciocia, Complex surfaces with equivalent derived categories, Math. Z.
236 (2001), 677–697.
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