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Summary

We would like to use maximum likelihood to estimate parameters such as the effective population
size Ne, or, if we do not know mutation rates, the product 4Ne/i of mutation rate per site and
effective population size. To compute the likelihood for a sample of unrecombined nucleotide
sequences taken from a random-mating population it is necessary to sum over all genealogies that
could have led to the sequences, computing for each one the probability that it would have yielded
the sequences, and weighting each one by its prior probability. The genealogies vary in tree
topology and in branch lengths. Although the likelihood and the prior are straightforward to
compute, the summation over all genealogies seems at first sight hopelessly difficult. This paper
reports that it is possible to carry out a Monte Carlo integration to evaluate the likelihoods
approximately. The method uses bootstrap sampling of sites to create data sets for each of which a
maximum likelihood tree is estimated. The resulting trees are assumed to be sampled from a
distribution whose height is proportional to the likelihood surface for the full data. That it will be
so is dependent on a theorem which is not proven, but seems likely to be true if the sequences are
not short. One can use the resulting estimated likelihood curve to make a maximum likelihood
estimate of the parameter of interest, Ne or of 4Ne/i. The method requires at least 100 times the
computational effort required for estimation of a phylogeny by maximum likelihood, but is
practical on today's work stations. The method does not at present have any way of dealing with
recombination.

1. Introduction

Given homologous nucleotide sequences sampled
randomly from a population, how could we make
estimates of parameters of evolutionary interest? If
the sequences have diverged by neutral mutation,
without recombination, from an ancestral gene ac-
cording to a genealogy determined by genetic drift in
an isolated population of constant effective size, there
are only two parameters controlling the processes, the
effective population number Ne and the neutral
mutation rate per generation, /t. It will turn out that
we can only estimate these by estimating their product,
the most convenient parameter being

= Prob(S| #,,/*). (2)

0 = 4Nefi. (1)

The method used here will be maximum likelihood. If a
random sample of« nucleotide sequences is called S, the
likelihood will be the probability of 5 given Ne and /t,

'Electronic mail address: joe@genetics.washington.edu.

We can break up (2) into terms corresponding to
the different possible genealogies G' on which evol-
ution could have led to the observed sequences. As we
assume that there is no recombination, each gene is
descended from a single ancestral copy, and the
genealogy of the genes is a branching tree with branch
lengths that are scaled in generations. For each value
of G' the contribution to (2) consists of the probability
P(G' | Ne) that genetic drift would have led to this
genealogy G' of the sequences, times the probability
P(S\ G',/i) that these particular sequences would arise
on that genealogy, given the neutral mutation rate.
Therefore

L = 2 Prob(G'|AQ Prob(S|G',/t).
G'

(3)

This equation, given also in Felsenstein (1988), is in
a sense the fundamental formula for likelihoods of
sequence samples under neutral mutation in the
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absence of recombination. The two probabilities are
each fairly straightforward to compute. The difficulty
comes with the summation which must run over all
possible genealogies, of which there are a vast number.
In this paper I present a resampling method of
carrying out this summation approximately, using
maximum likelihood estimates of G" on bootstrap-
resampled data sets to choose points for Monte Carlo
integration.

Strobeck (1983) has previously considered the
same problem for the case of the 'infinite sites model'
(Watterson, 1975) where each mutation occurs at a
different site, so that no reversals or parallelisms
occur. In this case, which is in effect the limit as d-+0,
the computations are not as daunting, as only a
limited number of genealogies are compatible with the
data. He gave recursion formulae for the likelihood in
some cases with small numbers of different sequences
observed. He did not give general formulas. Griffiths
(1989) has shown how to do the computations of the
likelihood for the infinite sites model for any number
of sequences, in the case where it is known which state
is the ancestral one for each site. This is usually not
known. He has made available a computer program
to calculate likelihoods for that case. The present
work proposes a method that can cope with all values
of 6, and cases when there may be ambiguities about
the genealogy.

One alternative to the present computation is the
use of pairwise methods, which make a separate
estimate of 6 for each pair of sequences in a sample,
and average these. Nei & Tajima (1981) have presented
methods for making such an estimate. They have been
used by Avise (1987). Watterson's (1975) estimation
method, based on the number of segregating sites in a
sample, is another alternative. Both of these are
computationally far faster than the methods proposed
here, but I have shown (Felsenstein, 1992) that in the
limiting case of long sequences they also make far less
efficient use of the data. It is not known to what extent
this inefficiency will appear with sequences of finite
length, but it must be applicable to sufficiently long
sequences, and thus it seems at least worthwhile to try
to find a way of making a maximum likelihood
estimate of 0.

2. The coalescent prior

The quantity Prob (C | Ne) is the prior probability of
the genealogy G' under genetic drift. We assume that
there are no hitchhiking effects of selection at nearby
loci. If there are, they will distort this probability,
often making the observed sequences on average more
closely related than would be the case under pure
genetic drift.

Kingman (1982a, b) has shown that, under a
classical Wright-Fisher model of the reproduction of
an idealized population of constant size Ne, where Ne

is not small, the genealogy of the population is
extremely well-approximated by the process he called
the n-coalescent. This generates a genealogy by
starting with n sequences, and successively joining
lineages, going backwards in time. There are « —1
such coalescences. For each one, we pick two of the
extant lineages at random to be the next two combined.
The additional time to the next coalescence from the
one which leaves us with / sequences is (in generations)
drawn from an exponential distribution:

» ( ~ E x p l - ^ - l . (4)

Note that vt is the time between coalescence z — 1 and
coalescence /, not the total time from the present to
the rth coalescence. The first coalescence going
backwards is number n and the coalescences further
back in time are numbered n — \,n — 2,...,2. The
random tree constructed by this process is an outcome
of the w-coalescent, and approximates a random
genealogy of n genes produced by genetic drift.

These genealogies have a time-scale of generations.
We will find it more useful to express them in terms of
a time-scale which has one unit per \//i generations
(we shall call this genealogy G rather than G'), so that
the rate of neutral mutation is one per unit time. This
is helpful because our observations of time are all in
terms of the time necessary to produce a given amount
of sequence divergence. On this scale one generation is
only ji units of the rescaled time so that the vt in (3) are
replaced by the rescaled variables

ut ~ Exp — (5)

Given the intervals ut between coalescences, the
probability density of the prior distribution of
genealogies is a product of exponential densities,
times the probability of the tree topology, giving:

(6)

where PT is the probability of the particular pairs of
lineages which were chosen to coalesce. At the tth
coalescence the probability of the particular pair of
lineages which were chosen is one out of the number
of possible pairs, i(i—1)/2. The product of these
probabilities is

1(1-1)

n\(n-l)\

and when this is substituted into (6) we get

Prob (G\6) = (1) exp I £ i{i -1) U(

(7)

(8)
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3. Monte Carlo integration

The second probability in (2) is also readily calculated:
when the time-scale of G is taken to be in units of 1 //t
generations, as here, the probability of the sequences
5 given G no longer depends on /i. The quantity
becomes Prob (S\G) and is the likelihood of G for the
data S. This can be calculated by standard methods
for computing the likelihood of a set of sequences on
a tree G (Felsenstein, 1981).

The genealogical trees G live in a space which has
discrete tree topologies with ordered interior nodes
('labelled histories'), each of which has n — 1 par-
ameters, the Mj. A labelled history is a tree topology,
with the additional specification of the ordering in
time of the nodes. There are n\{n—1)!/2""1 of these
(Edwards, 1970). For example for n = 10 there are
2571912000, for n = 20 there are 6.96 x 1018 and for
n = 100 there are 1.37 x 10284.

For each of these tree topologies, there is an (n — 1)-
dimensional space of genealogies, corresponding to
the possible values of the ut, each of which varies from
0 to oo. To evaluate the sum in equation (3) amounts
to calculating (for n = 10), over 2 x 109 9-dimensional
integrals. I have not been able to find explicit solutions
for any of these individual integrals. Lacking a
dramatic algebraic breakthrough, the straightforward
numerical approximation would be to add up values
of the summand in (3) over an («—l)-dimensional
grid of points. The high dimensionality of the
individual integrals, and the large number of them,
makes this impractical.

An alternative that is often used in such cases is
Monte Carlo integration (Kahn, 1950; Hammersley
6 Handscomb, 1964). In Monte Carlo integration
random points are drawn from the domain of the
function, the function evaluated at each of these, and
the sum used to approximate the average height of the
function over the domain. This technique has its
limitations. It needs a large sample size to accurately
approximate the integral, and if the height of the
function varies greatly over the domain the variance
of the approximation can be large. This will almost
certainly be true in the present case. Consider the
function being integrated in the favourable case when
the sequences are very long. In that case the sequences
will define the genealogy G unambiguously, that is,
concentrate the area under the likelihood curve (2)
almost entirely within one of the n\(n —1)!/2""1 tree
topologies. As this is a very large number, when
genealogical trees are sampled at random most of
them will contribute very little to the integral (3) so
that most of the sampling effort is wasted.

The efficiency of Monte Carlo integration can be
greatly improved by the use of importance functions
(Kahn, 1950; Hammersley & Handscomb, 1964).
These are distribution functions whose density is
concentrated in the regions which are expected to
contribute most to the integral. If we sample gene-

alogies from a density function g{G), and if the
function being integrated is flfi), the approximation
to the integral weights the function J{x) for each
sampled point x by the size of the interval which it
represents. This will be inversely proportional to the
density g(x). In fact, if m points are sampled, the
weight assigned to point x will be \/(mg(x)). The
approximation to the integral of/(x) will be:

p y Ax,)
(9)

If an appropriate importance function is found, the
sampling variance of the numerical integral can be
greatly reduced.

4. The bootstrap sampler

In order to find an appropriate importance function,
let us look at the function (3) being integrated. It has
two factors, the prior and the likelihood. Of these the
prior is the simpler, and its density at all points in the
space of genealogies is easily calculated. But it is a
poor candidate for an importance function. It assigns
equal weight to all possible labelled histories, and we
have seen that in the cases of long sequences this will
fail to concentrate sampling on the trees that actually
contribute to the integral.

The obvious alternative would be the other term,
the likelihood of the tree P(S\G). This is certainly
concentrated in the regions of interest, but has the
disadvantage that it is not obvious how to sample
from a distribution whose density is proportional to
this likelihood.

I suggest that there is a procedure that samples
from a distribution whose density is nearly pro-
portional to the likelihood function P(S | G), the
accuracy of the approximation increasing with se-
quence length. This is to draw a bootstrap sample
(a sample with replacement) S* of the p sites in the
sequences, and to find for this sample the genealogy
G* that maximizes the likelihood for this bootstrap
sample:

P(S* \G*) = max P(S*\G).
G

(10)

Bootstrap sampling (Efron, 1979) is a resampling
method that involves drawing from the original
sample, with replacement, a sample of the same size.
It produces a sample whose estimate of a parameter
has approximately the same distribution as the true
distribution of the parameter. The proportionality of
this distribution to the likelihood curve for the
parameter is closely related to this property. The
bootstrap has been applied to phylogenies (Felsen-
stein, 1985) where the bootstrap sample involves
sampling sites. If the data table has sequences as rows,
the bootstrap sampling samples whole columns to
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make up a new table of the same length as the original
data, without altering the order of sequences within
each column when it is copied.

The method of this paper depends on the assertion
that G* is drawn from a distribution whose density is
proportional to the likelihood P(S\ G). If this were the
case, when G* is drawn this way,

= cP(S\G), (11)

where c is the constant needed to make g(G) integrate
to 1. The formula for computing the approximation
to the integral from m such bootstrap samples is from
(9)

J. P{G\6)P{S\G)

- S P(Gt 10) P(S | G*)/{mcP (S | G*)) (12)

where G* is the maximum likelihood genealogy for
the /th bootstrap sample drawn. Note that neither the
constant c nor the number of bootstrap replicates m
depends on the unknown 6. Thus (12) can be used to
approximate me times the desired integral:

me (13)

Once we have computed the sum on the right-hand
side of (13) it gives us the likelihood up to the
unknown constant inc. We can use that curve to find
an approximate maximum likelihood estimate of 6,
the value that maximizes this sum, so that:

P(Gf 10) = max 2 P(G* 10). (14)
0 i-l

Note that we need not compute maximum likeli-
hood genealogies Gf separately for each value of 6
that we evaluate. We can compute one set of estimated
genealogies G* and, as evaluation of the prior P(Gf \ 6)
is rapid, we can then trace out (13) which is the sum
of m curves, each a function of 6.

5. A theorem-free assertion

What assurance do we have that the maximum
likelihood genealogies computed from the bootstrap
samples do in fact have the required approximate
density? There is at present no general theorem
guaranteeing this. We may at best regard the statement
as a Theorem-Free Assertion. The most I will do here
is to establish that the result is a plausible one for
sequences that are not too short. It needs to be
investigated whether the theorem is actually true

under the regularity conditions that apply to
maximum likelihood estimates of genealogies from
nucleotide sequences.

(i) The limit with long sequences

It should be apparent that, when the sequences are
very long, the estimates of the genealogy from
bootstrap samples will be concentrated near the true
genealogy, given that the probabilistic model of change
of the sequences model is correct. This is as it should
be, since we hope to concentrate the integration on the
true tree topology, which will contribute almost all of
the likelihood.

Asymptotically, as the number p of sites becomes
large, the likelihood curve as a function of the
genealogy will more and more closely approach in
shape a multivariate Gaussian density whose mean is
the true genealogy. The parameters of the genealogy
will be the node times (on the rescaled time-scale) of
the genealogy, the topology not being at issue. The
covariance matrix of the estimates of these parameters
will be the inverse of the matrix of curvatures of the
expected likelihood at the true genealogy.

If we bootstrap the sequences and estimate gene-
alogies from each bootstrap sample, in this case the
tree topologies will almost always be the same as the
true tree. The variances and covariances of the branch
length parameters will approach the true values, being
asymptotically {p—V)/p of the true values as/?-» oo. It
can also be argued that the asymptotic distribution of
the branch lengths is the same multivariate normal.
An informal sketch of the argument is given by Efron
(1982, pp. 34-35) who says that 'If Q (.,.) is a well-
behaved function, as described in Efron (1979a,
Remark G), then the bootstrap distribution of Q* is
asymptotically the same as the true distribution of Q.'

In the present case we also want to argue that this
distribution is also asymptotically the same as a
rescaled version of the likelihood function. That the
likelihood function is asymptotically proportional to
the same multivariate normal distribution which is the
distribution of the branch length parameters (and
hence to the distribution of bootstrap estimates of
those parameters as well) is well-known [see, for
example, Kendall & Stewart (1973, p. 240) who cite a
proof by Wald]. Thus the bootstrap will approximate
well the asymptotic normal distribution of genealogies.

(ii) The case of two sequences

We can investigate whether the result is confined to
cases where asymptotic behaviour guarantees nor-
mality by looking more carefully at the simplest case,
which is that of n = 2. In that case there is only one
possible genealogy, a simple two-sequence rooted
tree, whose only parameter is the time t of the
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common ancestor of the sequences, rescaled in units
of nucleotide substitutions per site. The coalescent
prior is the simple exponential density for t:

t~Exp(jS/2). (15)

If we assume, for purposes of the example, that the
sites are evolving according to a simple Jukes-Cantor
(1969) model, then the likelihood for a pair of
sequences of length p will be

= P\\-P)p-d (16)

where d is the number of sites differing between the
two sequences, and P is the probability that a site will
differ between the two sequences, which is

= f(l-<?"*)• (17)

This differs from the usual Jukes-Cantor expression
only because the length of branches separating the
two species is 2/ rather than t.

The likelihood function for t for a given value of d
will be given by substituting (17) into (16), obtaining

L(t,d) = _ ( l - (18)

The central issue is whether the likelihood curve
(18) is a good approximation to the density function
of estimates of /. That it cannot be a perfect
approximation is seen by considering t = oo. That is
the estimate that will be made whenever m > (§)/?,
which will happen with finite probability (less often,
the larger is p). When t is large L will approach the
value 3"/4p. This is tiny but finite and non-zero so
there should at that value be an infinite area near
t = oo under the density that is proportional to L(t).
But that fact, although disquieting, need not be fatal
to the proposition. We are interested in using the
values of L(t, d) for values of / near those generated by
the observation d, and we can generally ignore the
region near t = oo.

When we bootstrap sample the sequences, the
number of differences between them will be distributed
as a binomial variate with p trials and probability d/p.
If there are m differences observed between two
bootstrap sampled sequences, the estimate of/"will be
m/p and the estimate of / will be obtained by solving
(17) for / as a function of P = m/p, obtaining

l - ~ . (19)

For long sequences, the distribution of m/p will
asymptotically be normal with expectation d/p and
variance p(d/p)(\—d/p). Even after the nonlinear
transformation of m/p into i by (19), we will expect
asymptotically to see a normal distribution with
expectation

(20)

000

Fig. 1. Histograms of the bootstrap estimates of the
divergence time of two sequences, for sequences of length
100 sites which differ at 10 sites. , Distribution from
the bootstrap estimates; , asymptotic normal
approximation based on equations (20) and (21); ,
distribution proportional in height to the likelihood curve
(18). The curves pass through the centres of the tops of
histogram classes.

and variance, using the standard delta-method ap-
proximation, becomes (Kimura & Ohta, 1972):

Var[/] =
9d(p-d)

4p(3p-4d)2 (21)

Fig. 1 shows for d = 10 and p = 100 the histogram
of the bootstrap estimates of t, the normal density
with mean (20) and variance (21), and a density which
is the likelihood curve (18) rescaled so that it sums to
1. Since the number of differences between the
sequences with bootstrapping follows a binomial
distribution, whose classes are evenly spaced on the P
scale, they form classes unevenly spaced on the t scale.
The likelihood and normal curves can be integrated
over these intervals so that they too predict the same
histogram: the curves shown here for them are not the
original ones but lines connecting the centres of their
histogram bars.

004 004

005

001

Fig. 2. The tree used to simulate evoiution at 150 sites
for the three-sequence calculations.

https://doi.org/10.1017/S0016672300030962 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300030962


/ . Felsenstein 214

Table 1. Likelihood surface for a set of simulated 150 base sequences for the three tree topologies shown in
Fig. 3, for various values of the length of the longest branch (columns in the table) and the short interior branch
{rows in the table). Likelihoods have been discretized so that they sum to 1000 over all three parts of the Table.
Dots indicate zeros

. _ 0 0 8

• • • • _ 0 0 7

(a) _ 0 0 6

_ 0 0 5

_ 0 0 4
. . . . 1 1 1 . . . .

. . . 1 1 2 1 1 1 . . . _ o - O 3
. 1 2 3 3 2 1 1 . .

. 1 4 6 5 4 2 1 . . . . _ 0 0 2
. 2 5 9 9 7 4 2 1 . .

. 2 6 1 1 1 3 1 1 7 4 2 1 . . . . _ 0 0 1
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I I I I I I I I I
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A B C

A C B

(6)

A B C

(c)

Fig. 3. The three tree topologies used in Tables 1 and 2.

Note that the likelihood curve and the density of
bootstrap estimates do a reasonable job of approxi-
mating each other, but not much more closely than
either is approximated by the asymptotic normal curve.

(iii) The case of three species

For three species we can do less analytically, but a
numerical example is instructive. For the Kimura 2-
parameter model with transition/transversion ratio
2.0, using the tree in Fig. 2 as the true tree, I simulated
three sequences of 150 bp of DNA. We can use those
data to compute the likelihood at a grid of points that
have different tree topologies and different branch
lengths. Table 1 (a-c) shows the heights of the
likelihood surface for the three tree topologies shown
in Fig. 3. The likelihoods have been rounded to
integers after being scaled so that their total over the
points on the grid was 1000. This is done to facilitate
comparison with Table 2 (a-c). This shows a histo-
gram of the distribution of trees found in 1000
bootstrap replicates. The correspondence is not
perfect, but the two distributions are generally similar.
Fig. 4 shows the likelihood curves for 6 that one
would obtain using the true tree, the bootstrap
approximation shown in Table 2, and a distribution

215

proportional to the likelihood surface. The general
impression one gets is that the method is not working
perfectly but is an acceptable approximation. It is
certainly spreading itself over the three tree topologies,
which the asymptotic normal approximation cannot
do, as it is underfined on other tree topologies. The
proportions in the three tree topologies are, however,
not quite right - too few estimates are in the second
topology. However the likelihood curves estimated by
the bootstrap are essentially correct. The likelihood
curves from the bootstrap approximation and from
the density proportional to the likelihoods are very
similar. Both differ from the likelihood curve for the
true tree but that is expected, as both are based on the
same data set of 150 sites, while the true tree is in effect
based on a data set of an infinite number of sites.

6. The computation in practice - examples

We can get some feel for the process by carrying it out
on a simulated data set of moderate size. In the first,
the tree in Fig. 5 was used to simulate 10 sequences,
the branch lengths being scaled so that one unit of
time is one expected change per site. Data sets of
length 100, 250, 500, and 1000 sites were simulated,
and for each 100 bootstrap replicates were made, the
maximum likelihood trees estimated, and the priors
for these summed according to equation (14). The
resulting approximate likelihood curves are shown in
Fig. 6, together with the likelihood curve for 6 = 4Ne/A,
based on the true tree, which is in effect what would
be found if an infinite number of sites were observed.
Note that the value of ANfi is 0.4, which is far greater
than is realistic in most populations. Conventional
estimates of ANfi are in the vicinity of 0-1 per locus
which is likely to be 100-fold less than the present
value, which is per site.

The curves are reasonably similar, and the true
value of 4N/i = 0-4 is close to the maximum value in
all cases. As the number of sites becomes large the
curves approach the curve for the true tree. Note that
for smaller numbers of sites, the curve is expected to
be different, and wider, as the error based on finiteness
of the number of sites becomes substantial compared
to the error based on the finiteness of the number of
sequences. The curves shown in this Figure seem to
show this behaviour, and all of them seem compatible
with the true value of 4N/x. There is some possibility
that the curves for 100 and perhaps 200 sites are
systematically displaced leftwards.

In the second example, the tree in Fig. 7 was used,
which was generated with a coalescent with a much
smaller value, 0 = 0004, which is closer to the values
that might be found in samples from actual popu-
lations. Recall that the 6 used here is computed per
site, not per locus as in most previous papers. Thus
0 = 0-1 per locus might typically translate into
6 = 00001 per site. Sequences of length 100, 200, 500,
and 1000 were simulated and 500 bootstrap replicates
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Table 2. Histogram of the distribution of trees estimated from 1000 bootstrap samples from the data used to
calculate the likelihood surface shown in Table 1. The three parts of the table correspond to the three tree
topologies shown in Fig. 3. The columns and rows show various values of the length of the longest branch
(columns in the table) and the short interior branch (rows in the table). Dots indicate zeros
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I I I I I I I I I

000 001 002 003 004 005 006 007 008

•_ 008

._ 007
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1
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2
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2
2
1
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Fig. 4. Estimated log-likelihood curves for the three-
sequence case used to calculate Tables 1 and 2. ,
From true tree; , from likelihood curve; , from
bootstrap.

A J I C D B G H E F

MtYT
l o - i

Fig. 5. One tree generated by the coalescent with
4Nefi = 0-4, and used to simulate evolution of the
sequences analyzed in Fig. 6.

used. The resulting approximate likelihood curves are
shown in Fig. 8. The curve for 1000 sites approximates
the curve for an infinite number of sites, but not very
closely. The curves for fewer sites are not well-
behaved. This suggests that one may need many sites
to make reasonable estimates of 6.

In the third example, the tree in Fig. 9 was used,
which was generated with 6 = 0-4. Sequences of length
100, 200, 500 and 1000 were simulated, but this time
500 bootstrap replicates were used. The resulting
curves (in Fig. 10) are satisfactory: all of them have
peaks at approximately the same value of 6, which is
near the true value.

This picture is necessarily anecdotal. Until someone
has the computing power to carry out a computer
simulation of the behaviour of this method, we will
not know whether the patterns seen in these examples
are general, or are specific to the 12 data sets (four in
each of the three cases) that happened to be generated
in these simulations, or whether the outcomes would
have been different with a different set of bootstrap
samples.

10

0

-10

-20

-30

-40

-50

-60 -

-70 I—

Actual tree
1000 sites
500 sites
250 sites
100 sites

0 1

Fig. 6. Estimated log likelihood curves for sequences
simulated on the tree in Fig. 5. The solid curve shows the
likelihood curve that would be obtained with an infinite
number of sites, which would result in perfect estimation
of the tree. The bootstrap Monte Carlo integration
estimates are based on trees from 100 bootstrap
replicates.

I G F B D H C J E A

T

I
Fig. 7. A tree generated by the coalescent with
ANen = 00004, and used to simulate evolution of the
sequences analyzed in Fig. 8. The height of the tree is
0004746.

With these qualifications, the pattern that these
tests seem to find is that the method works if there are
a sufficient number of informative sites. Thus it fails
when 6 and the lengths of the sequences are both small
but seems to succeed when there are larger numbers of
sites or a larger value of 6.

The method can be proven to work when the
number of sites is so iarge that the estimates of trees
after bootstrap sampling are all of the same tree
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4Nfi = 0004
4N/i = 0-4

c

Actual tree
1000 sites
500 sites
200 sites
100 sites

-20 -

-40 L

Fig. 8. Estimated log likelihood curves for sequences
simulated on the tree in Fig. 7. The solid curve shows the
likelihood curve that would be obtained with an infinite
number of sites, which would result in perfect estimation
of the tree. The bootstrap Monte Carlo integration
estimates are based on trees from 500 bootstrap
replicates.

A H J E C I B F D G

I0'

Fig. 9. Another tree generated by the coalescent with 4Ne
/i = 0-4, and used to simulate evolution of the sequences
analyzed in Fig. 10.

topology, with branch lengths varying around the true
tree in a multivariate normal distribution (see Efron,
1979a, remark G). There seems some sign in the
above examples that the method fails with sequences
with few informative sites, which should give wide
variation in the topology of the bootstrap estimates of
the genealogy. This raises the suspicion that perhaps
the method does not work if there is any variation in
the tree topologies of the bootstrap estimates. To
check this it is helpful to examine the bootstrap
estimates for 100 sites for the first example and for
1000 sites for the second example. These are the
smallest sequence lengths for which it can be argued
that the method did work adequately.

Figs 11 and 12 show majority rule consensus trees
(Margush & McMorris, 1975) for these two sets of
bootstrap estimated trees. Each of these shows those
groups that occurred in more than 50% of the

0 -

-10

-20

-30

-40

-50

-60

-70 I—;

— Actual tree
--- 1000 sites

500 sites

— 200 sites

•-• 100 sites

0 1 10

4N/i

Fig. 10. Estimated log-likelihood curves for sequences
simulated on the tree in Fig. 9. The solid curve shows the
likelihood curve that would be obtained with an infinite
number of sites, which would result in perfect estimation
of the tree. The bootstrap Monte Carlo integration
estimates are based on trees from 500 bootstrap
replicates.

D B H G

78

J I

76 96
99

100

I
41

100

Fig. 11. Majority-rule consensus tree (fully resolved by a
plurality-rule criterion) for the 100 bootstrap estimates of
the tree for Fig. 5 from the 100-site case in the data used
to calculate Fig. 6.

J E D

500 500 I

H C

500 500

500 '560'

F B 1 G
I 500 500 I

500 i . 500
500

500

Fig. 12. Majority-rule consensus tree for the 500
bootstrap estimates of the tree for Fig. 7 from the 1000-
site case in the data used to calculate Fig. 8.

bootstrap estimates. They have in the first case been
further resolved by inclusion of a group which did not
occur in more than half of the trees, but was the next
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most frequently occurring group compatible with the
others (in this sense we should call these 'plurality
rule' consensus trees). The consensus trees give us a
rough sense of the amount of variation in the
topologies of the bootstrap estimates. They show that
in cases where the method worked, there was a modest
but noticeable variation in tree topology. Thus the
bootstrap Monte Carlo integration method appears
to be able to cope with data sets that are not able to
estimate the genealogy with precision, and to integrate
the likelihood over a number of different tree
topologies.

7. Limitations

The method has some assumptions and properties
that limit its usefulness:

(1) No recombination. It assumes that the genealogy
of the sequences is a tree, which in effect means that
no recombintion has occurred within the sequences
during the time since they were all descended from an
ancestral copy. It will thus apply only to sufficiently
short nuclear gene sequences, and there is as yet no
clear picture of how short such seuences must be.

(2) Computationally slow. The method requires that
on the order of 100 maximum likelihood estimates of
trees be made. If the number of sequences is larger
than tested here, the maximum likelihood estimation
will be correspondingly slower. The program used
here (DNAMLK from PHYLIP version 3.4) has execution
speed proportional to the cube of the number of
sequences. This means that for a data set twice as
large the method would take eight times as long. It
might be noted in passing that the Cann, Stoneking &
Wilson (1987) data set is over 13 times as large as the
ones we have tested, and the tests reported here took
1-2 days on a DECstation 5000/200 to produce one
likelihood curve. Thus the method is currently at the
borderline of practicality, but this borderline will of
course move as computing power becomes cheaper
and as algorithms are improved.

(3) Independence of sites. The bootstrap sampling
of sites assumes that evolutionary processes at diffeent
sites occur at the same rate and have independent
outcomes. The maximum likelihood method can be
corrected (Felsenstein, in preparation) for inequalities
of rates between sites without much difficulty, and this
less restrictive model will still allow us to make the
maximum likelihood estimates that the bootstrap
Monte Carlo integration method needs. But the
assumption that sites, even consecutive sites, evolve
independently is an unrealistic one, and one that is
necessary for the bootstrapping process. However, it
is possible to modify the bootstrapping process
(Kiinsch, 1989) to one that resamples blocks of
consecutive sites. If the nonindependence of evolution
at different sites largely involves nearby sites affecting
each other, then it may be possible to use block-
bootstrapping to correct for this.

8. Alternatives

As discussed above, pairwise methods are a flawed
alternative to the present method because of their low
power for sufficiently long sequences.

For the limiting case when 6 =s 0, other alternatives
to the present method may be possible. Griffiths
(1989) has developed and distributed a computer
program to compute likelihoods by a recursive
algorithm for computing likelihoods for samples under
the infinite sites model. It requires that we know what
is the ancestral state at each site, something we do not
usually know. Strobeck (1983) showed how to
compute the likelihood for the infinite sites model in
the more realistic case where the ancestral state at
each site is not known, but he did not show how to
generalize the computations to cases with larger
numbers of different sequences. Strobeck's approach
can be effective when there are no incompatibilities
between the information at different sites, as is
expected when 6 ~ 0. When 6 is large enough to have
some sites that have had more than one mutation, the
data will not fit their assumptions. It is possible that
by eliminating these sites by finding the largest' clique'
of mutually compatible sites, one could apply Stro-
beck's method, although the general pattern of
computations is not yet known, and there would seem
to be some chance of biased results.

There is one other possible alternative method that
might escape from limitations (2) and (3). This is
the Metropolis-Hastings Sampler (Hastings, 1970;
Metropolis et al. 1953). This random sampling method
progressively alters an estimate (in this case it would
be an estimate of the tree) in a biased random walk, in
such a way that the time spent in each neighbourhood
of the space of trees is guaranteed to be proportional
to the likelihood of the trees there, if one continues
long enough. If this method can be applied, it will
guarantee the properties we need. It would sample
from the space of trees in proportion to the likelihood
of those trees, allowing us to take advantage of the
cancellation in equation (12). One would then only
have to make this random walk through the space of
all genealogies, sample from the resulting sequence of
trees and average the priors for each tree sampled, just
as we do in the present method.

The difficulty is that, unlike the bootstrap case,
successive trees in the Metropolis-Hastings sequence
are far from independent, so one must sample many
more of them. This is not as difficult as it sounds, as
for each tree one need only evaluate its likelihood, and
it is not necessary to carry out a full maximum
likelihood estimate for each tree in the sequence. As
there is then far less computation per sampled tree, this
might compensate for the greater number of trees
sampled and result in a computationally more effective
method. The Metropolis-Hastings method, like other
Markov Chain Monte Cario methods, might get stuck
in an isolated peak of the likelihood function for long
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periods of time, if such peaks existed. The present
method does not suffer from this potential problem,
as it samples independently from this distribution.
This makes it an excellent candidate for a method of
periodically choosing new starting points for the
Metropolis-Hastings method. It will be interesting to
see if the Metropolis-Hastings Sampler can carry us
further in the direction of computing the likelihood
for population samples of sequences. Preliminary tests
indicate that it will.

9. Computer programs

Bootstrap Monte Carlo integration estimation of the
likelihood for sequence samples of modest size can be
done using three programs in versions 3.5 and later of
the PHYLIP phylogeny inference package (this version
will be released in mid-1992). The program SEQBOOT

can be used to resample sites and prepare a file with
multiple bootstrapped data sets. The program that
computes a DNA maximum likelihood tree for a
clock model, DNAMLK, can then be used to make
maximum likelihood estimates for each of these. The
resulting 'tree file' containing these estimates can then
be read as an input file by a new program, COALTREE,

which calculates and averages the priors for those
estimates for a range of values of 4Nefi.

PHYLIP is distributed free in C and Pascal source
code, and in precompiled executable versions for
generic PCDOS systems, for 80386/80387 PCDOS sys-
tems, and for Macintoshes. For information on
distribution media and policies contact the au-
thor (most easily done by electronic mail) or use
anonymous ftp over Internet to fetch the ap-
propriate archives from directory pub/phylip of
evolution. genetics. Washington. edu (128.95.12.41).

I am grateful to Elizabeth Thompson, Monty Slatkin,
Charles Geyer and Kermit Ritland for helpful discussions,
and to reviewers for this journal for catching errors and
suggesting improvements. This work was supported by
National Science Foundation grant number BSR-8614807,
and by National Institutes of Health grant number
1 R01 GM 41716.
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