Minimal vector lattice covers

Roger D. Bleier

We show that each archimedean lattice-ordered group is contained in a unique (up to isomorphism) minimal archimedean vector lattice. This improves a result of Paul F. Conrad appearing previously in this Bulletin. Moreover, we show that this relationship between archimedean lattice-ordered groups and archimedean vector lattices is functorial.

The reader is referred to [1] for the basic terminology of lattice-ordered groups (l-groups) and vector lattices. By a vector lattice we always mean a real vector lattice.

THEOREM 1. Let G be an archimedean l-group. There exists an archimedean vector lattice V satisfying

- (i) G is an l-subgroup of V, and
- (ii) if G is an l-subgroup of the vector sublattice W of V, then V = W.

If V' is an archimedean vector lattice satisfying (i) and (ii), then there is a unique vector lattice isomorphism of V onto V' inducing the identity on G.

Proof. This theorem was proved in [3] under the additional assumption

(iii) each non-zero ideal of V (respectively, V') has non-zero intersection with G .

We show that (iii) is redundant here.

To this end let V be an archimedean vector lattice satisfying (i)Received 8 June 1971.

331

and (*ii*). Let $G^d = \{x \in V \mid nx \in G \text{ for some integer } n\}$. G^d is an *l*-subgroup of *V*. To show that (*iii*) holds it is sufficient to show that if $0 < v \in V$ then there exists $g \in G^d$ such that $0 < g \le v$.

Let $0 < v \in V$. Without loss of generality $v = \bigwedge_{J} (h_j \lor 0)$ with J finite and $h_j = r_{1j}g_{1j} + \ldots + r_{kj}g_{kj}$, where $r_{ij} \in R$ and $0 < g_{ij} \in G$. Let N denote the natural numbers. For each i, j and for each $n \in N$, there exists a rational number s_{ijn} such that

$$0 \le r_{ij} - s_{ijn} \le 1/n$$
. Let $f_{jn} = \sum_{i=1}^{k} s_{ijn} g_{ij}$. Then for each $j \in J$ and

$$n \in \mathbb{N}$$
, we have $0 \leq h_j - f_{jn} = \sum_{i=1}^{\kappa} (r_{ij} - s_{ijn}) g_{ij} \leq (1/n) \sum_{i=1}^{\kappa} g_{ij}$. But

 $\bigwedge_{N} (1/n) \sum_{i=1}^{k} g_{ij} = 0 \text{ since } V \text{ is archimedean. Thus } 0 = \bigwedge_{N} (h_j - f_{jn}) \text{ , and}$ hence $h_j = \bigvee_{N} f_{jn}$.

Hence
$$\bigwedge_{J} h_{j} = \bigwedge_{J} \bigvee_{N} f_{jn} = \bigvee_{N^{J}} \bigwedge_{J} f_{j\gamma(j)}$$
 (since J is finite),

and thus

$$0 < v = \bigwedge_{J} (h_{j} \vee 0) = \left(\bigwedge_{J} h_{j}\right) \vee 0 = \left(\bigvee_{N^{J}} \bigwedge_{J} f_{j\gamma(j)}\right) \vee 0 = \bigvee_{N^{J}} \bigwedge_{J} (f_{j\gamma(j)} \vee 0)$$

Thus $0 < \bigwedge_{J} (f_{j\gamma(j)} \lor 0) \le v$ for some $\gamma \in \mathbb{N}^{J}$. Since $\bigwedge_{J} (f_{j\gamma(j)} \lor 0) \in \mathbb{G}^{d}$, the proof is complete.

In the terminology of [3] the vector lattice V in Theorem 1 is the v-hull of G. We have shown that, in addition to the conclusion of the theorem, V satisfies (*iii*).

Let FVL(S) denote the free vector lattice on the set S. It follows from the definition of freedom and the fact that each abelian l-group can be embedded in a vector lattice that [2] the l-subgroup of FVL(S) generated by S is the free abelian l-group FLG(S) on S. With this identification, suppose $\alpha : FLG(S) \rightarrow W$ is an l-group homomorphism into a vector lattice W. Then $\alpha|_S$ extends to a vector lattice homomorphism $\overline{\alpha} : FVL(S) \rightarrow W$ and $\overline{\alpha}|_{FLG(S)} = \alpha$.

THEOREM 2. Let A be an archimedean l-group with v-hull V. Suppose W is an archimedean vector lattice, and $f : A \neq W$ is an l-group homomorphism. Then there exists a unique vector lattice homomorphism $\overline{f} : V \neq W$ extending f.

Proof. Choose an *l*-group epimorphism α : $FLG(S) \rightarrow A$. Since $A \subseteq V$ we have a vector lattice homomorphism $\overline{\alpha}$: $FVL(S) \rightarrow V$ extending α , and since A generates V as a vector lattice, $\overline{\alpha}$ is epic. Also, kera \cap FLG(S) = kera.

Let

 $C = \{J \mid J \text{ is an ideal of } FVL(S), J \supseteq \ker \alpha, \text{ and } FVL(S)/J \}$

is archimedean} .

Note ker $\overline{\alpha} \in C$. Let $J^* = \bigcap C$. $FVL(S)/J^*$ is archimedean since FVL(S)/J is for each $J \in C$; moreover, $FVL(S)/J^*$ is generated as a vector lattice by $J^* + FLG(S)/J^*$. Thus $FVL(S)/J^*$ is the *v*-hull of $J^* + FLG(S)/J^*$.

We have $J^* \subseteq \ker \alpha$. Suppose $0 < x \in \ker \alpha \setminus J^*$. By *(iii)* the ideal of $FVL(S)/J^*$ generated by $x + J^*$ has non-zero intersection with $J^* + FLG(S)/J^*$. Thus there exists $0 < g \in FLG(S)$ such that $J^* < g+J^* \le nx+J^*$ for some integer n. Hence $g+h \le nx$ for some $h \in J^*$. Thus $h \le g+h \le nx$, and thus $g+h \in \ker \alpha$. Hence $g \in \ker \alpha$, and thus $g \in \ker \alpha$. But this contradicts $J^* < g+J^*$, since $\ker \alpha \subseteq J^*$. Thus $J^* = \ker \alpha$.

There exists a vector lattice homomorphism $\tau : FVL(S) \neq W$ such that $f \circ \alpha(x) = \tau(x)$ for all $x \in FLG(S)$. Note that $\ker \tau \supseteq \ker \alpha$ and $\operatorname{Im} \tau$ is archimedean. Thus $\ker \tau \supseteq J^* = \ker \alpha$. Hence there is a vector lattice homomorphism $\overline{f} : V \neq W$ such that $\overline{f} \circ \overline{\alpha} = \tau$. Now, if $\alpha \in A$ then

 $a = \alpha(x)$ for some $x \in FLG(S)$ and

 $f(a) = f \circ \alpha(x) = \tau(x) = \overline{f} \circ \overline{\alpha}(x) = \overline{f}(a)$.

Thus \overline{f} extends f .

Since A generates V as a vector lattice, \overline{f} is the unique extension of f to V.

REMARK. If A is an archimedean l-group, let F(A) be its v-hull. If A and B are archimedean l-groups and $f: A \rightarrow B$ is an l-group homomorphism, let F(f) be the unique extension of f to a vector lattice homomorphism of F(A) into F(B) given by Theorem 2. Then F is a functor from the category of archimedean l-groups to the category of archimedean vector lattices. F is adjoint to the forgetful functor which "forgets" the scalar multiplication.

We list some corollaries to the main theorems. The last two depend on the fact that free (and projective) abelian l-groups are archimedean.

COROLLARY 1. If G is an l-subgroup of the archimedean l-group H, then the v-hull of G is a vector sublattice of the v-hull of H.

COROLLARY 2. (Conrad, [2]). If V and W are archimedean vector lattices, and $f: V \rightarrow W$ is an l-group homomorphism, then f is a vector lattice homomorphism. (This need not hold when W is not archimedean.)

COROLLARY 3. (Conrad, [2]). The v-hull of FLG(S) is FVL(S).

COROLLARY 4. The v-hull of a projective abelian 1-group is a projective vector lattice.

References

- [1] Garrett Birkhoff, Lattice theory (Colloquium Publ. 25, Amer. Math. Soc., Providence, 3rd ed., 1967).
- [2] Paul F. Conrad, "Free abelian *l*-groups and vector lattices", Math. Ann. 190 (1971), 306-312.

334

[3] Paul F. Conrad, "Minimal vector lattice covers", Bull. Austral. Math. Soc. 4 (1971), 35-39.

Department of Mathematics, University of Kansas, Lawrence, Kansas, USA.