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Abstract

For a compact spacelike constant mean curvature surface with nonempty boundary in the three-
dimensional Lorentz–Minkowski space, we introduce a rotation index of the lines of curvature at the
boundary umbilical point, which was developed by Choe [‘Sufficient conditions for constant mean
curvature surfaces to be round’, Math. Ann. 323(1) (2002), 143–156]. Using the concept of the rotation
index at the interior and boundary umbilical points and applying the Poincaré–Hopf index formula, we
prove that a compact immersed spacelike disk type capillary surface with less than four vertices in a
domain of L3 bounded by (spacelike or timelike) totally umbilical surfaces is part of a (spacelike) plane
or a hyperbolic plane. Moreover, we prove that the only immersed spacelike disk type capillary surface
inside a de Sitter surface in L3 is part of (spacelike) plane or a hyperbolic plane.

2010 Mathematics subject classification: primary 53A10; secondary 53C42.

Keywords and phrases: capillary surfaces, spacelike surfaces, constant mean curvature.

1. Introduction

Spacelike surfaces with constant mean curvature (CMC) in the three-dimensional
Lorentz–Minkowski space have been studied for a long time. Besides the importance
of spacelike CMC surfaces in mathematics, such surfaces have played an important
role in the study of general relativity (see [6, 15] for a survey). In [2], using integral
formulas for compact spacelike CMC surfaces in L3, Alías et al. proved that the only
immersed compact spacelike CMC surfaces in L3 spanning a circle are the (spacelike)
planar disks and the hyperbolic caps. Moreover, this uniqueness result was generalized
to the n-dimensional Lorentz–Minkowski space by Alías and Pastor [3]. One year
later, Alías and Pastor [4] introduced a variational problem for spacelike surfaces in L3

whose critical points are indeed spacelike CMC surfaces intersecting a given support
surface of a constant hyperbolic angle. For these spacelike CMC surfaces with free
boundary in L3, they were able to prove the following theorem.
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F 1. Spacelike capillary surface M with three vertices inside a domain bounded by: three (spacelike
or timelike) planes Pi, i = 1, 2, 3 (left); a spacelike plane P1, a timelike plane P2 and a hyperbolic plane

H2 (right).

T [4]. The only immersed spacelike CMC surfaces in L3 with (spacelike)
planar or hyperbolic support surfaces are the planar disks (H = 0) and the hyperbolic
caps (H , 0).

On the other hand, analogous problems for CMC surfaces in the Euclidean space
concerning planar disks and spherical caps have been studied as well [1, 7, 11,
13, 14, 19]. In particular, it is well known that a capillary disk in a ball of the
three-dimensional Euclidean space must be totally umbilical [16, 20]. This is called
Nitsche’s theorem. Here a capillary surface M in a domain U is a CMC surface
which meets ∂U in a constant contact angle along ∂M ∩ ∂U. Physically capillary
surfaces arise as the surface of an incompressible liquid in a container (see [8] and
references therein). In 2002, Choe [5] showed that if a compact immersed disk type
capillary surface (H , 0) in a domain bounded by planes or spheres in R3 has less
than four vertices on its boundary, then the surface must be spherical. Because a
regular capillary disk has no vertices on its boundary, Choe’s result can be thought of
as a generalization of Nitsche’s theorem. Motivated by this, we investigate a compact
immersed spacelike capillary surface with vertices in L3 bounded by (spacelike or
timelike) totally umbilical surfaces.

In order to deal with spacelike CMC surfaces with vertices, we introduce a rotation
index of the lines of curvature at the boundary umbilical point, which was first
studied by Choe [5]. Using the concept of the rotation index at the interior and
boundary umbilical points and applying the Poincaré–Hopf index formula, we prove
the following theorem.

T. Let M ⊂ L3 be a compact spacelike immersed disk type CMC surface which
is C2,α up to and including ∂M and whose boundary is C2,α up to and including its
vertices. Suppose that each regular component of ∂M is a line of curvature. If the
number of vertices of M with angle less than π is less than or equal to 3, then M is
part of a (spacelike) plane or a hyperbolic plane.

As a consequence of this theorem, we obtain the following uniqueness theorem (see
Figure 1).

T. Let U ⊂ L3 be a domain bounded by (spacelike or timelike) totally umbilical
surfaces in L3 and let M be a compact spacelike immersed disk type capillary surface
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in U which is C2,α up to and including ∂M and whose boundary is C2,α up to and
including its vertices. If M has fewer than four vertices with angle less than π, then M
is part of a (spacelike) plane or a hyperbolic plane.

Our theorems can be regarded as an extension of Alías and Pastor [4], since they
showed the uniqueness theorem for regular spacelike capillary surfaces which have no
vertices. As another application, we prove that the only immersed spacelike disk type
capillary surface inside a de Sitter surface in L3 is part of a (spacelike) plane (H = 0)
or a hyperbolic plane (H , 0). (See Theorem 4.5.)

2. Preliminaries

Let L3 be the three-dimensional Lorentz–Minkowski space, that is, the real vector
space R3 endowed with the Lorentz–Minkowski metric 〈, 〉, where 〈, 〉 = dx1

2 + dx2
2 −

dx3
2 and x1, x2, x3 are the canonical coordinates of R3. If M ⊂ L3 is an embedded

connected spacelike surface, we shall denote by NM the unique future-directed unit
normal timelike vector field on M. Here we call a vector v ∈ L3 future-directed if v
has the same orientation as (0, 0, 1) ∈ L3. We say that a vector v ∈ L3 \ {0} is spacelike,
timelike or lightlike if |v|2 = 〈v, v〉 is positive, negative or zero, respectively. The zero
vector 0 is spacelike by convention. A plane in L3 is said to be spacelike or timelike
if the normal vector of the plane is timelike or spacelike, respectively. An immersed
surface Σ ⊂ L3 is called spacelike if every tangent plane is spacelike. We now give
some examples of spacelike and timelike surfaces.

(i) The horizontal plane {x3 = c} for a constant c ∈ R is spacelike and the vertical
plane {ax1 + bx2 = 0} is timelike for any constants a, b ∈ R except a = b = 0.

(ii) The hyperbolic plane

H2(−c) = {x = (x1, x2, x3) ∈ L3 : 〈x, x〉 = −c2, x3 > 0}

is a spacelike surface for a positive constant c ∈ R. The unit normal vector is the
position vector itself for each point on the hyperbolic plane.

(iii) The de Sitter surface is defined as

S2(c) = {x ∈ L3 : 〈x, x〉 = c2}

for a positive constant c ∈ R. Note that the de Sitter surface is timelike and the
unit normal vector is also the position vector itself for each point on the de Sitter
surface.

Let M ⊂ L3 be a spacelike or timelike surface. A point p ∈ M is called umbilical if
for any ξ1, ξ2 ∈ TpM,

IIp(ξ1, ξ2) = λ(p)〈ξ1, ξ2〉,

that is, the second fundamental form II is proportional to the first fundamental form.
If the immersion is spacelike, this is equivalent to saying that two principal curvatures
are equal at p. A surface is called totally umbilical if any point is umbilical. The
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(spacelike or timelike) totally umbilical surfaces in the three-dimensional Lorentz–
Minkowski space are classified as follows.

T 2.1 [17, p. 116]. The only totally umbilical surfaces in L3 are planes,
hyperbolic planes and de Sitter surfaces.

Throughout this paper, we shall use two different Lorentzian timelike angles in
the three-dimensional Lorentz–Minkowski space in addition to the usual Lorentzian
spacelike angle [18]. If u and v are future-directed timelike vectors in L3, then the
Lorentzian timelike angle between u and v is defined to be the unique nonnegative real
number β(u, v) such that

〈u, v〉 = |u||v| cosh β(u, v),

where |w| denotes the absolute value of 〈w, w〉1/2 for a timelike vector w ∈ L3. In fact,
this Lorentzian timelike angle between two timelike vectors was called a hyperbolic
angle in [4]. If u is a spacelike vector and v is a future-directed timelike vector
in L3, then the Lorentzian timelike angle between u and v is defined to be the unique
nonnegative real number β(u, v) such that

〈u, v〉 = |u||v| sinh β(u, v).

For simplicity, we will call β(u, v) the angle between u and v.

3. Rotation index

Let X : M ↪→ L3 be a spacelike immersion. Consider an isothermal coordinate
z = u + iv on M taking values in a simply connected domain Ω ⊂ M. The metric of
Ω induced by the immersion X can be written as ds2 = λ2|dz|2. Since every spacelike
surface is orientable, one can define a timelike normal vector field N on M which
satisfies 〈N, N〉 = −1. Thus it is easy to see that {Xu, Xv, N} is an orthogonal frame on
Ω and

Xuu =
λu

λ
Xu −

λv

λ
Xv − eN,

Xuv =
λv

λ
Xu +

λu

λ
Xv − f N,

Xvv = −
λu

λ
Xu +

λv

λ
Xv − gN,

where

e = −〈Nu, Xu〉 = 〈N, Xuu〉,

f = −〈Nu, Xv〉 = 〈N, Xuv〉 = −〈Nv, Xu〉,

g = −〈Nv, Xv〉 = 〈N, Xvv〉.

If we put Φ(z, z̄) = e − g − 2i f , the Codazzi equation implies that the Hopf function
Φ(z, z̄) is holomorphic with respect to the complex coordinate z if and only if the
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immersion X is a spacelike CMC immersion. It is well known that Φ dz2 is a
holomorphic quadratic differential.

Since the principal curvature κ and the infinitesimal principal vector
(du

dv
)

satisfy
dN

(du
dv
)

= κ
(du

dv
)
, one can see that the equation for the lines of curvature is given by

− f du2 + (e − g) du dv + f dv2 = 0,

which implies, for z = u + iv, that

Im(Φ dz2) = 0.

This is equivalent to

arg Φ + 2 arg(dz) = mπ (m an integer)

or

arg(dz) =
mπ
2
−

1
2

arg Φ.

The lines of curvature of a spacelike surface generate a smooth line field except
at umbilical points. They rotate sharply around the umbilical points. Note that the
umbilical points are isolated because such points are the zeros of the holomorphic
function Φ. The rotation index of the lines of curvature at an umbilical point is defined
as

I =
1

2π
δ(arg dz) = −

1
4π
δ(arg Φ),

where δ denotes the variation if one goes once around an isolated umbilical point.
Therefore if the umbilical point p is in the interior of the spacelike surface, then p is a
zero of Φ of order n(≥1) and δ(arg Φ) = 2πn. Thus at an interior point p we have

I(p) = −
n
2
≤ −

1
2
. (3.1)

So far we have discussed the rotation index of the lines of curvature at the interior
umbilical points. From now on, we consider the case where the umbilical point q is
on the boundary of the spacelike surface. In [5], Choe introduced the rotation index
of the lines of curvature at a boundary umbilical point q. Using his idea, we can
estimate the rotation index. We briefly discuss the definition of the rotation index at
the boundary umbilical point. We may assume that a neighborhood of q is a conformal
immersion of a half disk Dh = {(u, v) ∈ R2 : u2 + v2 < 1, v ≥ 0}, X : Dh→ M ⊂ L3 with
the diameter l of Dh into the boundary of the spacelike surface and X(0) = q. Since
X(l) is a line of curvature of M, this line field can be extended smoothly to a line field
L on the whole disk D = {(u, v) ∈ R2 : u2 + v2 < 1} by reflection through the diameter.
So one can define the rotation index of the lines of curvature at the boundary umbilical
point q to be half the rotation index of L at 0. This is independent of the choice of the
immersion X. Thus at a boundary umbilical point q such that Φ has a zero of order n,
one sees that

I(q) =
1
2

[
−

1
4π
δ(arg Φ)

]
= −

n
4
.
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A singular point of the boundary ∂M of a spacelike surface M ⊂ L3 is called a vertex.
For an immersed CMC surface in R3, Choe gave an estimate for the rotation index
at the boundary umbilical points and vertices. Since the rotation index is intrinsically
defined, we shall make use of his results without proof.

L 3.1 [5]. Let M ⊂ L3 be an immersed spacelike CMC surface which is C2,α up
to and including ∂M and whose boundary is C2,α up to and including its vertices. If the
smooth components of ∂M are lines of curvature, then the following properties hold.
(a) The boundary umbilical points of M are isolated.
(b) At a boundary umbilical point which is not a vertex of M the rotation index of

lines of curvature is not greater than −1/4.
(c) At a vertex of M with angle less than π, the rotation index is less than or equal

to 1/4, and at a vertex with angle greater than π, the rotation index is less than
or equal to −1/4.

L 3.2 [5]. Assume that M and ∂M are the same as in Lemma 3.1 and assume
that p is a vertex of M with angle ξ. If ξ < π and p is a singularity of Φ, then p is a
simple pole. If ξ > π, then p is a zero of Φ.

From the above rotation index estimate, we can prove the following uniqueness
theorem for an immersed spacelike CMC surface in L3. The proof is based on [5].

T 3.3. Let M ⊂ L3 be a compact immersed spacelike disk type CMC surface
which is C2,α up to and including ∂M and whose boundary is C2,α up to and including
its vertices. Suppose that each regular component of ∂M is a line of curvature. If the
number of vertices of M with angle less than π is less than or equal to three, then M is
part of a (spacelike) plane or a hyperbolic plane.

P. The well-known Poincaré–Hopf theorem [9] says that the sum of the rotation
indices of all singularities of a vector field is equal to the Euler characteristic of the
surface. Therefore one sees that if V is a line field on the domain D with a finite number
of singularities which is the pull-back under x : D→ M of the lines of curvature on M,
then the sum of the rotation indices of V at the singularities in D̄ is equal to 1. So
M has a nonempty set S of singularities. Moreover, the singularities of the lines of
curvature on M occur not only at the umbilical points but also at the vertices of M.
Here the umbilical points correspond to the zeros of Φ and the vertices correspond to
the poles or zeros of Φ by Lemma 3.2.

Now suppose the singular set S is finite. Let pi, q j, rk and sl be the interior umbilical
points, nonvertex boundary umbilical points, vertices with angle greater than π and
vertices with angle less than π, respectively. Then from inequality (3.1) and Lemma 3.1
it follows that ∑

p=pi,q j,rk ,sl

I(p) ≤
∑

i

(
−

1
2

)
+

∑
j

(
−

1
4

)
+

∑
k

(
−

1
4

)
+

∑
l

(1
4

)
≤

∑
l

(1
4

)
≤

3
4

(by hypothesis),
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which contradicts the fact that
∑

I(p) = 1 from the Poincaré–Hopf theorem. Hence one
deduces that S is infinite and has an accumulation point q. Furthermore, if κ1 and κ2 are
principal curvatures of M, then S is the zero set of the continuous function κ1 − κ2, and
hence q ∈ S and S is closed. However, the points of S , except the vertices with angle
less than π, are also the zeros of Φ. Since the zero set of the holomorphic function Φ is
either open or finite, it follows that S = M, and therefore M is totally umbilical. Thus
one can conclude that M is part of a (spacelike) plane or a hyperbolic plane. �

4. Spacelike capillary surfaces

Consider a domain U ⊂ L3 whose boundary ∂U is a piecewise embedded connected
spacelike or timelike surface. A spacelike capillary surface M in a domain U ⊂ L3 is
an immersed spacelike CMC surface which meets ∂U at a constant contact angle along
∂M. If ∂U is a piecewise smooth surface, then we may assume the constant angles to
be distinct on each smooth component of ∂U.

Let M ⊂ L3 be a spacelike capillary surface which meets ∂U at a constant contact
angle β. We denote by τ the positively oriented unit tangent vector field along ∂M and
denote by N the timelike unit normal vector field on M. Clearly {τ, N, ν = −τ ∧ N}
is trihedral along ∂M. Here u ∧ v denotes the vector product of two vectors u, v ∈ L3

which is defined to be the unique vector u ∧ v ∈ L3 such that

〈u ∧ v, w〉 = det(u, v, w)

for any w ∈ L3 [2]. Clearly ν = −τ ∧ N is the inward-pointing unit conormal vector
field along ∂M. Choose a regular piece Σ of ∂U. Then Σ is an embedded connected
spacelike or timelike surface. As before, one may construct trihedra {τ, NΣ, νΣ} along
∂M, where NΣ is the unit normal vector field on Σ and νΣ is the inward-pointing unit
conormal vector field along ∂Σ which is given by ν = −τ ∧ NΣ. For these two trihedra
{τ, N, ν} and {τ, NΣ, νΣ}, we have the following equations.
(i) If Σ is a spacelike surface,ν = cosh βνΣ + sinh βNΣ,

N = sinh βνΣ + cosh βNΣ.
(4.1)

(ii) If Σ is a timelike surface, ν = sinh βνΣ + cosh βNΣ,

N = cosh βνΣ + sinh βNΣ.
(4.2)

In cases where Σ is a spacelike surface, Alías and Pastor [4] also used Equation (4.1)
in which the constant contact angle β only differs by a minus sign from ours.

When the ambient space is a Euclidean space, the following Terquem–Joachimsthal
theorem is well known.

T [21]. Let c be a curve in M1 ∩ M2 ⊂ R
3 which is a line of curvature in M1.

Then c is a line of curvature in M2 if and only if M1 and M2 intersect at a constant
contact angle along c.
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This theorem can be generalized to the three-dimensional Lorentz–Minkowski
space as follows. It should be mentioned that Alías and Pastor [4] proved this lemma
for a spacelike surface Σ. The method we use here is a modification of [4]. For the
sake of completeness we give the proof.

L 4.1. Let M ⊂ L3 be an immersed spacelike CMC surface and let Σ ⊂ L3 be a
(spacelike or timelike) totally umbilical surface. Suppose that M meets Σ at a constant
contact angle along ∂M ∩ Σ. Then each smooth component of ∂M ∩ Σ is a line of
curvature of M.

P. Choose a point p on a smooth component of ∂M ∩ Σ. It suffices to show that
the intersection of a local neighborhood of p with ∂M ∩ Σ is a line of curvature of M.
Let X : Dh→ M ⊂ L3 be a conformal immersion of a half disk

Dh = {(u, v) ∈ R2 : u2 + v2 < 1, v ≥ 0}

into M, which maps the diameter l of Dh into ∂M and X(0) = p. Let z = u + iv be
the usual coordinates in C. Then the metric on M is written by ds2 = λ2|dz|2 for a
positive smooth function λ = λ(z). One can write the unit tangent vector field τ and the
inward-pointing unit conormal vector field ν along the smooth boundary containing
p as τ = λ−1∂u and ν = λ−1∂v. By Theorem 2.1, we have four possible cases for Σ: a
spacelike plane, a hyperbolic plane, a timelike plane and a de Sitter surface.

When Σ is a spacelike plane, the normal vector field of Σ is given by NΣ = −→a ,

II(τ, ν) = −〈∇̄τN, ν〉 = 〈N, ∇̄τν〉

= cosh β〈∇̄τνΣ, N〉 + sinh β〈∇̄τ
−→a , N〉

= cosh β sinh β〈∇̄τνΣ, νΣ〉 + cosh2 β〈∇̄τνΣ,
−→a 〉

= 1
2 cosh β sinh βτ〈νΣ, νΣ〉 − cosh2 β〈νΣ, ∇̄τ

−→a 〉

= 0,

where ∇̄ denotes the connection of L3.
When Σ is a de Sitter surface, the normal vector field of Σ is given by NΣ = X,

II(τ, ν) = −〈∇̄τN, ν〉 = 〈N, ∇̄τν〉

= sinh β〈∇̄τνΣ, N〉 + cosh β〈∇̄τX, N〉

= cosh β sinh β〈∇̄τνΣ, νΣ〉 + sinh2 β〈∇̄τνΣ, X〉

= 1
2 cosh β sinh βτ〈νΣ, νΣ〉 − sinh2 β〈νΣ, τ〉

= 0.

When Σ is a hyperbolic or timelike plane, the proof is similar to the case where Σ is
a spacelike plane or a de Sitter surface. �

T 4.2. Let U ⊂ L3 be a domain bounded by (spacelike or timelike) totally
umbilical surfaces in L3 and let M be a compact immersed spacelike disk type
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capillary surface in U which is C2,α up to and including ∂M and whose boundary
is C2,α up to and including its vertices. If M has less than four vertices with angle less
than π, then M is part of a (spacelike) plane or a hyperbolic plane.

P. From Lemma 4.1, we obtain that each smooth component of ∂M is a line of
curvature of M. Hence the conclusion follows from Theorem 3.3. �

R 4.3. In the case where a smooth component of ∂U is a lightlike plane, one
cannot expect a similar equation to (4.1) or (4.2) since N is a lightlike vector. Thus
the proof of Theorem 4.2 does not work in this case.

R 4.4. The number of vertices of M with angle less than π in Theorem 4.2 is
sharp. Let C be the Lorentzian catenoid which is a spacelike surface of revolution [10,
12]. Consider M ⊂ C to be a compact part bounded by two parallel horizontal spacelike
planes which are perpendicular to the axis of C and two vertical timelike planes
containing the axis of C with angle θ ∈ (0, π). Then M is a compact embedded disk
type spacelike CMC (H = 0) capillary surface with four vertices with angle less than
π at each of which the rotation index equals 1/4, which is part of neither a (spacelike)
plane nor a hyperbolic plane.

As an immediate consequence of Theorem 4.2, one can obtain the following
theorem which is a generalization of [4].

T 4.5. The only spacelike immersed disk type capillary surface inside a de
Sitter surface in L3 is a planar disk (H = 0) or a hyperbolic disk (H , 0).
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