Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T04:23:23.750Z Has data issue: false hasContentIssue false

9 - Cardiovascular Psychophysiology

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. J., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biological Psychology, 74: 243262.Google Scholar
Ameloot, K., Palmers, P. J., & Malbrain, M. L. (2015). The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Current Opinion on Critical Care, 21: 232239.Google Scholar
Anderson, C. R. (1998). Identification of cardiovascular pathways in the sympathetic nervous system. Clinical and Experimental Pharmacology and Physiology, 25: 449452.CrossRefGoogle ScholarPubMed
Andersson, U. & Tracey, K. J. (2012). Reflex principles of immunological homeostasis. Annual Review of Immunology, 30: 313335.Google Scholar
Annila, P. A., Yli-Hankala, A. M., & Lindgren, L. (1994). The effect of atropine on the T-wave amplitude of ECG during isoflurane anaesthesia. International Journal of Clinical Monitoring and Computing, 11: 4347.Google Scholar
Armour, J. A. (2008). Potential clinical relevance of the “little brain” on the mammalian heart. Experimental Physiology, 93: 165176.Google Scholar
Babbs, C. F. (2012). Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model. Biomedical Engineering Online, 11: 56.Google Scholar
Bachen, E. A., Manuck, S. B., Cohen, S., Muldoon, M. F., Raibel, R., Herbert, T. B., & Rabin, B. S. (1995). Adrenergic blockade ameliorates cellular immune responses to mental stress in humans. Psychosomatic Medicine, 57: 366372.Google Scholar
Bailey, R. H. & Bauer, J. H. (1993). A review of common errors in the indirect measurement of blood pressure. Archives of Internal Medicine, 153: 27412748.Google Scholar
Barbato, E. (2009). Role of adrenergic receptors in human coronary vasomotion. Heart, 95: 603608.Google Scholar
Barde, P. B., Jindal, G. D., Singh, R., & Deepak, K. K. (2006). New method of electrode placement for determination of cardiac output using impedance cardiography. Indian Journal of Physiology and Pharmacology, 50: 234240.Google ScholarPubMed
Bar-Haim, Y., Marshall, P. J., & Fox, N. A. (2000). Developmental changes in heart period and high frequency heart period variability from 4 months to 4 years of age. Developmental Psychobiology, 37: 4456.Google Scholar
Beaudin, A. E., Brugniaux, J. V., Vöhringer, M., Flewitt, J., Green, J. D., Friedrich, M. G., & Poulin, M. J. (2011). Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans. American Journal of Physiology: Heart and Circulatory Physiology, 301: H1678H1686.Google ScholarPubMed
Beker, F., Weber, M., Fink, R. H., & Adams, D. J. (2003). Muscarinic and nicotinic ACh receptor activation differentially mobilize Ca2+ in rat intracardiac ganglion neurons. Journal of Neurophysiology, 90: 19561964.CrossRefGoogle ScholarPubMed
Benschop, R. J., Nieuwenhuis, E. E. S., Tromp, E. A. M., Godart, G. L. R., Ballieux, R. E., & van Doornen, L. P. J. (1994). Effects of βadrenergic blockade on immunologic and cardiovascular changes induced by mental stress. Circulation, 89: 762769.CrossRefGoogle ScholarPubMed
Bernstein, D. P. (1986). A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Critical Care Medicine, 14: 904909.CrossRefGoogle ScholarPubMed
Bernstein, D. P., Henry, I. C., Lemmens, H. J., Chaltas, J. L., DeMaria, A. N., Moon, J. B., & Kahn, A. M. (2015). Validation of stroke volume and cardiac output by electrical interrogation of the brachial artery in normals: assessment of strengths, limitations, and sources of error. Journal of Clinical Monitoring and Computing, 29: 789800.Google Scholar
Bernstein, D. P. & Lemmens, H. J. (2005). Stroke volume equation for impedance cardiography. Medical and Biological Engineering and Computers, 43: 443450.Google Scholar
Berntson, G. G., Bechara, A., Damasio, H., Tranel, D., Norman, G. J., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological Science, 22: 8086.CrossRefGoogle ScholarPubMed
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … & van der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.CrossRefGoogle ScholarPubMed
Berntson, G. G. & Cacioppo, J. T. (1999). Heart rate variability: a neuroscientific perspective for furthur studies. Cardiac Electrophysiology Review, 3: 279282.Google Scholar
Berntson, G. G. & Cacioppo, J. T. (2007). Integrative physiology: homeostasis, allostasis and the orchestration of systemic physiology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 433452). Cambridge University Press.Google Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993a). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30: 183196.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1995). The metrics of cardiac chronotropism: biometric perspectives. Psychophysiology, 32: 162171.Google Scholar
Berntson, G. G., Lozano, D. L., & Chen, Y. J. (2005). Filter properties of the root mean square successive difference (RMSSD) statistic in heart rate. Psychophysiology, 42: 246252.Google Scholar
Berntson, G. G., Lozano, D. L., Chen, Y. J., & Cacioppo, J. T. (2004). Where to Q in PEP: reliability and validity. Psychophysiology, 41: 333337.Google Scholar
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45: 643652.Google Scholar
Bertinieri, G., di Rienzo, M., Cavallazzi, A., Ferrari, A. U., Pedotti, A., & Mancia, G. (1985). A new approach to analysis of the arterial baroreflex. Journal of Hypertension, 3: S79S81.Google Scholar
Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in Physiology, 4: article 26.Google Scholar
Borow, K. M. & Newberger, J. W. (1982). Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: comparative study of indirect systolic, diastolic and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurements. American Heart Journal, 103: 879886.Google Scholar
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., Dhabhar, F. S., & Marucha, P. T. (2003). Acute stress evokes a selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain, Behavior, & Immunity, 17: 251259.Google Scholar
Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38: 836846.Google Scholar
Brack, K. E. (2015). The heart’s “little brain” controlling cardiac function in the rabbit. Experimental Physiology, 100: 348353.Google Scholar
Bresler, M. A., Sheffy, K., Pillar, G., Preiszler, M., & Herscovici, S. (2008). Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry. Physiological Measurement, 29: 571584.Google Scholar
Brownley, K. A., Hurwitz, B. E., & Schneiderman, N. (2000). Cardiovascular psychophysiology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 2nd edn. (pp. 224264). Cambridge University Press.Google Scholar
Cacioppo, J. T. (1994). Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31: 113128.Google Scholar
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control: II. Basal response, noninvasive indices, and autonomic space as revealed by autonomic blockades. Psychophysiology, 31: 586598.CrossRefGoogle Scholar
Cacioppo, J. T. & Hawkley, L. C. (2003). Social isolation and health, with an emphasis on underlying mechanisms. Perspectives in Biology and Medicine, 46 S39S52.Google Scholar
Cacioppo, J. T., Hawkley, L. C., Crawford, L. E., Ernst, J. M., Burleson, M. H., Kowalski, R. B., Malarkey, W. B., Van Cauter, E., & Berntson, G. G. (2002). Loneliness and health: potential mechanisms. Psychosomatic Medicine, 64: 407417.Google Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., … & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.) (2007). Handbook of Psychophysiology. Cambridge University Press.Google Scholar
Capuana, L. J., Dywan, J., Tays, W. J., Elmers, J. L., Witherspoon, R., & Segalowitz, S. J. (2014). Factors influencing the role of cardiac autonomic regulation in the service of cognitive control. Biological Psychology, 102: 8889.CrossRefGoogle ScholarPubMed
Cechetto, D. F. (2014). Cortical control of the autonomic nervous system. Experimental Physiology, 99: 326331.CrossRefGoogle ScholarPubMed
Chin, K. Y. & Panerai, R. B. (2012). Comparative study of Finapres devices. Blood Pressure Monitoring, 17: 171178.Google Scholar
Chowdhary, S., Marsh, A. M., Coote, J. H., & Townend, J. N. (2004). Nitric oxide and cardiac muscarinic control in humans. Hypertension, 43: 10231028.Google Scholar
Chung, J. (2009). Echocardiography in 2009: state of the art. Journal of Invasive Cardiology, 21: 346351.Google Scholar
Cnockaert, L., Migeotte, P. F., Daubigny, L., Prisk, G. K., Grenez, F., & , R. C. (2008). A method for the analysis of respiratory sinus arrhythmia using continuous wavelet transforms. IEEE Transactions in Biomedical Engineering, 55: 16401642.Google Scholar
Cole, S. W., Hawkley, L. C., Arevalo, J. M., & Cacioppo, J. T. (2011). Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proceedings of the National Academy of Sciences of the USA, 108: 30803085.Google Scholar
Contrada, R. J. (1992). T-wave amplitude: on the meaning of a psychophysiological index. Biological Psychology, 33: 249258.Google Scholar
Corretti, M. C., Anderson, T. J., Benjamin, E. J., Celermajer, D., Charbonneau, F., Creager, M. A., … & Vogel, R. (2002). Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. Journal of the American College of Cardiology, 39: 257265.Google Scholar
Cotter, G., Schachner, A., Sasson, L., Dekel, H., & Moshkovitz, Y. (2006). Impedance cardiography revisited. Physiological Measures, 27: 817827.Google Scholar
Critchley, H. D., Nagai, Y., Gray, M. A., & Mathias, C. J. (2011). Dissecting axes of autonomic control in humans: insights from neuroimaging. Autonomic Neuroscience, 161: 3442.Google Scholar
Critchley, H. D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C. J., & Dolan, R. J. (2005a). Activity in the human brain predicting differential heart rate responses to emotional facial expressions. NeuroImage, 24: 751762.CrossRefGoogle ScholarPubMed
Critchley, H. D., Taggart, P., Sutton, P. M., Holdright, D. R., Batchvarov, V., Hnatkova, K., … & Dolan, R. J. (2005b). Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain, 128: 7585.Google Scholar
Cybulski, G. (2011). Ambulatory Impedance Cardiography: The Systems and their Applications (Lecture Notes in Electrical Engineering). Berlin: Springer-Verlag.Google Scholar
Dampney, R. A., Polson, J. W., Potts, P. D., Hirooka, Y., & Horiuchi, J. (2003). Functional organization of brain pathways subserving the baroreceptor reflex: studies in conscious animals using immediate early gene expression. Cellular and Molecular Neurobiology, 23: 597616.Google Scholar
Davies, J. I. & Struthers, A. D. (2003). Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. Journal of Hypertension, 21: 463472.CrossRefGoogle ScholarPubMed
De Vito, P. (2014). Atrial natriuretic peptide: an old hormone or a new cytokine? Peptides, 58: 108116.Google Scholar
deBoer, R. W., Karemaker, J. M., & Strackee, J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. American Journal of Physiology, 253: 680689.Google Scholar
Demeter, R. J., Parr, K. L., Toth, P. D., & Woods, J. R. (1993). Use of noninvasive bioelectric impedance to predict cardiac output in open heart recovery. Biological Psychology, 36: 2332.Google Scholar
Dessy, C., Moniotte, S., Ghisdal, P., Havaux, X., Noirhomme, P., & Balligand, J. L. (2004). Endothelial β3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation, 110: 948954.CrossRefGoogle ScholarPubMed
Di Rienzo, M., Parati, G., Castiglioni, P., Tordi, R., Mancia, G., & Pedotti, A. (2001). Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. American Journal of Physiology, 280: R744R751.Google Scholar
Docherty, J. R. (2002). Age-related changes in adrenergic neuroeffector transmission. Autonomic Neuroscience, 96: 812.Google Scholar
Eckberg, D. L. (1997). Sympathovagal balance: a critical appraisal. Circulation, 96: 32243232.Google Scholar
Eckberg, D. L. (1998). Sympathovagal balance: a critical appraisal – reply. Circulation, 98: 26432644.Google Scholar
Eckberg, D. L. (2000). Physiological basis for human autonomic rhythms. Annals of Medicine, 32: 341349.CrossRefGoogle ScholarPubMed
Eckberg, D. L. (2003). The human respiratory gate. Journal of Physiology, 548: 339352.Google Scholar
Fabiani, M., Low, K. A., Tan, C. H., Zimmerman, B., Fletcher, M. A., Schneider-Garces, N., … & Gratton, G. 2014. Taking the pulse of aging: mapping pulse pressure and elasticity in cerebral arteries with optical methods. Psychophysiology, 51: 10721088.Google Scholar
Fitzsimons, J. T. (1998). Angiotensin, thirst, and sodium appetite. Physiological Reviews, 78: 583686.Google Scholar
Frederiks, J., Swenne, C. A., TenVoorde, B. J., Honzíková, N., Levert, J. V., Maan, A. C., … & Bruschke, A. V. (2000). The importance of high-frequency paced breathing in spectral baroreflex sensitivity assessment. Journal of Hypertension, 18: 16351644.CrossRefGoogle ScholarPubMed
Fukuda, N. & Granzier, H. L. (2005). Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. Journal of Muscle Research & Cell Motility, 26: 319323.Google Scholar
Fukuda, N., Terui, T., Ishiwata, S. I., & Kurihara, S. (2010). Titin-based regulations of diastolic and systolic functions of mammalian cardiac muscle. Journal of Molecular and Cellular Cardiology, 48: 876881.CrossRefGoogle ScholarPubMed
Fukuda, N., Terui, T., Ohtsuki, I., Ishiwata, S. I., & Kurihara, S. (2009). Titin and troponin: central players in the Frank-Starling mechanism of the heart. Current Cardiology Reviews, 5: 119124.Google Scholar
Furedy, J. J., Heslegrave, R. J., & Scher, H. (1992). T-wave amplitude utility revisited: some physiological and psychophysiological considerations. Biological Psychology, 33: 241248.Google Scholar
Gang, Y. & Malik, M. (2002). Heart rate variability in critical care medicine. Current Opinion in Critical Care, 8: 371375.Google Scholar
Gianaros, P. J., May, J. C., Siegle, G. J., & Jennings, J. R. (2005). Is there a functional neural correlate of individual differences in cardiovascular reactivity? Psychosomatic Medicine, 67: 3139.Google Scholar
Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33: 17001716.Google Scholar
Gianaros, P. J. & Quigley, K. S. (2001). Autonomic origins of a nonsignal stimulus-elicited bradycardia and its habituation in humans. Psychophysiology, 38: 540547.Google Scholar
Gianaros, P. J., Van Der Veen, F. M., & Jennings, J. R. (2004). Regional cerebral blood flow correlates with heart period and high frequency heart period variability during working memory tasks: implications for the cortical and subcortical regulation of cardiac autonomic activity. Psychophysiology, 41: 521530.Google Scholar
Gibbons, R. J. & Araoz, P. A. (2004). The year in cardiac imaging. Journal of the American College of Cardiology, 44: 19371944.Google Scholar
Glaser, R., Kiecolt-Glaser, J. K., Malarkey, W. B., & Sheridan, J. F. (1998). The influence of psychological stress on the immune response to vaccines. Annals of the New York Academy of Sciences, 840: 649655.Google Scholar
Goedhart, A. D., Kupper, N., Willemsen, G., Boomsma, D. I., & de Geus, E. J. (2006). Temporal stability of ambulatory stroke volume and cardiac output measured by impedance cardiography. Biological Psychology, 72: 110117.CrossRefGoogle ScholarPubMed
Goedhart, A. D., Willemsen, G., Houtveen, J. H., Boomsma, D. I., & De Geus, E. J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45: 10861090.Google Scholar
Goldberger, A. L. (2013). Clinical Electrocardiography: A Simplified Approach, 8th edn. Philadelphia, PA: Elsevier Saunders.Google Scholar
Goldin, J. G., Ratib, O., & Aberle, D. R. (2000). Contemporary cardiac imaging: an overview. Journal of Thoracic Imaging, 15: 218229.Google Scholar
Goldstein, D. S., Bentho, O., Park, M. Y., & Sharabi, Y. (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96: 12551261.Google Scholar
Graham, F. K. (1978). Constraints on measuring heart rate and period sequentially through real and cardiac time. Psychophysiology, 15: 492495.Google Scholar
Gratton, G. & Fabiani, M. (2010). Fast optical imaging of human brain function. Frontiers in Human Neuroscience, 4: 52.Google Scholar
Gray, A. L., Johnson, T. A., Ardell, J. L., & Massari, V. J. (2004a). Parasympathetic control of the heart: II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. Journal of Applied Physiology, 96: 22732278.Google Scholar
Gray, A. L., Johnson, T. A., Lauenstein, J. M., Newton, S. S., Ardell, J. L., & Massari, V. J. (2004b). Parasympathetic control of the heart: III. Neuropeptide Y-immunoreactive nerve terminals synapse on three populations of negative chronotropic vagal preganglionic neurons. Journal of Applied Physiology, 96: 22792287.Google Scholar
Gray, M., Nagai, Y., & Critchley, H. D. (2012). Brain imaging of stress and cardiovascular responses. In Hjemdahl, P., Rosengren, A., & Steptoe, A. (eds.), Stress and Cardiovascular Disease (pp. 129148). London: Springer.Google Scholar
Gray, M. A., Rylander, K., Harrison, N. A., Wallin, B. G., & Critchley, H. D. (2009). Following one’s heart: cardiac rhythms gate central initiation of sympathetic reflexes. Journal of Neuroscience, 29: 18171825.Google Scholar
Grisk, O. & Rettig, R. (2004). Interactions between the sympathetic nervous system and the kidneys in arterial hypertension. Cardiovascular Research, 61: 238246.Google Scholar
Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology, 28: 201216.Google Scholar
Grossman, P. & Kollai, M. (1993). Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within and between individual relations. Psychophysiology, 30: 486495.Google Scholar
Grossman, P., van Beek, J., & Wientjes, C. (1990). A comparison of three quantification methods for estimation of respiratory sinus arrhythmia. Psychophysiology, 27: 702714.Google Scholar
Grossman, P., Wilhelm, F. H., & Spoerle, M. (2004). Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. American Journal of Physiology: Heart & Circulatory Physiology, 287: H728H734.Google Scholar
Guimaraes, S. & Moura, D. (2001). Vascular adrenoceptors: an update. Pharmacological Review, 53: 319356.Google Scholar
Guthrie, D. & Yucha, C. (2004). Urinary concentration and dilution. Nephrolology Nursing Journal, 31: 297303.Google ScholarPubMed
Guyton, A. C. & Hall, J. E. (2010). Textbook of Medical Physiology, 12th edn. Philadelphia: W. B. Saunders.Google Scholar
Hall, J. E. (2010). Guyton and Hall Textbook of Medical Physiology. New York: Elsevier.Google Scholar
Hansson, G. K. & Hermansson, A. (2011). The immune system in atherosclerosis. Nature Immunology, 12: 204212.Google Scholar
Hawkley, L. C., Burleson, M. H., Berntson, G. G., & Cacioppo, J. T. (2003). Loneliness in everyday life: cardiovascular activity, psychosocial context, and health behaviors. Journal of Personality and Social Psychology, 85: 105120.Google Scholar
Henelius, A., Sallinen, M., Huotilainen, M., Müller, K., Virkkala, J., & Puolamäki, K. (2014). Heart rate variability for evaluating vigilant attention in partial chronic sleep restriction. Sleep, 37: 12571267.Google Scholar
Henry, I. C., Bernstein, D. P., & Banet, M. J. (2012). Stroke volume obtained from the brachial artery using transbrachial electrical bioimpedance velocimetry. In Conference Proceedings of the IEEE Engineering Medicine Biology Society, 2012 (pp. 142145). Piscataway, NJ: IEEE.Google Scholar
Higgins, C. B. (2000). Cardiac imaging. Radiology, 217: 410.Google Scholar
Hoetink, A. E., Faes, T. J., Schuur, E. H., Gorkink, R., Goovaerts, H. G., Meijer, J. H., & Heethaar, R. M. (2002). Comparing spot electrode arrangements for electric impedance cardiography. Physiological Measurement, 23: 457467.Google Scholar
Hoetink, A. E., Faes, T. J., Visser, K. R., & Heethaar, R. M. (2004). On the flow dependency of the electrical conductivity of blood. IEEE Transactions on Biomedical Engineering, 51: 12511261.Google Scholar
Ikarashi, A., Nogawa, M., Yamakoshi, T., Tanaka, S., & Yamakoshi, K. (2006). An optimal spot-electrodes array for electrical impedance cardiography through determination of impedance mapping of a regional area along the medial line on the thorax. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 1: 32023205.Google Scholar
Iwata, J. & LeDoux, J. E. (1988). Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience, 102: 6676.Google Scholar
Jagadeesh, A. M., Singh, N. G., & Mahankali, S. (2012). A comparison of a continuous noninvasive arterial pressure (CNAP™) monitor with an invasive arterial blood pressure monitor in the cardiac surgical ICU. Annals of Cardiac Anaesthesia, 15: 180184.Google Scholar
Jennings, J. R., Kamarck, T. W., Everson Rose, S. A., Kaplan, G. A., Manuck, S. B., & Salonen, J. T. (2004). Exaggerated blood pressure responses during mental stress are prospectively related to enhanced carotid atherosclerosis in middle-aged Finnish men. Circulation, 110: 21982203.Google Scholar
Jennings, J. R., Tahmoush, A. J., & Redmond, D. P. (1980). Noninvasive measurement of peripheral vascular activity. In Martin, I. & Venables, P. H. (eds.), Techniques in Psychophysiology (pp. 69137). New York: John Wiley.Google Scholar
Johnson, T. A., Gray, A. L., Lauenstein, J. M., Newton, S. S., & Massari, V. J. (2004). Parasympathetic control of the heart: I. An interventriculoseptal ganglion is the major source of the vagal intracardiac innervation of the ventricles. Journal of Applied Physiology, 96: 22652272.Google Scholar
Joyner, M. J. & Casey, D. P. (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiological Reviews, 95: 549601.Google Scholar
Karelina, K., Norman, G. J., Zhang, N., Morris, J. S., Peng, H., & DeVries, A. C. (2009). Social isolation alters neuroinflammatory response to stroke. Proceedings of the National Academy of Sciences of the USA, 106: 58955900.Google Scholar
Kauppinen, P. K., Hyttinen, J. A., & Malmivuo, J. A. (1998). Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Annals of Biomedical Engineering, 26: 694702.Google Scholar
Kauppinen, P. K., Koobi, T., Hyttinen, J., & Malmivuo, J. (2000). Segmental composition of whole body impedance cardiogram estimated by computer simulations and clinical experiments. Clinical Physiology, 20: 106113.Google Scholar
Kelsey, R. M., Reiff, S., Wiens, S., Schneider, T. R., Mezzacappa, E. S., & Guethlein, W. (1998). The ensemble-averaged impedance cardiogram: an evaluation of scoring methods and interrater reliability. Psychophysiology, 35: 337340.Google Scholar
Kemmotsu, O., Ueda, M., Otsuka, H., Yamamura, T., Winter, D. C., & Eckerle, J. S. (1991). Arterial tonometry for noninvasive, continuous blood pressure monitoring during anesthesia. Anesthesiology, 75: 333340.Google Scholar
Kline, K. P., Ginsburg, G. P., & Johnston, J. R. (1998). T-wave amplitude: relationships to phasic RSA and heart period changes. International Journal of Psychophysiology, 29: 291301.Google Scholar
Koh, J., Brown, T. E., Beightol, L. A., & Eckberg, D. L. (1998). Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations. Journal of the Autonomic Nervous System, 68: 8995.Google Scholar
Kreibig, S. D., Gendolla, G. H., & Scherer, K. R. (2012). Goal relevance and goal conduciveness appraisals lead to differential autonomic reactivity in emotional responding to performance feedback. Biological Psychology, 91: 365375.CrossRefGoogle ScholarPubMed
Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., & Mattson, R. H. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37: 12081212.Google Scholar
Kurzen, H. & Schallreuter, K. U. (2004). Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors. Experimental Dermatology, 13: 2730.Google Scholar
Kuvin, J. T., Patel, A. R., Sliney, K. A., Pandian, N. G., Rand, W. M., Udelson, J. E., & Karas, R. H. (2001). Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease. Journal of the American College of Cardiology, 38: 18431849.Google Scholar
Kuvin, J. T., Patel, A. R., Sliney, K. A., Pandian, N. G., Sheffy, J., Schnall, R. P., … & Udelson, J. E. (2003). Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. American Heart Journal, 146: 168174.Google Scholar
Lacey, J. I. & Lacey, B. C. (1962). The law of initial value in the longitudinal study of autonomic constitution: reproducibility of autonomic responses and response patterns over a four year interval. Annals of the New York Academy of Sciences, 98: 12571290.Google Scholar
Landis, S. C. (1996). The development of cholinergic sympathetic neurons: a role for neuropoietic cytokines? Perspectives in Developmental Neurobiology, 4: 5363.Google Scholar
Lane, R. D., Reiman, E. M., Ahern, G. L., & Thayer, J. F. (2001). Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain and Cognition, 47: 97100.Google Scholar
Lang, P. J. (2014). Emotion’s response patterns: the brain and the autonomic nervous system. Emotion Review, 6: 9399.CrossRefGoogle Scholar
Laude, D., Elghozi, J. L., Girard, A., Bellard, E., Bouhaddi, M., Castiglioni, P., … & Stauss, H. M. (2004). Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). American Journal of Physiology: Regulatory, Integrative and Comparative Physiolology, 286: R226R231.Google Scholar
Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Eckberg, D. L., Edelberg, R., … & Hamer, R. M. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65: 796805.Google Scholar
Levenson, R. W. (2014). Emotion and the autonomic nervous system: introduction to the special section. Emotion Review, 6: 9192.Google Scholar
Levy, M. N. (1984). Cardiac sympathetic–parasympathetic interactions. Federation Proceedings, 43: 25982602.Google Scholar
Libby, P. (2003). Vascular biology of atherosclerosis: overview and state of the art. American Journal of Cardiology, 91: 3A6A.Google Scholar
Lindh, B. & Hokfelt, T. (1990). Structural and functional aspects of acetylcholine peptide coexistence in the autonomic nervous system. Progress in Brain Research, 84: 175191.Google Scholar
Litvack, D. A., Oberlander, T. F., Carney, L. H., & Saul, J. P. (1995). Time and frequency domain methods for heart rate variability analysis: a methodological comparison. Psychophysiology, 32: 492504.Google Scholar
Llabre, M. M., Ironson, G. H., Spitzer, S. B., Gellman, M. D., Weidler, D. J., & Schneiderman, N. (1988). How many blood pressure measurements are enough? An application of generalizability theory to the study of blood pressure reliability. Psychophysiology, 25: 97106.Google Scholar
Longmore, J., Bradshaw, C. M., & Szabadi, E. (1985). Effects of locally and systemically administered cholinoceptor antagonists on the secretory response of human eccrine sweat glands to carbachol. British Journal of Clinical Pharmacology, 20: 17.Google Scholar
Lozano, D. L., Norman, G., Knox, D., Wood, B. L., Miller, B. D., Emery, C. F., & Berntson, G. G. (2007). Where to B in dZ/dt. Psychophysiology, 44: 113119.Google Scholar
Luchner, A. & Schunkert, H. (2004). Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovascular Research, 63: 443449.Google Scholar
Lymperopoulos, A. (2013). Physiology and pharmacology of the cardiovascular adrenergic system. Frontiers in Physiology, 4: 240.Google Scholar
Macfarlane, P. W., van Oosterom, A., Janse, M., Kligfield, P., Camm, J., & Pahlm, O. (2012). Basic Electrocardiology: Cardiac Electrophysiology, ECG Systems and Mathematical Modeling. New York: Springer.Google Scholar
Machado-Moreira, C. A., McLennan, P. L., Lillioja, S., van Dijk, W., Caldwell, J. N., & Taylor, N. A. (2012). The cholinergic blockade of both thermally and non-thermally induced human eccrine sweating. Experimental Physiology, 97: 930942.Google Scholar
Malliani, A. (1999). The pattern of sympathovagal balance explored in the frequency domain. News in Physiological Sciences, 14: 111117.Google ScholarPubMed
Martínez-García, P., Lerma, C., & Infante, O. (2012). Baroreflex sensitivity estimation by the sequence method with delayed signals. Clinical Autonomic Research, 22: 289297.Google Scholar
Matthews, K. A., Salomon, K., Brady, S. S., & Allen, M. T. (2003). Cardiovascular reactivity to stress predicts future blood pressure in adolescence. Psychosomatic Medicine, 65: 410415.CrossRefGoogle ScholarPubMed
Matthews, S. C., Paulus, M. P., Simmons, A. N., Nelesen, R. A., & Dimsdale, J. E. (2004). Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. NeuroImage, 22: 11511156.Google Scholar
Monti, A., Medigue, C., & Mangin, L. (2002). Instantaneous parameter estimation in cardiovascular time series by harmonic and time-frequency analysis. IEEE Transactions in Biomedical Engineering, 49: 15471556.Google Scholar
Moshkovitz, Y., Kaluski, E., Milo, O., Vered, Z., & Cotter, G. (2004). Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. Current Opinion in Cardiology, 19: 229237.Google Scholar
Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2014). Emotion, somatovisceral afference, and autonomic regulation. Emotion Review, 6: 113123.Google Scholar
Norman, G. J., Karelina, K., Morris, J. S., Zhang, N., Cochran, M., & DeVries, A. C. (2010a). Social interaction prevents the development of depressive-like behavior post nerve injury in mice: a potential role for oxytocin. Psychosomatic Medicine, 72: 519526.Google Scholar
Norman, G. J., Zhang, N., Morris, J. S., Karelina, K., Berntson, G. G., & DeVries, A. C. (2010b). Social interaction modulates autonomic, inflammatory, and depressive-like responses to cardiac arrest and cardiopulmonary resuscitation. Proceedings of the National Academy of Sciences of the USA, 107: 1634216347.Google Scholar
O’Brien, E. (1996). Review. A century of confusion: which bladder for accurate blood pressure measurement? Journal of Human Hypertension, 10: 565572.Google Scholar
Padgett, D. A., Sheridan, J. F., Dorne, J., Berntson, G. G., Candelora, J., & Glaser, R. (1998). Social stress and the reactivation of latent herpes simplex virus type 1. Proceedings of the National Academy of Sciences of the USA, 95: 72317235.Google Scholar
Parati, G., Di Rienzo, M., & Mancia, G. (2000). How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. Journal of Hypertension, 18: 719.Google Scholar
Parati, G., Ongaro, G., Bilo, G., Glavina, F., Castiglioni, P., Di Rienzo, M., & Mancia, G. (2003). Noninvasive beat to beat blood pressure monitoring: new developments. Blood Pressure Monitoring, 8: 3136.Google Scholar
Park, G. & Thayer, J. F. (2014). From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Frontiers in Psychology, 5: 278.Google Scholar
Parker, P., Celler, B. G., Potter, E. K., & McCloskey, D. I. (1984). Vagal stimulation and cardiac slowing. Journal of the Autonomic Nervous System, 11: 226231.Google Scholar
Parry, M. J. & McFetridge-Durdle, J. (2006). Ambulatory impedance cardiography: a systematic review. Nursing Research, 55: 283291.Google Scholar
Pépin, J. L., Tamisier, R., Borel, J. C., Baguet, J. P., & Lévy, P. (2009). A critical review of peripheral arterial tone and pulse transit time as indirect diagnostic methods for detecting sleep disordered breathing and characterizing sleep structure. Current Opinion in Pulmonary Medicine, 15: 550558.Google Scholar
Persson, P. B., Di Rienzo, M., Castiglioni, P., Cerutti, C., Pagani, M., Honzikova, N., … & Parati, G. (2001). Time versus frequency domain techniques for assessing baroreflex sensitivity. Journal of Hypertension, 19: 16991705.Google Scholar
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76: 116129.Google Scholar
Pirola, F. T. & Potter, E. K. (1990). Vagal action on atrioventricular conduction and its inhibition by sympathetic stimulation and neuropeptide Y in anaesthetised dogs. Journal of the Autonomic Nervous System, 31: 112.Google Scholar
Pittman, S. D., Ayas, N. T., MacDonald, M. M., Malhotra, A., Fogel, R. B., & White, D. P. (2004). Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep, 27: 923933.Google Scholar
Poliakova, N., Dionne, G., Dubreuil, E., Ditto, B., Pihl, R. O., Pérusse, D., … & Boivin, M. (2014). A methodological comparison of the Porges algorithm, fast Fourier transform, and autoregressive spectral analysis for the estimation of heart rate variability in 5-month-old infants. Psychophysiology, 51: 579583.Google Scholar
Porges, S. W. (1992). Autonomic regulation and attention. In Campbell, B. A., Hayne, H., & Richardson, R. (eds.), Attention and Information Processing in Infants and Adults (pp. 201223). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Porges, S. W. & Bohrer, R. E. (1990). Analysis of periodic processes in psychophysiological research. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social and Inferential Elements (pp. 708753). Cambridge University Press.Google Scholar
Powell, N. D., Sloan, E. K., Bailey, M. T., Arevalo, J. M., Miller, G. E., Chen, E., & Cole, S. W. (2013). Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proceedings of the National Academy of Sciences of the USA, 110: 1657416579.Google Scholar
Pumprla, J., Howorka, K., Groves, D., Chester, M., & Nolan, J. (2002). Functional assessment of heart rate variability: physiological basis and practical applications. International Journal of Cardiology, 84: 114.Google Scholar
Qu, M. H., Zhang, Y. J., Webster, J. G., & Tompkins, W. J. (1986). Motion artifact from spot and band electrodes during impedance cardiography. IEEE Transactions in Biomedical Engineering, 33: 10291036.Google Scholar
Quan, N., Avitsur, R., Stark, J. L., He, L., Lai, W., Dhabhar, F., & Sheridan, J. F. (2003). Molecular mechanisms of glucocorticoid resistance in splenocytes of socially stressed male mice. Journal of Neuroimmunology, 137: 5158.Google Scholar
Quigley, K. S. & Berntson, G. G. (1996) Autonomic interactions and chronotropic control of the heart: heart period vs. heart rate. Psychophysiology, 33: 605611.Google Scholar
Quigley, K. S. & Stifter, C. A. (2006). A comparative validation of sympathetic reactivity in children and adults. Psychophysiology, 43: 357365.Google Scholar
Raaijmakers, E., Faes, T. J., Scholten, R. J., Goovaerts, H. G., & Heethaar, R. M. (1999). A meta-analysis of published studies concerning the validity of thoracic impedance cardiography. Annals of the New York Academy of Sciences, 873: 121127.Google Scholar
Randall, W., Wurster, R., Randall, D., & Xi Moy, S. (1996). From cardioaccelerator and inhibitory nerves to a “heart brain”: an evolution of concepts. In Shepard, J. T. & Vatner, S. F. (eds.), Nervous Control of the Heart. Amsterdam: Harwood Academic Publishers.Google Scholar
Rashba, E. J., Cooklin, M., MacMurdy, K., Kavesh, N., Kirk, M., Sarang, S., … & Gold, M. R. (2002). Effects of selective autonomic blockade on T-wave alternans in humans. Circulation, 105: 837842.Google Scholar
Ren, L. M., Furukawa, Y., Karasawa, Y., Murakami, M., Takei, M., Narita, M., & Chiba, S. (1991). Differential inhibition of neuropeptide Y on the chronotropic and inotropic responses to sympathetic and parasympathetic stimulation in the isolated, perfused dog atrium. Journal of Pharmacology and Experimental Therapeutics, 259: 3843.Google Scholar
Reyes del Paso, G. A., González, I., & Hernández, J. A. (2004a). Baroreceptor sensitivity and effectiveness varies differentially as a function of cognitive-attentional demands. Biological Psychology, 67: 385395.Google Scholar
Reyes del Paso, G. A., Hernández, J. A., & González, I. (2004b). Differential analysis in the time domain of the baroreceptor cardiac reflex sensitivity as a function of sequence length. Psychophysiology, 41: 483488.Google Scholar
Reyes del Paso, G. A., Langewitz, W., Mulder, L. J., van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50: 477487.Google Scholar
Richardson, R. J., Grkovic, I., & Anderson, C. R. (2003). Immunohistochemical analysis of intracardiac ganglia of the rat heart. Cell and Tissue Research, 314: 337350.Google Scholar
Riese, H., Groot, P. F., van den Berg, M., Kupper, N. H., Magnee, E. H., Rohaan, E. J., … & de Geus, E. J. (2003). Large-scale ensemble averaging of ambulatory impedance cardiograms. Behavioral Research Methods, Instruments and Computers, 35: 467477.Google Scholar
Riniolo, T. & Porges, S. W. (1997). Inferential and descriptive influences on measures of respiratory sinus arrhythmia: sampling rate, R-wave trigger accuracy, and variance estimates. Psychophysiology, 34: 613621.Google Scholar
Rose, S. C. (2000). Noninvasive vascular laboratory for evaluation of peripheral arterial occlusive disease: Part I. Hemodynamic principles and tools of the trade. Journal of Vascular and Interventional Radiology, 11: 11071114.Google Scholar
Rosengren, A., Hawken, S., Ounpuu, S., Sliwa, K., Zubaid, M., Almahmeed, W. A., … & Yusuf, S. (2004). Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case control study. Lancet, 364: 953962.Google Scholar
Sampaio, K. N., Mauad, H., Spyer, K. M., & Ford, T. W. (2003). Differential chronotropic and dromotropic responses to focal stimulation of cardiac vagal ganglia in the rat. Experimental Physiology, 88: 315327.Google Scholar
Shapiro, D., Jamner, L. D., Lane, J. D., Light, K. C., Myrtek, M., Sawada, Y., & Steptoe, A. (1996). Blood pressure publication guidelines. Psychophysiology, 33: 112.Google Scholar
Shechter, M., Issachar, A., Marai, I., Koren-Morag, N., Freinark, D., Shahar, Y., & Feinberg, M. S. (2009). Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. International Journal of Cardiology, 134: 5258.Google Scholar
Sheridan, J. F., Stark, J. L., Avitsur, R., & Padgett, D. A. (2000). Social disruption, immunity, and susceptibility to viral infection: role of glucocorticoid insensitivity and NGF. Annals of the New York Academy of Sciences, 917: 894905.CrossRefGoogle ScholarPubMed
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google Scholar
Sherwood, A., Dolan, C. A., & Light, K. C. (1990). Hemodynamics of blood pressure responses during active and passive coping. Psychophysiology, 27: 656668.Google Scholar
Sherwood, A., Royal, S. A., Hutcheson, J. S., & Turner, J. R. (1992). Comparison of impedance cardiographic measurements using band and spot electrodes. Psychophysiology, 29: 734741.Google Scholar
Simmons, W. K., Avery, J. A., Barcalow, J. C., Bodurka, J., Drevets, W. C., & Bellgowan, P. (2013). Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Human Brain Mapping, 34: 29442958.Google Scholar
Smith, L. L., Kukielka, M., & Billman, G. E. (2005). Heart rate recovery after exercise: a predictor of ventricular fibrillation susceptibility after myocardial infarction. American Journal of Physiology: Heart and Circulatory Physiology, 288: H17631769.Google Scholar
Somsen, R. J., Jennings, J. R., & Van der Molen, M. W. (2004). The cardiac cycle time effect revisited: temporal dynamics of the central-vagal modulation of heart rate in human reaction time tasks. Psychophysiology, 41: 941953.Google Scholar
Stankovic, Z., Allen, B. D., Garcia, J., Jarvis, K. B., & Mark, M. (2014). 4D flow imaging with MRI. Cardiovascular Diagnosis and Therapy, 4: 173192.Google Scholar
Steptoe, A., Godaert, G., Ross, A., & Schreurs, P. (1983). The cardiac and vascular components of pulse transmission time: a computer analysis of systolic time intervals. Psychophysiology, 20: 251259.Google Scholar
Steptoe, A. & Sawada, Y. (1989). Assessment of baroreceptor reflex function during mental stress and relaxation. Psychophysiology, 26: 140147.Google Scholar
Strike, P. C. & Steptoe, A. (2004). Psychosocial factors in the development of coronary artery disease. Progress in Cardiovascular Disesase, 46: 337347.Google Scholar
Stuiver, A., de Waard, D., Brookhuis, K. A., Dijksterhuis, C., Lewis-Evans, B., & Mulder, L. J. (2012). Short-term cardiovascular responses to changing task demands. International Journal of Psychophysiology, 85: 153160.Google Scholar
Stuiver, A. & Mulder, B. (2014). Cardiovascular state changes in simulated work environments. Frontiers in Neuroscience, 8: article 399.Google Scholar
Swenne, C. A. (2013). Baroreflex sensitivity: mechanisms and measurement. Netherlands Heart Journal, 21: 5860.Google Scholar
Takahashi, H., Maehara, K., Onuki, N., Saito, T., & Maruyama, Y. (2003). Decreased contractility of the left ventricle is induced by the neurotransmitter acetylcholine, but not by vagal stimulation in rats. Japanese Heart Journal, 44: 257270.Google Scholar
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93: 10431065.Google Scholar
Ter Horst, G. J., Hautvast, R. W., De Jongste, M. J., & Korf, J. (1996). Neuroanatomy of cardiac activity regulating circuitry: a transneuronal retrograde viral labelling study in the rat. European Journal of Neuroscience, 8: 20292041.Google Scholar
Thayer, J. F. & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33: 8188.Google Scholar
Thayer, J. F. & Uijtdehaage, S. H. (2001). Derivation of chronotropic indices of autonomic nervous system activity using impedance cardiography. Biomedical Sciences Instrumentation, 37: 331336.Google Scholar
Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141: 122131.Google Scholar
Thijssen, D. H., Black, M. A., Pyke, K. E., Padilla, J., Atkinson, G., Harris, R. A., … & Green, D. J. (2011). Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. American Journal of Physiology: Heart and Circulatory Physiology, 300: H2H12.Google Scholar
Tomaka, J., Blascovich, J., Kelsey, R. M., & Leitten, C. L. (1993). Subjective, physiological, and behavioral effects of threat and challenge appraisal. Journal of Personality and Social Psychology, 65: 248260.Google Scholar
Tomaka, J., Blascovich, J., & Swart, L. (1994). Effects of vocalization on cardiovascular and electrodermal responses during mental arithmetic. International Journal of Psychophysiology, 18: 2333.Google Scholar
Ursino, M. & Magosso, E. (2003). Short-term autonomic control of cardiovascular function: a mini review with the help of mathematical models. Journal of Integrative Neuroscience, 2: 219247.Google Scholar
Vallbo, A. B., Hagbarth, K. E., & Wallin, B. G. (2004). Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. Journal of Applied Physiology, 96: 12621269.Google Scholar
Van De Water, J. M., Miller, T. W., Vogel, R. L., Mount, B. E., & Dalton, M. L. (2003). Impedance cardiography: the next vital sign technology? Chest, 123: 20282033.Google Scholar
van der Meer, B. J., Vonk Noordegraaf, A., Bax, J. J., Kamp, O., & de Vries, P. M. (1999). Non-invasive evaluation of left ventricular function by means of impedance cardiography. Acta Anaesthesiology Scandinavica, 43: 130134.CrossRefGoogle ScholarPubMed
van Dijk, A. E., van Lien, R., van Eijsden, M., Gemke, R. J., Vrijkotte, T. G., & de Geus, E. J. (2013). Measuring cardiac autonomic nervous system (ANS) activity in children. Journal of Visualized Experiments (JOVE), 29: e50073. www.ncbi.nlm.nih.gov/pmc/articles/PMC3667644/Google Scholar
van Lien, R., Neijts, M., Willemsen, G., & de Geus, E. J. (2015). Ambulatory measurement of the ECG T-wave amplitude. Psychophysiology, 52: 225237.Google Scholar
van Lien, R., Schutte, N. M., Meijer, J. H., & de Geus, E. J. (2013). Estimated preejection period (PEP) based on the detection of the R-wave and dZ/dt-min peaks does not adequately reflect the actual PEP across a wide range of laboratory and ambulatory conditions. International Journal of Psychophysiology, 87: 6069.Google Scholar
van Montfrans, G. A. (2001). Oscillometric blood pressure measurements: progress and problems. Blood Pressure Monitoring, 6: 287290.Google Scholar
Van Roon, A. M., Mulder, L. J., Althaus, M., & Mulder, G. (2004). Introducing a baroreflex model for studying cardiovascular effects of mental workload. Psychophysiology, 41: 961981.Google Scholar
van Vark, L. C., Bertrand, M., Akkerhuis, K. M., Brugts, J. J., Fox, K., Mourad, J. J., & Boersma, E. (2012). Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin–angiotensin–aldosterone system inhibitors involving 158998 patients. European Heart Journal, 33: 20882097.Google Scholar
Vuurmans, T. J. L., Boer, P., & Koomans, H. A. (2003). Effects of endothelin1 and endothelin1 receptor blockade on cardiac output, aortic pressure, and pulse wave velocity in humans. Hypertension, 41: 12531258.Google Scholar
Wallin, B. G. & Charkoudian, N. (2007). Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle and Nerve, 36: 595614.Google Scholar
Wang, Y. P., Kuo, T. B., Lai, C. T., Lee, G. S., & Yang, C. C. (2012). Effects of breathing frequency on baroreflex effectiveness index and spontaneous baroreflex sensitivity derived by sequence analysis. Journal of Hypertension, 30: 21512158.Google Scholar
Ward, A. R., Alarcón, G., Nigg, J. T., & Musser, E. D. (2015). Variation in parasympathetic dysregulation moderates short-term memory problems in childhood attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 43: 15731583.Google Scholar
Watkins, L., Fainman, C., Dimsdale, J., & Ziegler, M. (1995). Assessment of baroreflex control from beat-to-beat blood pressure and heart rate changes: a validation study. Psychophysiology, 32: 411414.Google Scholar
Weber, E. J., Molenaar, P. C., & van der Molen, M. W. (1992). A nonstationarity test for the spectral analysis of physiological time series with an application to respiratory sinus arrhythmia. Psychophysiology, 29: 5565.Google Scholar
Weyman, A. E. (2005). The year in echocardiography. Journal of the American College of Cardiology, 45: 448455.Google Scholar
Wilhelm, F. H., Grossman, P., & Coyle, M. A. (2004). Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration. Biomedical Sciences Instrumentation, 40: 317324.Google Scholar
Wilhelm, F. H., Grossman, P., & Roth, W. T. (1999). Analysis of cardiovascular regulation. Biomedical Sciences and Instrumentation, 35: 135140.Google Scholar
Wilkinson, I. B. & Webb, D. J. (2001). Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. British Journal of Clinical Pharmacology, 52: 631646.Google Scholar
Wood, D. (2001). Established and emerging cardiovascular risk factors. American Heart Journal, 141: 4957.Google Scholar
Woods, R. L. (2004). Cardioprotective functions of atrial natriuretic peptide and B-type natriuretic peptide: a brief review. Clinical and Experimental Pharmacology and Physiology, 31: 791794.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×