
Glasgow Math. J. 51 (2009) 513–524. C© 2009 Glasgow Mathematical Journal Trust.
doi:10.1017/S001708950900514X. Printed in the United Kingdom

A MULTIPLICITY RESULT FOR A CLASS OF EQUATIONS
OF p-LAPLACIAN TYPE WITH SIGN-CHANGING

NONLINEARITIES

NGUYEN THANH CHUNG
Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet,

Dong Hoi, Quang Binh, Vietnam
e-mail: ntchung82@yahoo.com
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Abstract. Using variational arguments we study the non-existence and multi-
plicity of non-negative solutions for a class equations of the form

−div(a(x,∇u)) = λf (x, u) in �,

where � is a bounded domain in �N , N � 3, f is a sign-changing Carathéodory
function on � × [0,+∞) and λ is a positive parameter.
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1. Introduction. This paper deals with the non-existence and multiplicity of
non-negative, non-trivial solutions to the following problem,

−div(a(x,∇u)) = λf (x, u) in �, (1.1)

u = 0 on ∂�, (1.2)

where � is a bounded domain in �N , function a satisfies

|a(x, ξ )| � c0(h0(x) + h1(x)|ξ |p−1)

for all ξ ∈ �N , a.e. x ∈ �, h0(x) � 0, h1(x) � 1 for a.e. x ∈ �, p � 2 and λ > 0 is a
parameter. When h0 and h1 belong to L∞(�), the problem has been studied by many
authors (see [2, 8, 10] for details). Here we study the situation that h0 ∈ L

p
p−1 (�) and

h1 ∈ L1
loc(�). Then problem (1.1)–(1.2) now may be non-uniform in the sense that the

functional associated to the problem may be infinity for some u.
We point out the fact that in [4, 13], D. M. Duc and N. T. Vu have studied the

following Dirichlet elliptic problem,

−div(a(x,∇u)) = f (x, u) in �, (1.3)

u = 0 on ∂�, (1.4)

where the nonlinear term f verifies the so-called Ambrosetti–Rabinowitz condition.
The authors obtained the existence of a weak solution by using a variant of the
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Mountain pass theorem introduced in [3]. Then, H. Q. Toan and Q.-A. Ngô [12] gave
some multiplicity results in the case when f (x, u) = h(x)|u|r−1u + g(x)|u|s−1u. Using
the Mountain pass theorem in [3] combined with Ekeland’s variational principle in [5]
they proved that problem (1.3)–(1.4) has at least two weak solutions.

Motivated by K. Perera [10] and M. Mihăilescu and V. Rădulescu [7], the goal of
this work is to investigate the problem (1.1)–(1.2) with positive parameter λ and the
sign-changing nonlinearity f . We also do not require that the nonlinear term f verifies
the Ambrosetti–Rabinowitz condition as in [4, 12].

In order to state our main result, let us introduce the following hypotheses on
problem (1.1)–(1.2).

Assume that N � 3 and 2 � p < N. Let � be a bounded domain with a
smooth boundary ∂�. Consider that a : � × �N → �N , a = a(x, ξ ), is the continuous
derivative with respect to ξ of the continuous function A : � × �N → �, A = A(x, ξ ),
that is, a(x, ξ ) = ∂A(x, ξ )/∂ξ and A(x, 0) = 0 for a.e. x ∈ �. Assume that there are
positive constant c0 and two non-negative measurable functions h0, h1 such that
h0 ∈ Lp/p−1(�), h1 ∈ L1

loc(�), h1(x) � 1, a.e. x ∈ �. Suppose that a and A satisfy the
following hypotheses.

(A1) |a(x, ξ )| � c0(h0(x) + h1(x)|ξ |p−1) for all ξ ∈ �N , a.e. x ∈ �.
(A2) The following inequality holds

0 � (a(x, ξ ) − a(x, ψ)) · (ξ − ψ)

for all ξ, ψ ∈ �N , a.e. x ∈ �, with equality if and only if ξ = ψ .
(A3) There exists a positive constant k0 such that

A
(

x,
ξ + ψ

2

)
� 1

2
A(x, ξ ) + 1

2
A(x, ψ) − k0h1(x)|ξ − ψ |p

for all ξ, ψ ∈ �N , a.e. x ∈ �, that is, A is p-uniformly convex.
(A4) There exists a constant k1 > 0 such that the following inequalities hold true

k1h1(x)|ξ |p � a(x, ξ ) · ξ � pA(x, ξ )

for all ξ ∈ �N , a.e. x ∈ �.

EXAMPLE 1.
1. Let

A(x, ξ ) = h(x)
p

|ξ |p, a(x, ξ ) = h(x)|ξ |p−2ξ,

with p � 2 and h ∈ L1
loc(�). Then we get the operator div(h(x)|∇u|p−2∇u), and

if h(x) ≡ 1 in � we conclude the well-known p-Laplacian operator

�pu := div(|∇u|p−2∇u)

as in [8, 10].
2. Let

A(x, ξ ) = h(x)
p

(
(1 + |ξ |2)

p
2 − 1

)
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with p � 2, h ∈ L
p

p−1 (�). Then

a(x, ξ ) = h(x)(1 + |ξ |2)
p−2

2 ξ.

We obtain the generalised mean curvature operator

div
(
h(x)(1 + |∇u|2)

p−2
2 ∇u

)
.

It should be observed that the above examples have not been considered in [2, 8, 10]
yet. For more information and connection on these operators, the reader may consult
either [2] or [8] and the references therein.

As in [10], we assume that function f : � × [0,+∞) → � is a sign-changing
Carathéodory function and satisfies the following hypotheses:

(F1) f (x, 0) = 0, |f (x, t)| � Ctp−1 for all t ∈ [0. + ∞), a.e. x ∈ �, and for some
constant C > 0.

(F2) There exist two positive constants t0, t1 > 0 such that F(x, t) � 0 for 0 � t � t0

and F(x, t1) > 0.
(F3) lim sup

t→∞
F(x,t)

tp � 0 uniformly in x, where F(x, t) = ∫ t
0 f (x, s) ds.

Let W 1,p(�) be the usual Sobolev space and W 1,p
0 (�) be the closure of C∞

0 (�)
under the norm

‖u‖ =
(∫

�

|∇u|p dx
) 1

p

.

We now consider the following subspace of W 1,p
0 (�):

H :=
{

u ∈ W 1,p
0 (�) :

∫
�

h1(x)|∇u|p dx < +∞
}

.

Then H is an infinite dimensional Banach space with respect to the norm (see [4])

‖u‖H =
(∫

�

h1(x)|∇u|p dx
) 1

p

.

We define the functional �λ : H → � by

�λ(u) = 	(u) − I(u), (1.5)

where

	(u) =
∫

�

A(x,∇u) dx , I(u) = λ

∫
�

F(x, u) dx , u ∈ H. (1.6)

Since h0 ∈ Lp/p−1(�), then the value �λ(u) may be infinity for some u ∈ W 1,p
0 (�), that

is, the functional may not be defined throughout W 1,p
0 (�). In order to overcome this

difficulty, we choose the subspace H of W 1,p
0 (�).
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DEFINITION 1. We say that u ∈ H is a weak solution of problem (1.1)–(1.2) if and
only if ∫

�

a(x,∇u)∇ϕ dx −λ

∫
�

f (x, u)ϕ dx = 0 (1.7)

for all ϕ ∈ C∞
0 (�).

Then we have the following remark which plays an important role in our arguments.

REMARK 1.
(i) By (A4) and (i) in Proposition 2, it is easy to see that

H =
{

u ∈ W 1,p
0 (�) : 	(u) < ∞

}
=

{
u ∈ W 1,p

0 (�) : �λ(u) < ∞
}

.

(ii) Since h1(x) � 1, a.e. x ∈ �, we have ‖u‖ � ‖u‖H for all u ∈ H. Thus, the
continuous embeddings

H ↪→ W 1,p
0 (�) ↪→ Li(�), p � i � p∗

hold true.
(iii) Since

∫
�

h1(x)|∇u|p dx < +∞ for any u ∈ C∞
0 (�) and h1 ∈ L1

loc(�), we have
C∞

0 (�) ⊂ H.

The main result for the existence of solutions of (1.1) can be formulated as follows.

THEOREM 1. Under hypotheses (A1)–(A4) and (F1), there exists a positive constant
λ such that for all λ ∈ (0, λ), problem (1.1)–(1.2) has no weak solution.

THEOREM 2. Under hypotheses (A1)–(A4) and (F1)–(F3), there exists a positive
constant λ such that for all λ � λ, problem (1.1)–(1.2) has at least two distinct non-
negative, non-trivial weak solutions.

To prove Theorem 2, we first prove that the functional associated to the problem
(1.1)–(1.2) is bounded from below and coercive, and thus the first weak solution is
obtained due to a variant of the minimum principle which we will prove in the next
section (see Theorem 4). To obtain the second solution to the problem (1.1)–(1.2), we
shall use a variant of the mountain pass theorem due to Duc (see Proposition 1).

2. Auxiliary results. Due to the presence of h1, functional 	 may not be
continuously Fréchet differentiable functionals on H. This means that we cannot apply
the classical Mountain pass theorem by Ambrosetti–Rabinowitz (see [1] for details).
To overcome this difficulty, we shall use a weak version of the Mountain pass theorem
introduced by Duc [3]. Now we introduce the following concept of weakly continuously
differentiability due to Duc.

DEFINITION 2. Let F be a map from a Banach space X to �. We say that F is
weakly continuously differentiable on X if and only if the following two conditions are
satisfied:

(i) For any u ∈ X there exists a linear map DF(u) from X to � such that

lim
t→0

F (u + tv) − F(u)
t

= DF(u) (v)

for every v ∈ X .
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(ii) For any v ∈ X , the map u �→ DF(u) (v) is continuous on X .

REMARK 2. If we suppose further that v �→ DF(u) (v) is continuous linear mapping
on X , then F is Gâteaux differentiable.

DEFINITION 3. We call u a generalised critical point (critical point, for short) of F
if DF(u) = 0. c is called a generalised critical value (critical value, for short) of F if
F(u) = c for some critical point u of F .

Denote by C1
w(X) the set of weakly continuously differentiable functionals on X .

It is clear that C1(X) ⊂ C1
w(X) where we denote by C1(X) the set of all continuously

Fréchet differentiable functionals on X . Now let F ∈ C1
w(X); we put

‖DF(u)‖ = sup{|DF(u)(h)|h ∈ Y, ‖h‖ = 1}

for any u ∈ X , where ‖DF(u)‖ may be +∞.

DEFINITION 4. We say that F satisfies the Palais-Smale condition at level c ∈ �

(denoted by (PS)c) if any sequence {un} ⊂ X for which

F(un) → c and DF(un) → 0 in X�

possesses a convergent subsequence. If this is true at every level c then we simply say
that F satisfies the Palais-Smale condition (denoted by (PS)).

DEFINITION 5. We say that F satisfies the Cerami condition at level c ∈ � (denoted
by (C)c) if any sequence {un} ⊂ X for which

F(un) → c and (1 + ‖xn‖)DF (un) → 0 in X�

possesses a convergent subsequence. If this is true at every level c, then we simply say
that F satisfies the Cerami condition (denoted by (C)).

In the proof of our main theorems, we shall use the following results which is
proved in [9]. We will recall its proof for completeness.

THEOREM 3 (see [9]). Let F ∈ C1
w(X) where X is a Banach space. Assume that

(i) F is bounded from below, c = inf F ,
(ii) F satisfies the (PS) condition.

Then c is a critical value ofF (i.e. there exists a critical point u0 ∈ X such thatF(u0) = c)

Proof of Theorem 3. Let c be an arbitrary real number. Before proving the theorem,
we need the following notation:

F c = {u ∈ X |F(u) � c}.

Let us assume, by negation, that c is not a critical value of F . Then, Theorem 2.2 in [13]
implies the existence of ε > 0 and η ∈ C([0,+∞) × X, X) satisfying η(1,F c+ε) ⊂ F c−ε.
This is a contradiction since F c−ε = ∅ due to the fact that c = inf F . �

REMARK 3. By Corollary 2.1.1 in [6], if F : X → � is a locally Lipschitz, bounded
from below function and it satisfies the (C) condition, then F is coercive. This leads us
to state the following lemma.
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LEMMA 1. If F : X → � is a locally Lipschitz, bounded from below function and it
satisfies the (C) condition then it satisfies the (PS) condition.

Proof. Let {un}n ⊂ X be a sequence such that F(un) is bounded and DF(un) → 0
in X�. By Remark 3, F is coercive, and this helps us to deduce that {un}n is bounded in
X . Hence also (1 + ‖un‖)DF(un) → 0 in X�, and because F satisfies the (C) condition,
it follows that {un}n has a strongly convergent subsequence. This completes the
proof. �

Similar to Theorem 3, we have the following new result.

THEOREM 4. Let F be continuous on X and be of class C1
w(X) where X is a Banach

space. Assume that
(i) F is bounded from below, c = inf F ,

(ii) F satisfies the (C) condition.
Then c is a critical value ofF (i.e. there exists a critical point u0 ∈ X such thatF(u0) = c).

The proof of Theorem 4 follows from Lemma 1, so we omit it. Next we provide a
variant Mountain pass theorem due to Duc [3].

PROPOSITION 1 (see [3]). Let F ∈ C1
w(X) where X is a Banach space and satisfies

(PS) condition. Assume that F(0) = 0 and there exist a positive constant ρ and z0 ∈ X
such that

(i) ‖z0‖X > ρ and F(z0) � 0.
(ii) α = inf {F(u) : u ∈ X, ‖u‖X = ρ} > 0.

Assume that the set

G = {ϕ ∈ C([0, 1], X) : ϕ(0) = 0, ϕ(1) = z0}
is not empty. Put

β := inf {maxF(ϕ([0, 1])) : ϕ ∈ G} .

Then β � α and β is a critical value of F .

For the use of Proposition 1, we refer the reader to [3, 12, 13]. We end
this section by studying some certain properties of the functional �λ given
by (1.5) but we first recall some results which will be used throughout this
work.

PROPOSITION 2 (see [4]).
(i) A verifies the growth condition

|A(x, ξ )| � c0(h0(x)|ξ | + h1(x)|ξ |p)

for all ξ ∈ �N, a.e. x ∈ �.
(ii) A(x, ξ ) is convex with respect to ξ . Moreover, by (A3) for all u, v ∈ H we have

	

(
u + v

2

)
� 1

2
	(u) + 1

2
	(v) − k0 ‖u − v‖p

H . (2.1)

Using the method as in [4] with some simple computations we obtain the following
proposition which concerns the smoothness of the functional �λ.

https://doi.org/10.1017/S001708950900514X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950900514X


MULTIPLICITY RESULT FOR A CLASS OF p-LAPLACIAN-TYPE EQUATIONS 519

PROPOSITION 3.
(i) If {um} is a sequence weakly converging to u in W 1,p

0 (�), then

	(u) � lim inf
m→∞ 	(um)

and

lim
m→∞ I(um) = I(u).

(ii) The functionals 	 and I are continuous on H.
(iii) Functional �λ is weakly continuously differentiable on H and we have

D�λ(u)(ϕ) =
∫

�

a(x,∇u)∇ϕ dx −λ

∫
�

f (x, u)ϕ dx

for all u, ϕ ∈ H.

3. Proofs of the theorems.

Proof of Theorem 1. Let us denote by S the best constant in the Sobolev embedding
W 1,p

0 (�) ↪→ Lp(�), i.e.

S = inf
W 1,p

0 (�)\{0}

(∫
�

|∇u|p dx
) 1

p

(∫
�

|u|p dx
) 1

p

. (3.1)

Then, if u is a weak solution of problem (1.1)–(1.2), multiplying (1.1) by u and
integrating by parts combined with conditions (A4) and (F1) gives

k1

∫
�

|∇u|p dx � k1

∫
�

h1(x)|∇u|p dx

�
∫

�

a(x,∇u)∇u dx = λ

∫
�

f (x, u)u dx � Cλ

∫
�

|u|p dx .

(3.2)

Hence, choosing λ = k1S/C, where S is given by (3.1), we conclude the proof. �
We will prove Theorem 2 by using critical point theory. Set f (x, t) = 0 for all t < 0

and consider the energy functional �λ : H → � which is given by (1.5).

LEMMA 2. If u is a critical point of �λ then u is non-negative in �.

Proof. Observe that if u is a critical point of �λ, denoting by u− the negative part
of u, i.e. u−(x) = min {u(x), 0} we have

0 = D�λ(u)(u−) =
∫

�

a(x,∇u)∇u− dx −λ

∫
�

f (x, u)u− dx

� k1

∫
�

h1(x)|∇u−|p dx = k1‖u−‖p
H,

(3.3)

which yields that u � 0 for a.e. x in �. Thus, non-trivial critical points of the functional
�λ are non-negative, non-trivial solutions of problem (1.1)–(1.2). �
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The following lemma shows that the functional �λ satisfies all of the assumptions
of Theorem 3. Then problem (1.1)–(1.2) admits a weak solution u1 ∈ H as a global
minimiser and u1 � 0.

LEMMA 3. The functional �λ is bounded from below and satisfies the (PS) condition
on H.

Proof. By conditions (F1) and (F3), there exists a constant Cλ = C(λ) > 0 such
that

λF(x, t) � k1S
2p

|t|p + Cλ (3.4)

for all t ∈ � and a.e. x ∈ �. Hence,

�λ(u) =
∫

�

A(x,∇u) dx −λ

∫
�

F(x, u) dx

� k1

p

∫
�

h1(x)|∇u|p dx −
∫

�

(
k1S
2p

|u|p + Cλ

)
dx

� k1

2p
‖u‖p

H − Cλ|�|,

(3.5)

where |�| denotes the Lebesgue measure of � in �N . Thus, the functional �λ is
coercive and hence bounded from below on H.

Let {um} be a Palais-Smale sequence in H, i.e.

|�λ(um)| � c for all m, �′
λ(um) → 0 in H�. (3.6)

Since �λ is coercive on H, {um} is bounded in H. By Remark 1 (ii), {um} is bounded in
W 1,p

0 (�). It follows that there exists u ∈ W 1,p
0 (�) such that, passing to a subsequence,

still denoted by {um}, it converges weakly to u in W 1,p
0 (�). We shall prove that {um}

converges strongly to u in H.
Indeed, we observe by Remark 1(i), Proposition 3(i) and (3.6) that u ∈ H. Hence,

{‖um − u‖H} is bounded. This and (3.6) imply that D�λ(um)(um − u) converges to 0 as
m → ∞.

Using condition (F1) combined with Hölder’s inequality we deduce that

0 �
∫

�

|f (x, um)||um − u| dx � C
∫

�

|um|p−1|um − u| dx

� C ‖um‖p−1
Lp(�) ‖um − u‖Lp(�) .

(3.7)

Since the embedding W 1,p
0 (�) ↪→ Lp(�) is compact, {um} converges strongly to u in

Lp(�). Therefore, relation (3.7) implies that

lim
m→∞ DI(um)(um − u) = 0. (3.8)

Combining relations (3.6) and (3.8) with the fact that

D	(um)(um − u) = D�λ(um)(um − u) + DI(um)(um − u),
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we conclude that

lim
m→∞ D	(um)(um − u) = 0. (3.9)

On the other hand, the convex property of functional 	 (see Proposition 2(ii)) implies
that

	(u) − lim
m→∞ 	(um) = lim

m→∞(	(u) − 	(um)) � lim
m→∞ D	(um)(u − um) = 0. (3.10)

Combining this with Proposition 3(i), we have

lim
m→∞ 	(um) = 	(u). (3.11)

We now assume by contradiction that {um} does not converge strongly to u in H,
and then there exist a constant ε > 0 and a subsequence {umk} of {um} such that
‖umk − u‖H � ε. Using Proposition 2(ii) we get

1
2
	(u) + 1

2
	(umk ) − 	

(
umk + u

2

)
� k0‖umk − u‖p

H � k0ε
p. (3.12)

Letting k → ∞, relation (3.12) gives

lim sup
k→∞

	

(
umk + u

2

)
� 	(u) − k0ε

p. (3.13)

We remark that sequence { umk +u
2 } also converges weakly to u in W 1,p

0 (�). So, using
Proposition 3(i) again we get

	(u) � lim inf
k→∞

	

(
umk + u

2

)
, (3.14)

which contradicts (3.13). Therefore, {um} converges strongly to u in H. �

LEMMA 4. There exists a positive constant λ such that for all λ � λ, infH �λ < 0,
and hence u1 �≡ 0, i.e. the solution u1 is not trivial.

Proof. Let �0 ⊂ � be a compact subset large enough and a function ϕ0 ∈ C∞
0 (�)

such that ϕ0(x) = t1 in �0 and 0 � ϕ0(x) � t1 in �\�0, where t1 is chosen as in
assumption (F2): then we have

∫
�

F(x, ϕ0) dx �
∫

�0

F(x, ϕ0) dx −Ctp
1|�\�0| > 0. (3.15)

Thus, �λ(ϕ0) < 0 for λ � λ with λ large enough. This implies that infH �λ < 0 and
then �λ(u1) < 0 for λ � λ, i.e. u1 �≡ 0. �

In the next part of this paper, we shall show the existence of the second solution
u2 �= u1 by using the Mountain pass theorem introduced in [3]. To this purpose, we
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first fix λ � λ and set

f̂ (x, t) =

⎧⎪⎨
⎪⎩

0, for t < 0,

f (x, t) for 0 � t � u1(x),

f (x, u1(x)) for t > u1(x),

(3.16)

and F̂(x, t) = ∫ t
0 f̂ (x, s) ds. Define the functional �̂λ : H → � by

�̂λ(u) =
∫

�

A(x,∇u) dx −λ

∫
�

F̂(x, u) dx . (3.17)

With the same arguments as those used for the functional �λ, we can show that �̂λ is
weakly continuously differentiable on H and

D�̂λ(u)(ϕ) =
∫

�

a(x,∇u)∇ϕ dx −λ

∫
�

f̂ (x, u)ϕ dx

for all u, ϕ ∈ H.

LEMMA 5. If u ∈ H is a critical point of �̂λ then u � u1. So, u is a solution of problem
(1.1)–(1.2) in the order interval [0, u1].

Proof. By the definitions of �λ and �̂λ, if u is a critical point of �̂λ then u � 0 as
before and by condition (A2) we have

0 = (D�̂′
λ(u) − D�λ(u1))((u − u1)+)

=
∫

�

(a(x,∇u) − a(x,∇u1)) · ∇(u − u1)+ dx

− λ

∫
�

(̂f (x, u) − f (x, u1))(u − u1)+ dx

=
∫

{u>u1}
(a(x,∇u) − a(x,∇u1)) · (∇u − ∇u1) dx � 0.

(3.18)

According to (3.18) and condition (A2), the equality holds if and only if ∇u = ∇u1. It
follows that ∇u(x) = ∇u1(x) for all x ∈ �1 := {y ∈ � : u(y) > u1(y)}. Hence,∫

�1

|∇(u − u1)|p dx = 0 and thus
∫

�

|∇(u − u1)+|p dx = 0.

Combining this with Remark 1(ii), we conclude that ‖(u − u1)+‖Lp(�) = 0 and then
(u − u1)+ = 0 in �, that is, u � u1 in �. �

LEMMA 6. There exist a constant ρ ∈ (0, ‖u1‖H) and a constant α > 0 such that
�̂λ(u) � α for all u ∈ H with ‖u‖H = ρ.

Proof. We set �u = {x ∈ � : u(x) > min {u1(x), t0}}, where t0 is given as in (F2).
Then, by (3.16) and condition (F1), we have F̂(x, u(x)) � 0 on �\�u. Hence,

�̂λ(u) � k1 ‖u‖p
H − λ

∫
�u

F̂(x, u) dx . (3.19)
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Using (F1), Hölder’s inequality and Remark 1(ii), we get∫
�u

F̂(x, u) dx � C
∫

�u

|u|p dx � C|�u|1− p
q ‖u‖p

H, (3.20)

where q = Np
N−p . Therefore,

�̂λ(u) � ‖u‖p
H

(
k1 − λC|�u|1− p

q
)
. (3.21)

In order to prove Lemma 6, it is enough to show that |�u| → 0 as ‖u‖H → 0. Indeed,
let ε > 0 be arbitrary; we choose �ε ⊂ � a compact subset, large enough such that
|�\�ε | < ε, and denote by �u,ε := �u ∩ �ε . Then it is clear that

‖u‖p
H � ‖u‖p �

∫
�

|u|p dx �
∫

�u,ε

up dx � lp|�u,ε |, (3.22)

where l = min {min u1(�ε), t0}. Letting ‖u‖H → 0 we deduce that |�u,ε | → 0. Since
�u ⊂ �u,ε ∪ �\�ε we have |�u| � |�u,ε | + ε with ε > 0 as arbitrary. Thus, |�u| → 0
as ‖u‖H → 0. �

LEMMA 7. Functional �̂λ satisfies the (PS) condition on H.

Proof. We observe by (3.21) that �̂λ is coercive. Therefore, every Palais-Smale
sequence of �̂λ is bounded in H. We follow the method as those used in the proof of
Lemma 3. It can be shown that the functional �̂λ satisfies the (PS) condition on H. �

Proof of Theorem 2. By Lemmas 2–4, using Theorem 3, problem (1.1)–(1.2) admits
a non-negative, non-trivial weak solution u1. Setting

c := inf
γ∈�

max
u∈γ ([0,1])

�̂λ(u), (3.23)

where � := {γ ∈ C([0, 1], H) : γ (0) = 0, γ (1) = u1}, Lemmas 6–7 show that all of the
assumptions of Proposition 1 are fulfilled, �̂λ(u1) = �λ(u1) < 0 and ‖u1‖H > ρ. Then,
c > 0 is a critical value of �̂λ, i.e. there exists u2 ∈ H such that D�̂λ(u2)(ϕ) = 0 for
all ϕ ∈ H and �̂λ(u2) = c > 0. By Lemma 5, 0 � u2 � u1 in �. Therefore, using (3.16)
some simple computations give us

�̂λ(u2) = �λ(u2), D�̂λ(u2)(ϕ) = D�λ(u2)(ϕ) for all ϕ ∈ H.

By Remark 1(iii), we conclude that u2 is a weak solution of problem (1.1)–(1.2).
Furthermore, �λ(u2) = c > 0 > �λ(u1). Thus, u2 is not trivial and u2 �= u1. The proof
of Theorem 2 is now complete. �
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6. L. Gasiński and N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear

boundary value problems. Series in Mathematical Analysis and Applications, 8. Chapman &
Hall/CRC, Boca Raton, FL, 2005.
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