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In this note I show that

" + v + 2 " + l ( ) ~ (

x | "j^z sin B^Fii-n, n+v+n + 1; n+1; sin2 0) sin"+1 0cos2v+1 0 d0, (1)

where J denotes the Bessel function of the first kind of the orders and arguments indicated,
n = 0, 1, 2, 3, ... and the real parts of both \i and v exceed — 1. This is a generalization of
Sonine's first finite integral [I, p. 373] to which it reduces in the special case n = 0.

I start with the Weber-Schafheitlin integral

f00
/(/*, v, n, r )= z vJ|I+v+2B+i(z)JM(rz)dz, (2)

Jo

with the conditions on n, \i and v as given above. The integral is convergent and [1, p. 401]
its value is given by

t, n —v;/i+l; r2) (0 < r < 1),
I (pi, v, n, r) =

the integral vanishing when r > 1 because of a factor F(—n) in the denominator of the term multi-
plying the hypergeometric function. Applying HankePs inversion formula to (2), we obtain

-r
Joand substitution from (3) gives

r" 2^i( / i+n + l> —« —v; ̂ + 1 ; r )JJ^r) dr.

(4)

Using the well-known transformation formula [2, p. 8],

jFiOt+n + l, - n - v ; / z + l ; r2) = ( l - r ^ F j C - M , fi+v+n + l; fi+l; r2),

and writing r = sin 0, we obtain the required result (1) directly from (4).
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As well as Sonine's first finite integral, there are some further interesting special cases of
the general formula (1). Thus the two modifications of Bessel's integral [1, pp. 20, 21],

2 Cin

J2n(z) = - cos 2nd cos (z sin 0) dO,
n Jo

2 f**
+i(z) = - sin(2n + l)0sin(zsin0)d0,

are obtained by writing v = - £ and n = +i respectively in (1). Again, taking v = 0, \i — —\
in (1), expressing the hypergeometric function in terms of a Legendre polynomial [2, p. 50],
making a few reductions and writing x = sin 0, we have

-) I' PiJLx) cos zx dx,

and this formula gives, in effect, the so-called even Legendre transform of cos zx [3, p. 97].
In a similar way, substitution of v = 0, n = i in (1) leads to

u+i(x) sin zx dx

and hence to the odd Legendre transform of sin zx.
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