INFINITE SERIES OF E-FUNCTIONS

by T. M. MACROBERT

(Received 7th July, 1958)

1. Introductory. In § 2 a number of infinite series of E-functions are summed by expressing the E-functions as Barnes integrals and interchanging the order of summation and integration.

The Barnes integral employed is

$$
\begin{equation*}
E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right)=\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\xi} d \zeta, \tag{1}
\end{equation*}
$$

where $|\operatorname{amp} z|<\pi$ and the integral is taken up the η-axis, with loops, if necessary, to ensure that the origin lies to the left of the contour and the points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ to the right of the contour. Zero and negative integral values of the α 's and ρ 's are excluded, and the α 's must not differ by integral values. When $p<q+1$ the contour is bent to the left at each end.

The three following formulae, (2) due to Whipple, (3) to Dougall and (4) to Kummer, will be required.

If $R(\alpha-2 \beta-2 \gamma)>-2$,

$$
F\left(\begin{array}{lrr}
\alpha, & 1+\frac{1}{2} \alpha, & \beta, \tag{2}\\
\frac{1}{2} \alpha, \alpha-\beta+1, \alpha-\gamma+1 & -1
\end{array}\right)=\frac{\Gamma(\alpha-\beta+1) \Gamma(\alpha-\gamma+1)}{\Gamma(\alpha+1) \Gamma(\alpha-\beta-\gamma+1)} .
$$

If $R(\alpha-\beta-\gamma-\delta)>-1$,

$$
\begin{align*}
& F\binom{\alpha, 1+\frac{1}{2} \alpha, \beta, \gamma, \delta}{\frac{1}{2} \alpha, \alpha-\beta+1, \alpha-\gamma+1, \alpha-\delta+1} \\
& \quad=\frac{\Gamma(\alpha-\beta+1) \Gamma(\alpha-\gamma+1) \Gamma(\alpha-\delta+1) \Gamma(\alpha-\beta-\gamma-\delta+1)}{\Gamma(\alpha+1) \Gamma(\alpha-\beta-\gamma+1) \Gamma(\alpha-\gamma-\delta+1) \Gamma(\alpha-\delta-\beta+1)} . \tag{3}
\end{align*}
$$

If $R(\beta)<1$,

$$
\begin{equation*}
F\binom{\alpha, \beta}{\alpha-\beta+1}=\frac{\Gamma(\alpha-\beta+1) \Gamma\left(\frac{1}{2} \alpha+1\right)}{\Gamma(\alpha+1) \Gamma\left(\frac{1}{2} \alpha-\beta+1\right)} . \tag{4}
\end{equation*}
$$

2. Infinite Series. The first summation is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 z)^{n}} E\binom{p ; \alpha_{r}+n: 2 z}{q ; \rho_{s}+n}=E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right) \tag{5}
\end{equation*}
$$

where $|\operatorname{amp} z|<\pi$.
To prove it, substitute from (1) on the left and get

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 z)^{n}} \frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}+n-\zeta\right)}{\Pi \Gamma\left(\rho_{s}+n-\zeta\right)}(2 z)^{\zeta} d \zeta .
$$

Here replace ζ by $\zeta+n$ and interchange the order of summation and integration, so getting

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)}(2 z)^{\zeta} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}(\zeta ; n) d \zeta .
$$

Now the sum of the last series is $(\mathbf{I}+1)^{-\zeta}$. Hence, from (l), the result follows.

In the same way it can be shown that, if $|\operatorname{amp} z|<\pi,|\lambda-1|<1$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(1-\lambda)^{n}}{n!(\lambda z)^{n}} E\binom{p ; \alpha_{r}+n: \lambda z}{q ; \rho_{s}+n}=E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right) . \tag{6}
\end{equation*}
$$

Likewise, if $|l / k|<1,|\operatorname{amp} k|<\pi,|\operatorname{amp}(k+l)|<\pi$,

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} \frac{l^{n}}{n!k^{n}} E\left(\alpha_{1}+n, \alpha_{2}, \ldots, \alpha_{p}: q ; \rho_{s}: k\right)=\left(\frac{k}{k+l}\right)^{\alpha_{1}} E\left(p ; \alpha_{r}: q ; \rho_{s}: k+l\right) \tag{7}
\end{equation*}
$$

For the expression on the left is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Pi \Gamma\left(\rho_{s}-\zeta\right)} k^{\zeta} F\left(\alpha_{1}-\zeta ; ;-\frac{l}{k}\right) d \zeta,
$$

and the sum of the series is $(1+l / k)^{5-\alpha_{1}}$.
Note. A special case of formula (7), with $p=2, q=0, \alpha_{1}=1$, was given by B. R. Bhonsle, Bulletin of the Calcutta Mathematical Society, 48 (1956), 97.

The next summation is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\rho_{1}-\sigma ; n\right)}{\left(\rho_{1} ; n\right) n!} z^{-n} E\binom{p ; \alpha_{r}+n}{q ; \sigma+n, \rho_{2}+n, \ldots, \rho_{q}+n}=\frac{\Gamma\left(\rho_{1}\right)}{\Gamma(\sigma)} E\binom{p ; \alpha_{r}: z}{q ; \rho_{s}} \tag{8}
\end{equation*}
$$

where $|\operatorname{amp} z|<\pi, R(\sigma)>0$.
Here the series on the left is equal to

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left(\rho_{1}-\sigma ; n\right)}{\left(\rho_{1} ; n\right) n!} \frac{1}{2 \pi i} \int \frac{\Gamma(\zeta+n) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma(\sigma-\zeta) \prod\left(\prod_{s=2}^{q} \Gamma\left(\rho_{s}-\zeta\right)\right.} z^{\zeta} d \zeta \\
& \quad=\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma(\sigma-\zeta) \frac{q}{\Pi=2} \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} F\binom{\rho_{1}-\sigma, \zeta ; 1}{\rho_{1}} d \zeta
\end{aligned}
$$

and, on applying Gauss's theorem, the result is obtained.
Again, if $|\operatorname{amp} z|<\pi, R\left(2 \rho_{1}-l\right)>0$,

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{(l+2 n) \Gamma(l+n) \Gamma\left(\rho_{1}-l\right)}{\Gamma\left(\rho_{1}+n\right) \Gamma\left(\rho_{1}-l-n\right) n!} z^{-n} E\binom{p ; \alpha_{r}+n}{l+2 n+1, \rho_{2}+n, \ldots, \rho_{q}+n} \\
& =E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right) . \tag{9}
\end{align*}
$$

On proceeding as before, and noting that

$$
l+2 n=l\left(\frac{1}{2} l+1 ; n\right) /\left(\frac{1}{2} l ; n\right),
$$

it is found that the series is equal to

$$
\frac{\Gamma(l+1)}{\Gamma\left(\rho_{1}\right)} \frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma(l+1-\zeta) \prod_{s=2}^{g} \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} F\binom{l, \frac{1}{2} l+1, l-\rho_{1}+1, \zeta ;-1}{\frac{1}{2} l, \rho_{1}, l+1-\zeta} d \zeta .
$$

From this, on applying (2) and (1), the expression on the right is obtained.
Similarly, if $|\operatorname{amp} z|<\pi, R\left(\rho_{1}-l\right)>0$,

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{(-1)^{n} \Gamma\left(l+\rho_{1}+n\right)(l+1 ; n)\left(l+\rho_{1}+2 n\right)}{\Gamma\left(\rho_{1}+n\right) n!z^{n}} E\binom{p ; \alpha_{r}+n}{l+\rho_{1}+1+2 n, \rho_{2}+n, \ldots, \rho_{q}+n} \\
=E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right) . \tag{10}
\end{array}
$$

Next if $|\operatorname{amp} z|<\pi, R\left(\rho_{1}-k\right)>0$,

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{(l+2 n) \Gamma(l+n)\left(l-\rho_{1}+1 ; n\right)(k ; n) \Gamma\left(\rho_{1}-k\right)}{\Gamma\left(\rho_{1}+n\right) \Gamma(l-k+1+n) n!z^{n}} E\binom{l-k+1+n, \alpha_{1}+n, \ldots, \alpha_{p}+n}{l+2 n+1, \rho_{1}-k+n, \rho_{2}+n, \ldots, \rho_{q}+n} \\
=E\left(p ; \alpha_{r}: q ; \rho_{s} ; z\right) . \ldots \ldots .(11 \tag{11}
\end{array}
$$

For the series is equal to
$\frac{\Gamma(l+1) \Gamma\left(\rho_{1}-k\right)}{\Gamma\left(\rho_{1}\right) \Gamma(l-k+1)} \frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma(l-k+1-\zeta) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma(l+1-\zeta) \Gamma\left(\rho_{1}-k-\zeta\right) \prod_{8=2}^{q} \Gamma\left(\rho_{s}-\zeta\right)} z^{5} F\binom{l, \frac{1}{2} l+1, l-\rho_{1}+1, k, \zeta ; 1}{\frac{1}{2} l, \rho_{1}, l-k+1, l+1-\zeta} d \zeta$,
and, on applying (3), the result is obtained.
Finally, if $|\operatorname{amp} z|<\pi$,

$$
\begin{align*}
& \sum_{n=0}^{\infty}(-1)^{n} \frac{(k ; n)}{n!z^{n}} E\binom{\frac{1}{2} k+1+n, \alpha_{1}+n, \ldots, \alpha_{p}+n: z}{k+1+2 n, \rho_{1}+n, \ldots, \rho_{a}+n} \\
&=\frac{\Gamma\left(\frac{1}{2} k+1\right)}{\Gamma(k+1)} E\left(p ; \alpha_{r} ; q ; \rho_{s} ; z\right) . \tag{12}
\end{align*}
$$

For the expression on the left is equal to

$$
\frac{1}{2 \pi i} \int \frac{\Gamma(\zeta) \Gamma\left(\frac{1}{2} k+1-\zeta\right) \Pi \Gamma\left(\alpha_{r}-\zeta\right)}{\Gamma(k+1-\zeta) \Pi \Gamma\left(\rho_{s}-\zeta\right)} z^{\zeta} F\left(\begin{array}{l}
\zeta, k \\
k+1-\zeta
\end{array} \quad ;-1\right) d \zeta
$$

and the result follows on applying (4).

The University

Glasgow

