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Abstract

In the present paper the problem of reflection of water waves by a nearly vertical porous
wall in the presence of surface tension has been investigated. A perturbational approach for
the first-order correction has been employed as compared with the corresponding vertical
wall problem. A mixed Fourier transform together with the regularity property of the
transformed function along the positive real axis has been used to obtain the potential
functions along with the reflection coefficients up to first order. Whilst the problem of
water of infinite depth is the subject matter of the present paper, a similar approach is
applicable to problems associated with water of finite depth.

1. Introduction

A class of boundary-value problems associated with the two-dimensional Laplace
equation appears in the scattering of the linearised theory of water waves involving
immersed vertical boundaries. Several methods (see [2,6,8]) have been considered
to solve such boundary-value problems in the literature. Chakrabarti and Sahoo [2]
in their recent work have used a method similar to the one considered by Mandal
and Kar [6], Mandal and Chakrabarti [5] and Shaw [11] to handle a boundary-value
problem which arises in the study of the reflection of water waves by a nearly vertical
porous wall. In the present note we have generalised the result of [2] to include the
effect of surface tension also. Because of the effect of surface tension, the solution
depends on a parameter X, known as the edge slope constant (see [10]). By using
a perturbational approach which has been discussed by earlier workers, we have
converted the problem of concern to two boundary-value problems. We have used a
mixed Fourier transform to reduce the Laplace equation to two ordinary differential
equations. The solution of one of these two ordinary differential equations is obtained
by standard methods whereas the other one is solved by the aid of the Green's function
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technique. The reflection coefficients up to first order have been determined by using
the regularity property of the transformed function on the positive real axis. The
particular case of this general problem giving rise to the solution of the vertical wall
problem has been derived as a check.

2. Formulation of the problem

The problem under consideration is two dimensional in nature. We use a rectangular
Cartesian co-ordinate system (x, y), in which the y axis has been chosen vertically
downward with y = 0, x > 0 as the undisturbed mean free surface of water and x =
€c(y) with y > 0 representing the nearly vertical porous wall, where e > 0 is a small
parameter and c(y) is a bounded function of y with c(0) = 0. It is assumed that the fluid
in the region y > 0 is incompressible, the motion is irrotational and simple harmonic
in time and is described by the velocity potential O(JC, y, t) = Re [(/)(x, y)e~ia"], "Re"
denoting the "real part", with co the angular frequency and g the acceleration due to
gravity. We will drop the factor e~iu" throughout the rest of this paper. The effect
of surface tension on the nearly vertical porous wall will be investigated, by way of
determining the velocity potential and the reflection coefficients up to the order of e,
where <p satisfies the partial differential equation

V24> = 0 in the fluid region, y > 0, (2.1)

with the boundary conditions

M0VVV + 0_v + K<j) = 0 on y = 0, x > 0. (2.2)

Here the positive constants M and K are as given by the relations M = T/pg and
K = u>2/g (see [7, 8]) with subscripts denoting partial derivatives, and

ct>n + ik<j) = 0 on x - ec(y) = 0, y > 0, (2.3)

where the subscript n denotes the derivative in the inward normal direction to the
bpco

boundary x = ec(y), k = > 0, with /x being the coefficient of viscosity, p the

density of fluid and b being a porosity constant, which has the dimension of length.
The derivation of the equation (2.3) has been considered by Chakrabarti and Sahoo [2],
using a result of Chwang [3]. Also the function 4> has to satisfy the requirements

(I) 0, |V0| —• 0 as j ^ c o (2.4)

and

(II) <f> —• <?-**-'*•* + Re-*y+"v as i ^ o o (2.5)
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at infinity, where R is an unknown constant representing the "reflection coefficient",
to be determined, k0 is the real positive root of the cubic equation K = a(l + Ma2)
in a. The edge condition to be satisfied by the potential 0 in this case is given by

0 t v + ik<f>y = nX, at {x, y) = (0+, 0), (2.6)

in which X is the edge slope constant and is indeterminate in nature (see [10]). The
solution of the mathematical problem at hand has ultimately been determined which
involves this constant X.

Using the Taylor series expansion in the relation (2.3) and considering the terms
up to order e only and neglecting the higher order terms in e, we obtain

4>x-€(c(y)(j>y)y = -ik[<j) + €c(y)4>x] on x = 0. (2.7)

Employing a perturbation expansion of the potential 0, the reflection coefficient R
and the indeterminable edge slope constant A. (as in [2, 5 and 6]) in the forms

<p(x, y, e) = 4>0(x, y) + e0, (x, y) + 0(e2), (2.8)

R = Ro + eRi + O^2), (2.9)

X = X0 + eXt + O(e2), (2.10)

the problem under consideration reduces to two boundary-value problems for <p0 and
0i, as explained below.

Problem for <po(x, y)

V20o = O x > 0, y > 0, (2.11)

with the boundary conditions

M<pOyyy + <pOy + K(p0 = 0 on y = 0, x > 0, (2.12)

0o, +ik<p0 = 0 on x = 0, (2.13)

<ft>, |V0O| —»-0 as y-^oo (2.14)

0o —• *-*"•*-"** + Roe-ko>+ik»x as x —• oo, (2.15)

and

0Otv -I- ikfoy = nX0 at (JC, y) = (0+, 0). (2.16)
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Problem for <p\ (x, y)

V20,=O in the region x > 0, y > 0, (2.17)

with the boundary conditions

where f(y)

A/0lvvv + 01y

4>\x + J ^ 0 I

= [c(y)<t>Oy(O, y)]'-

0,, |Vi

01 > '

+ A"0, = 0 on
= f(y) on x

-i*cOO0k(O,.y),

0i | —> 0 as j

r?|C "• ° as

y = 0, x > 0,

= 0, >> > 0,

—> oo,

JC > O O ,

(2.18)
(2.19)

(2.20)

(2.21)

and

4>\xy + ik<p]Y = Ttki at (JC, _y) = (0+, 0). (2.22)

In the next section, we present the method of solution of the above boundary-value
problems.

3. The method of solution

Determination of <p0(x, y) Set

0oC*» y) = iAo(-*> y) + e 0> ' "* + Roe 0> 'oX (3.1)

and use an integral transform of î oC*, y) as given by

(3.2)

Substituting for <p0 in the equation (2.11) with its boundary conditions in the relations
(2.12)—(2.16) and transforming the various equations and conditions, we obtain that

<Ao" - SHo = A0^e-k"\ (3.3)

where a prime denotes an ordinary derivative with respect to y (note that £ is just a
transform parameter), with

(1 +M^2)ir0 + K\j}0 + B0M^ = 0 on y = 0, (3.4)
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where Ao = iko(l - Ro) - ik(\ + /?„), Bo = nX0 + iko(k - k0) + Roiko(k + ko), and

A A f

'Ao- l^o I — • 0, as y —> oo. (3.5)

Then, setting

i ^ (3.6)
K

we obtain from the equations (3.3), (3.4) and (3.5), the ordinary differential equation

- ^ , (3.7)

with the boundary conditions

(1 + A/£2)P' + KP = 0 on y = 0 (3.8)

and

P' —+ 0 as y —^ oo. (3.9)

The solution of equation (3.7) satisfying the conditions (3.8) and (3.9) is given by

• p t f ' y ) = g(i+A#n-if""Fr*r + ~ i r ' (3-10)

which gives

Here we observe that the expression (3.11) for ^o(£> y) involves an unknown constant
as well as a singularity at £ = k0 on the positive real axis. In order to determine this
constant, we use the fact that \j/0 is a Fourier transform and cannot have a singularity
on the positive real axis. This forces the result that

lim(£ — ko)ij/o(%, y) = 0, (3.12)

so that
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which implies that

_ (b f) 2iMk0nX0

° (* + ^ ) (l+3Mk2)(k + b^y

Next, using the inverse transform of Vro(£, 31). a s given by the relation (3.2) (see [12]),
we obtain that

# / x / N -tkx 2 [°° Jott, y)($ cos%x-ik sin $x) , , , , . .
iM*, y) = co(y)e + - / — d$. (3.15)

n Jo f" - k2

Here and in later occurrences, singular integrals are understood in the sense of their
Cauchy principal values and co(y) is an arbitrary function of y which has to be
determined by using the behaviour of \j/o(x. y) as x —> oo.

Now writing ( | cos£x — ik sin£;t) = |{(£ - k)e'Hx + (£ + k)e~'ix] and rotating
the contour to the positive imaginary axis for the integral involving e'^x and to the
negative imaginary axis for the integral involving e~'*x, we can write (3.15) as

rt—ikx, y)e~

2 f°°
+ - / g-"i40(i?){i?(l - Mr,2) cos r)y-K sin r)y) dr] ,

"• J (3.16)

2 f°
- /

where

A , x nkoMr,

Using the behaviour of \{/o(x, y) at x = oo, we obtain

) . (3.18)

Thus

- Mr,2) cos r,y - K sin r,y) dr,, (3.19)

where A0(r,) is as given above in (3.17).
The function <j>o(x, y) can finally be determined by (3.1), where VoC*. 30

are given by (3.19) and (3.14) respectively with k = bpco/fi. This completes the
solution of the problem in this case.
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Determination of <p\ (x, y) We set

4>\(*. y) = fi(x,y) + R,e-^
+ikoX (3.20)

Then using a transform as defined by (3.2) for f\{x, y), (2.17) with the boundary
conditions (2.18) to (2.22) reduce to

f\ ~ Vf\ = ?[A,e-*"-v + f(y)] - —~' (3-21)

where At = —i(k+ko)R] andfi| = n X \+ik$R t(k+k0) ,with the boundary conditions

(1 + M^ft' + Kf{ =0 on y = 0 (3.22)

and

f[—+0 as y —• oo. (3.23)

In this case we will use a Green's function technique to solve the ordinary differ-
ential equation (3.21) in ft satisfying the boundary conditions (3.22) and (3.23). The
solution is given by

where G(y, s) is given by

-4- M£2\ cosh £ v — K sinh £s
e *-v for v > s

G(y,s)= • (3.25)

;2) - K)§
y < s.

The expression (3.24) for ft (^, y) has a singularity at £ = &0 which suggests that
as in the problem for f0, we must have in this case

lim($-ko)flG,y) = O. (3.26)

Using the result

Jko(l + Mkl) cosh^y - K sinhA:oy = Ke'^'

we obtain from (3.24) and (3.26) that
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where a(k0) = v /0°° u(s)e~k°s ds.
The relation (3.27) for A, implies that

1 (k0 + bpco/,xKl+3Mk2)'

In this case also by Fourier sine inversion

2 fc

y\ _ c (y)e-
ik* + - jr^^j^^j---^ 1 : 1 : : : : 2 : : , 3 2 9 .

77- / t2 £-2 *
•**• 1 / 0 ~ > " •

with C| (_y) an arbitrary unknown function of y which has to be determined by using
the condition on fit as x —> 00.

Proceeding as in the previous case we obtain the alternate expression

ij/\(x, y) = C\(y)e~'kx + iijf\{k, y)e~'kx

£ " ' M | ( I J ) [r](l — Mr)2)cosr)y — iK sin r)y\ dr\

(J.JUJ

for ^t(A:, y), where A,(rj) is given by

/•OO

A\{r)) =—MY)TZ\\ + I f(s) [rj(\ — Mrj2) cos r]s — K sin rjs] ds. (3.31)
Jo

Using the condition on \J/\ as x approaches infinity, we obtain that

c\(y) = ~'if\(k, y). (3.32)

Thus, from (3.20), (3.30) and (3.32), we obtain the complete solution

2 f°°_ {r)(l — Mr)2) cos r)y - K sin rjy]

7T Jo ( r j - ; ^ ){ /C 2 + r72(l - A/??2)2} 3 3 )

where /?| and A^rj) are given by (3.28) and (3.31).

4. Particular cases

Case 1 When surface tension is neglected, we have M = 0 and k0 = K. Then

C, y) = e-
Ky'iKx + Roe-Ky+iKx, (4.1)

c, >) = ^,e-*y+/*jr + / g"«M,(£)(£ cosfy - /r sinfy)rf|,
1/0 (4.2)
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where

2jc°^cos^-Ksi^s)f(s)ds
( 4 " 3 )

= Kb^

and

-2iK F°e-K'f(s)ds
A

which agrees with the result obtained by Chakrabarti and Sahoo [2].

Case 2 When porosity is neglected and the wall is vertical we have bpco/fi = 0
and e = 0. So we get

*< ^ L(Ae'k°X + Be-'^e-*"- (4.6)

- A" sin

with A = (1 + 3Mkl)/2ni and B = A + MX. This result agrees with that obtained
by Rhodes-Robinson [9] modulo a misprint.
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