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ABSTRACT

For the locally symmetric space X attached to an arithmetic subgroup of an algebraic
group G of Q-rank r, we construct a compact manifold X by gluing together 2" copies
of the Borel-Serre compactification of X. We apply the classical Lefschetz fixed point
formula to X and get formulas for the traces of Hecke operators H acting on the
cohomology of X. We allow twistings of H by outer automorphisms 7 of G. We stabilize
this topological trace formula and compare it with the corresponding formula for an
endoscopic group of the pair (G, n7). As an application, we deduce a weak lifting theorem
for the lifting of automorphic representations from Siegel modular groups to general
linear groups.

Introduction

0.1 Topological trace formula

The aim of this paper is to develop a topological trace formula for Hecke operators acting on
the ordinary cohomology of locally symmetric domains X attached to congruence subgroups of
an algebraic group G/Q. We want to deal with the twisted case also, where we allow the Hecke
operators to be twisted by an outer automorphism of G. In the untwisted case, such formulas
have already been developed or applied by several authors: [Bew85, GKM97, GKM98, GM92,
Har93, Har95, KS72, RS93, Wei09).

We will deduce our formula from a Lefschetz fixed point formula for compact manifolds,
restated in Theorem 3.3. Since the spaces X are not compact, we have to use a trick for
this reduction: we construct a compact manifold X, which is obtained by gluing together
2" pieces of the Borel-Serre compactification X [BS73] along their boundary strata, where
r denotes the Q-rank of G. On X, we have an action of the group S®:={41}", such
that the quotient X /S? is isomorphic to X. Under this isomorphism, we can identify the
ordinary cohomology of X with the S2-invariant part of the cohomology H(X) and similarly
the cohomology with compact supports of X with the y_j-eigenspace of H (f( ), where x_1:
SA — {41} denotes the character (e1,...,&,)+>¢e1---&.. By twisting our (twisted) Hecke
correspondences with all elements o € S2, we thus get the correspondences, to which we can
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U. WESELMANN

apply the simple fixed point formula for manifolds. By this method, we avoid the application
of intersection cohomology to a singular compactifications (e.g. the reductive Borel-Serre
compactification [GHM94, GT99]).

It should be noted that a similar construction already appears in the work of Oshima [Osh78].
But, while she gave a compactification Yog, of the symmetric space Y of G(R), i.e. she made a
construction over R, we want to construct a compactification of the locally symmetric quotient
I'\Y, where I' denotes some congruence subgroup in G(Q), i.e. we have to introduce an arithmetic
construction. In fact, we will construct some extension (not a compactification) Y of Y, such
that the action of I' can be continued to a proper discontinuous action on Y (at least for some
smaller neat congruence subgroup of I'), such that X ~ F\f/. But, the space Y is topologically
highly non-trivial and has no relation to Yosn apart from the fact that it contains 2" copies
of Y, too.

0.2 The example SLo

The upper half plane H=H" ~ SLy(R)/SO2(R) is the symmetric space for SLz(R). Then
Oshima’s construction just gives the complex projective line Yog, = P! (C)=H* UH~ UPY(R),
but the action of I' cannot be continued in a satisfactory way from H to P!(C), so that we do
not get a good compactification of I'\Y in this way.

Our construction can be described as follows: we too can take H™ and H™ as the two copies
of H, but we embed them into the complex affine line A = C in the following way:

1
v:HTUH —C, —a+i-y—ax+i-—.
Yy

We take a set of representatives {0}sca for SLo(Q)/B(Q) ~P!(Q), where B C G denotes the
Borel subgroup of upper triangular matrices, and define the embeddings

s HTUH™ <= C, 20 0(6(2)).

Now Y is obtained by gluing together Usca C along their open subspaces H* UH~, where each
subspace is embedded via t5 into the component C which is indexed by J. So, we get for
each rational cusp in P!(Q) a real line which lies in the common closure of H* to H~ and
a homotopy class of paths from HT to H~™.

Let us illustrate the procedure of computing Euler characteristics x(X) and Lefschetz
numbers via the compactification procedure in some examples.

Ezxample 0.3. Let X be a Riemann surface of genus g with n > 1 small disks removed. If
one glues together two copies of X along the boundary X which is the disjoint union
of n copies of S!, one gets a compact Riemann surface X of genus 2g +n — 1. One has

X(X)=2-2(29g+n—-1), x(0X)=0 and

X(X) = xe(X) = (2—-2(29 —|—2n —1))+0

=1-(29+n—1)=h"X) - r(X).

Ezample 0.4. Let X be an open interval. Then 0X consists of the two boundary points of X
and X is homoeomorphic to S', i.e. x(X) =0 and x(0X) = 2. In this case, we get
X(X) — x(9X)

Xe(X)=-1= - 5

X(X) + x(9X)

X(X)=1= 5 7
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0.5 In §1, we construct the spaces X and Y carrying an action of the group S2 in an adelic
language. We avoid referring to constructions in the paper of Borel and Serre [BS73] and
formulate our constructions in a more group theoretical language, which gives the manifold
structure of Y immediately. It would be rather unnatural to start with manifolds with corners
to get the manifold structure. The group theoretical description in an adelic language enables
us to compute and describe the sets of fixed points.

0.6 In §2, we compute the sets of fixed points of Hecke correspondences twisted by an outer
automorphism 7. This section uses well-known methods [Bew85, GM03] and is of computational
nature.

0.7 In § 3, we develop a general Lefschetz fixed point formula for n-twisted Hecke correspondences
on locally symmetric spaces. At first, we restate a more or less well-known version of the Lefschetz
fixed point formula for compact oriented manifolds. We do not assume that the correspondence
has only isolated fixed points but allow higher dimensional submanifolds Y; of fixed points, such
that the correspondence is only transversal to the diagonal in the normal direction to Yj.

We apply this fixed point formula to the n-twisted Hecke correspondences H twisted with
elements o € S2 acting on X. Of course, we have to prove that our modified transversality
assumptions hold. The Lefschetz number of H on the cohomology (respectively cohomology with
compact support) of X can then be obtained as a linear combination of the Euler characteristics
of different sets of fixed points. One has to stratify the sets of fixed points with respect to the
different boundary strata of the Borel-Serre compactification. Fixed point strata on the boundary
contribute several times to the fixed point formula. These contributions may cancel each other
depending on the signs with which the fixed point components contribute to the trace formula.
This corresponds to the theory of contracting and expanding fixed points in the work of Goresky
and MacPherson [GM93] and of Bewersdorff [Bew85]. The Euler characteristics involved can be
handled with the Gauss—Bonnet formula of Harder [Har71, Leu96], so that we arrive at a first
version of the trace formula involving orbital integrals.

0.8 In §4, we stabilize this trace formula under certain conditions on the vanishing of the Galois
cohomology of the group GG, which are satisfied in the main applications we have in mind. We give
a self-contained version of this stabilization process independent of the general theory of [KS99],
since the topological trace formula Kkills several difficulties of the general trace formula of Arthur
and Selberg [Art88] but requires some additional considerations at the archimedean place.

0.9 In §5, we compare two topological trace formulas for a group G with outer automorphism 7
and its stable endoscopic group G1. We formulate a lemma which compares the traces of matching
elements on the coefficient systems. We get that the Lefschetz numbers of matching (n-twisted
for G) Hecke correspondences on the two locally symmetric spaces coincide. Using the work of
Ngo and Waldspurger on the (twisted) fundamental lemma, this implies that the cohomology
of X¢ may be considered as the lift of the cohomology of XGI modulo representations induced
from G(Ay) to G(Af) x (n). We will formulate our final result for the lifting from Sp,, to
PGLs2y41 and for the lifting from GSping,, ,y to GL2, x GL1 over a totally real number field F'.
We remark that GSp, is GSping, so that we get two liftings from symplectic groups of genus
two to general linear groups. A lifting from PGSp, to PGL4 has been obtained already by
Flicker [F1i05] using a variant of Arthur’s trace formula.
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Our result depends on a naive definition of liftings of representations of the finite adele
group: we have to assume that the normalization of Haar measures on the centralizers of global
elements is in such a way that certain factors involving the infinity component agree. This will
be sufficient to get weak lifting statements, but requires a more subtle analysis to get precise
lifting statements including multiplicity formulas.

Details and applications of this result will be given in a forthcoming paper.

1. The spaces

Levi and maximal compact subgroups
1.1 Reductive groups

Let G/Q be a connected reductive group, G its derived group and Z = Zg its center. We fix
a minimal parabolic Q-subgroup Py and a maximal Q-split torus Sy C Fy. Let & = ®(G, Sy) C
X*(Sp) be the set of Q-roots of G with respect to Sy, @ C @ the subset of positive roots with
respect to Py and A C & the set of simple roots.

1.2 Parabolics

The subsets J of A are in 1-1 correspondence with the G(Q)-conjugacy classes of rational
parabolic subgroups. Each conjugacy class contains exactly one standard parabolic subgroup,
denoted by Py, i.e. satisfying Py C Py C G. We define for J C A:

Sy = <ﬂ kera) C S,

acJ
M ; = Cent(Sy) = centralizer of Sy in G,

Ay = (S7(R) n GO(R))°.
As usual, the upper index ° describes the connected component of the identity (in the first line
for the Zariski topology, in the last line for the real topology). We denote by U; (respectively
Up) the unipotent radical of P; (respectively Fy). Then we have
Py=Mj;-Uy=M;x Uy,
S@:S(), P@:P(), Prn=G

and Sa is the maximal Q-split torus in Zg.

LEMMA 1.3 (Compare [Bor91, 20.6(i), 11.23(ii)]). (a) If M C Py is a Levi subgroup with S; C M,
then M = M.

(b) Ifu™"- My -u= Mj for some u € U;(Q), then u=1.

Proof. (a) Since M is a Levi subgroup of P; and any two Levi subgroups of P; are conjugate,

there exists u € U;(Q) such that
M=u-Mjy-u*. (1)

This implies ©~'Syu C u='Mu = My = Cent(Sy), i.e. (u"tsiu) - s2 = s9 - (u'syu) for all s1, 59 €

S7(Q). We can rewrite this equation in the form (since S is abelian)

1

51 (55 usou™t) = (sy usqu™t) - 1.
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Since this is valid for all s; € S;(Q), we get

(55 usg) -u~t € M;(Q) = Cent(S(Q)).
On the other hand, we have (551u52) -u~t € U;(Q), since sy normalizes U;. Therefore,
82_1U82 cumt e My(Q)NU;(Q) = {1}, i.e. usy = syu for all s, € S;(Q), so that u € Cent(S;(Q)) N
U;(Q) = {1} and therefore M = M, which proves (a).

If we start with M = M in (1), we arrive again at u = 1 with the same proof, i.e. we get the
statement (b). O

LEMMA 1.4. There exists a maximal compact subgroup K7 C G(R) such that
M;R)NKZ =P;(R)NKZ forall JCA.

Proof. Let K; be some maximal compact subgroup of G(R). We denote by #; the Cartan
involution of G/R with respect to K; [BS73, 1.6]. The group M; := Py N 01(F) is the unique
Levi subgroup of Py stable under 6; (apply [BS73, 1.8] for L=G, H = Py). We have M; =
u- Mo(R)-u=1 for some u € Uy(R). Put K7 :=u"'Kju. Now fp:=int(u)~! o6 oint(u) is
the Cartan involution of G/R with respect to K. (This may be deduced easily from the
characterization in [BS73, 1.6].) We have 6y(Mp) = int(u) 101 (M) = int(u) "1 (M) = My. For
arbitrary J C A, we get
eo(PJ) NP;>D 90(P0) NP = u_1(01 (Po) N P())u = u_lMlu =MyDSyDSj.
Again, by [BST73, 1.8, the left-hand group is a Levi subgroup of Pj, so that we get
Mj;=060o(P;)NP; by Lemma 1.3(a). Now P;(R)NKZ ={pe P;(R)|0y(p)=p}C P;(R)N
0o(Py(R)) = M;(R). Therefore, P;(R) N K2 = M;(R) N K2 for all J C A. O
LEMMA 1.5. The family of simple roots («)aeca—y induces an isomorphism of groups:
Ay = (R
Proof (Compare [BS73, 4.2(2)]). The exact sequence of algebraic groups
1-SANGY = 5;NnGY = (G2 —1

induces an exact sequence

1— SAR)NGD(R) — S7(R) NGV (R) — (R*)A — HY(R, Sa N GM) -1,
since S; N G is a split torus. Now the first and fourth terms are finite groups, so that the middle

map induces an isomorphism between the connected components of the identity of the second and
third terms. Since A is the connected component of the second term, the claim is now clear. O

Multi-pushouts
1.6 The category Ja

For a set A, we denote by P(A) the set of its subsets. We define a category Ja whose objects
are pairs (I, J) with I C J C A, i.e.

Ob(Ja) ={(I,J) e P(A) x P(A) | I C J},
and where

consists of one element CIDf((’]L ifICKCLCJ,

Morph((Z, J), (K, L)) {_ 0 otherwise.

There is a unique and obvious composition of morphisms.
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If C is another category, we denote by C72 the category of functors F' : Ja — C. The category
C may be embedded as a full subcategory into C74 if we associate to every ¢ € Ob(C) the constant
KL .
functor F,: (I, J) ¢, @} > id..

For F € C72, we denote by lim . F € Ob(C) the direct limit of F' (if it exists). This means

.
that
Hom,z, (F, F.) = Hom¢ (hlg F, c) for all ¢ € Ob(C). (2)
Ia

Example 1.7. If C is the category of sets, one can construct h_H}lF in the following way: let
X =Ujeconga)F'(J) be the disjoint union of all F'(j). Define an equivalence relation ~ by: for
x € F(j) and 2’ € F(j'), we have x ~ 2/ if and only if there are sequences

J=170,J1s---,Jon =7 of objects in Ja,

x; € F(3;), i=0,1,...,2n, of elements and

G2i41 1 J2i41 = J2is P22 f Joirl — J2it2, ¢=0,1,...,n— 1, of morphisms such that

r=x0, o' =x2n, F(P2iy1)(®2i11) =22, F(P2ir2)(T2i+1)=T2it2.

Then it is obvious that X/~ satisfies the defining property (2) of the direct limit lim I F.

Ezample 1.8. If (I, J) — Xy is a functor from C72 to the category 7 of topological spaces, we
may construct X = lim Xy ; as follows: the set X is the limit in the category of sets; it carries the
quotient topology with respect to the map (JX; ;s — X. This means that a subset U C X is open
if and only if all @;},(U) C X1,; are open. Here we denote by ®7 ;: X7 ; — X the natural map.

Ezample 1.9. If A = {e} consists of just one element, then lim F" is the pushout in the following
diagram.

F((0, {e})) — F(({e}, {e}))

l |

F((0,0)) lim £

For general A, we can think about lim . F' as a multi-pushout.
—Ja

Example 1.10. Assume that there exists Jo C A such that F' fulfills the following properties:
F(I,J) =0 (the initial object in the category C) if J & J, (3)
®:F(I,J)— F(I, K) is an isomorphism for I C K C J C Jj. (4)
Then we have lim F' = F'(Jo, Jo).
Proof. For ¢ € Ob(C), consider the obvious map
VU : Hompo, (F, Fr) — Home (F(Jo, Jo), c).

Conversely, if ¢ : F'(Jy, Jy) — ¢ is given, we can associate to it the transformation ¢a : F — F,
such that we have for I C J C Jy

(@p7)7" 70,0
oA, J): F(I,J) —=2— F(I, Jo) —=— F(Jy, Jo) — ¢

and such that ¢ (I, J) is the unique map from the initial object @ to ¢ if J & Jy. It is easy to
check that ¢n is an element of Hom,z, (F, F¢) and the only one satisfying ¥(pa) = ¢. Therefore,
¥ is an isomorphism. O
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Ezample 1.11. Let C be the category of sets and Ca the category, whose objects are pairs (A, ),
where A is a set and 7 is a map from A to P(A), and where morphisms ¢: (4, 74) — (B, 7p)
are maps ¢: A — B such that rgo¢=my. If F: Jao — Ca is a functor, then we get for every
Jo C A a functor Fy, : Ja — C, such that Fy, (I, J) is the inverse image 7~ !(.Jy) inside the first
component of F(I,J). If we assume that Fj, satisfies (3) and (4) for every Jy C A, then we can
describe the direct limit as follows:

h_H}F': < U FJ()(J07J0)77T>7
IA JoCA

where the map 7 takes the value Jy on the component Fj,(Jo, Jo).

Distance functions and reduction theory
1.12 Absolute values of characters

The natural inclusion S; C Pr induces a natural restriction map for characters r: X*(Pr) —
X*(Sr), which becomes an isomorphism after tensoring with Q:

rg: X*(Pr) ® Q — X*(S1) ® Q,
i.e. for y € X*(S7) there exist N € N and ¥ € X*(P;) such that y = 7(x)". Then we denote by
x| : Pr(A) — R%, the character 5)

g~ [x(g)M™,
where x : Pr(A) — A* = G,,(A) and the absolute value denotes the idele norm.

DEFINITION 1.13 (Distance functions). Let K = KoKy C G(A) be a compact subgroup such
that Ko C G(R) is maximal compact and Ky C G(Ay) is open. A distance function with respect
to I C A, to a character y € X*(Sr) and to K is a map

d=dy =dy x : G(A) — R%, such that

d(pgk) = IXI(p) - d(g) for p Pi(A), k€ K, g € G(A). )
1.14 The Iwasawa decomposition G(R) = Py(R) - Ko = Pr(R) - Ko implies the isomorphism of
double coset spaces:
Pr(A\G(A)/K = Pr(Ap)\G(Ay)/Ky.

The right-hand side is finite since it is the set of (open!) K ¢-orbits in the compact quotient space
Pr(Af)\G(Ay) (Ky acting via right translations on this space). Let {g,,...,g } be a set of
representatives for Pr(Af)\G(As)/Ky. Then we have a bijection between the set of all distance
functions d with respect to I, x, K and (R%;)" given by d (d(g,))1<i<n: We get the injectivity
of this map from the construction of the g, together with the characterizing property (6) of
distance functions. The surjectivity may be deduced from the fact that an equation mik =7/ QZE
implies p~! - p' € Pr(Ay) ﬁgingi_l and therefore |x|(p) = [x|(p'), since R%, contains no non-
trivial compact subgroups, so that the image of the compact group Pr(As) N QiK fgl._l under
|x| is trivial. This implies that one always gets via (6) well-defined distance functions if one
prescribes their values at the g,

We observe that any two distance functions d,, Jx with respect to the same triple I, y, K are
equivalent in the sense that there exist c1, ca € RY, such that

c1 - dy(g) < CZX(Q) <cp-dy(g) forall ge G(Ay).

In fact we can put ¢; = minj<i<p, Jx(gi) . dx(gi)_1 and ¢y = maxi<i<n Jx(gi) . dx(gi)_l.
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Ezample 1.15 (Compare [Har71]). Let

Xi1=xp = Y a-dim(Lie(Ur)a) € X*(Pr) C X*(Sr) € X*(S0).

acdt

For go. € G(R), we denote by 6, the Cartan involution with respect to the compact group
JooKoogsl, by By, the bilinear form By (X,Y)=—-B(X,0,.Y), where B is the Killing
form on g=Lie(G(R)), and by dy4_uo the Haar measure on Ur(R) which is induced by the
restriction of By to Lie(Ur). Furthermore, let dy,uy be the Haar measure on Ur(Ay) such that
Ur(Af) N ngfg]?1 has volume 1. Then

dy;(g) = vOld, s -dg,ur (U1(Q)\Ur(A))

defines a distance function on G(A) with respect to y; and K.

Now we fix K and distance functions d, with respect to {a} C A, a € X*(S(4y) C X*(So)
and K.

The next two theorems summarize the main results of reduction theory.

THEOREM 1.16. For every I C A, there exist C1 = C1(I) > 0 such that for every g € G(A) there
is 0 € Pr(Q) satisfying

do(6g) > C1 forallac 1.

Remark. We may replace C1(I) by the constant C7 = minj-a Ci(J), which is independent
of I.

Proof. It is easy to see that it suffices to prove the theorem for one chosen K and a fixed family of
distance functions (dy)aeca. In the case I = A, i.e. Pr = G, the claim is an immediate consequence
of Borel’s theorem as stated in [God62/63, Théoreme 7]. For arbitrary I C A, let () ¢ s(r) With
zj € G(Ay) C G(A) be a finite set of representatives for the double cosets Pr(As)\G(Ay)/Kjy.
For j € J(I), define d%(p) = do(pzj) as a distance function on M; = Pr/Ur with respect to {a},
a € X*(Sfa)) C X*(So) and K = ijij_l N Pr(A). Applying Borel’s theorem again, we get
constants C7 > 0 such that for every p € P;(A) there exists § € P;(Q) satisfying dJ(dp) > C, for
all v € I. In view of the double coset decomposition G(A) = J e Pr(A)z; K, we now get the

claim with Cy(I) = minje j(p) C{. O

THEOREM 1.17. For every Cy >0 there exists Cy > C7 such that for I C A, § € G(Q) and
g € G(A) the following implication holds:

if
da(6g), da(g) > C1 for alla € A
and
do(6g) > Co forallaoc A —1,
then
d € Pr(Q).
Proof. This is a reformulation of [Frad8, Theorem 1(3)]. O
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The components
1.18 The spaces Xy,

Now we fix some maximal compact subgroup K7 C G(R) satisfying the conditions of Lemma 1.4
and some open normal subgroup Ko, C K7 satisfying G(R) = Py(R) - K.

Let Z, be the connected component of the group of R-valued points of the maximal R-split
subtorus of the center Zg/R.

For J C A, we fix the notation
K =Pj(R)N Ko = M;(R) N K.
Let the group Ay (see 1.2, 1.5) act on the space
Yy :={(ea)aca ER? | e € {+1,—1} for a € J} CRA
via the roots
a-(ea)aca = (a(a) - €a)aca.

For I C J, the group Aj; acts on the space P;(R)/KZL - Z.,, via right translations, since A; C
S;(R) € S;(R) centralizes K., ¢ M[(R). For I C .J, we can form the quotient space

X1.7:=G(Q) xp,q) (PI(R)/KL - Zoo) x4, Y. (7)

More precisely, we consider the quotient of G(Q) x P;(R) x Y; under the equivalence relation
(v,p,y) ~ (7, p,y) if and only if there exist 6 € P;(Q),a € Ay, k€ KL - Z,, such that 7/ =
v, =061 -p-k-a,y =a-y.

LEMMA 1.19. For I C I', the canonical map
P(R)/KL - Zoo — Pp(R) /KL - Zo
is an isomorphism.
Proof. The corresponding map with Z., replaced by {1} is injective by the definition of KL .

Since the composite map Py(R) — Py(R)/K? — G(R)/K is surjective by assumption, the claim
is now clear for Z, replaced by {1} and then obviously also for the original Z. O

1.20 The manifold structure of Xy s

By the above lemma, we can replace P;(R)/ K. - Z., by the corresponding space P;(R)/KL - Z+
in (7). We denote by Y P; the intersection of the kernels of all x2, where x ranges over all characters
X : Py — P;/Zg — G,,. Then there is a unique decomposition P;(R) =°P;(R) x A;. We remark
that

(P;(R)/ KL Zoo x RA™T 5 {£1})/A; ~"Ps(R) /KL Zoo x R x {£1}7.
Using a set of representatives for G(Q)/P;(Q) in G(Q), we can thus identify
X1,0 = (G(Q)/P1(Q)) x "Ps(R)/ K5, Zoo x RO x {£1}7.

Since °P;(R)/KZ Zs is a submanifold of the symmetric space P;(R)/KZ Zo ~ G(R)/KooZ oo,
we get a structure of X ; as a differentiable manifold, if we equip G(Q)/Pr(Q) and {£1}” with
the discrete topology, R*~7 with the usual structure as a manifold and then take the product
structure.
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1.21 Functoriality for Xy s

The isomorphism of Lemma 1.19 induces surjective maps which are coverings in the category of
differentiable manifolds:

m: X g Xp g for ICI' C.J.
If I CJ CJ, we get an injective map (injective by the definition of A )
i Xpg = X,
which is induced from the inclusion Y;<— Y. For ICI' C J CJ, we get a commutative
diagram.

Xrg——Xp g

T

XLJ/ —_— XI/,J’
Consequently, we get a functor X, from the category Ja into the category of topological spaces.
We denote by X the direct limit over all spaces X7 j, where I C J C A:

X:li_n)lX[’J.

1.22 The group Hoo
We introduce the group
Moo = (K% 1 Py(R))/KS, = (K N Py(R))/ (Koo N Po(R)).

For all I C A, we have a canonical isomorphism ¢ : Heo — (K7 N P;(R))/KL: injectivity of
vr is implied by K! N Py(R) = K? . For the surjectivity, observe that each gs, € K™ N P;(R)
can be written in the form goo = poo koo With po € Po(R) and ko € Koo. But then also
Poo = Joo " kot € K, ie. poo € K N Py(R) and therefore koo = Pyl goo € P1(R) N Ko = KC{O

Since each element in K™ N Py(R) normalizes the groups K., Z,, and Aj, the group Heo

acts by right translations on the spaces X ; and these actions are compatible with the maps =
and 1.

1.23 Sign maps
Next we introduce the sign space 22 = {—1,0, +1}* and the sign map sign : R® — %2, which
is component for component the usual sign map.

For 4 = (Ya)aca € R?, we call supp(y) = {a € A |y, # 0} its support. This definition also
applies to the sign space ¥® C R2, such that we have supp(y) = supp(sign(y)) for y € R2.

Since the action of Ay C Ay on RA fixes the signs, we get sign maps
sign: X7 j — Y2 and sign: X — »A.
For I ¢ J' C J, we have
X152 {re Xy y|supp(z) D J}.
We define, for J C A,
Ej = {w € X | supp(x) = J},

= B

JCA

so that
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We have
{z e Xy y|supp(x)=Jo} =0 for JZ Jy
and
{x € X1 5 |supp(z) = Jo} = {zx € X1 4, | supp(z) = Jo} for I C J C Jp.
We consider X ; as a set together with the support map to P(A). The functor (I, J)—
(Xr1,7,sign) satisfies the conditions of Example 1.11 above. Then it is easy to see that

Ej = lim {z€ Xy |supp(z)=Jo} ={z € Xy, | supp(z) = Jo}
ICJCJy

= G(Q) xpy () Py (R) /KL - Ajy - Zoo x {—1, +1}7 x {0}2.

1.24 The sign group S2

The set S = {—1, +1}* forms a group under componentwise multiplication. It acts on R®, ¥4
and Y for all J C A by componentwise multiplication and therefore also on all X7 ;. We write
the action of S2 as a right action. The sign map and all maps 7, i are S®-equivariant, so that
SA acts on X. S2 may be identified with the set of all subsets of A: for J C A, we denote by
s7 = (Ta)aca the element with r, = —1 < a € J. It is rather obvious that

X ={zeX|x-sy=ua}= U E;.
INJ=0

1.25 The quotients X7 j(Ky) and X (Ky)
For a compact open subgroup Ky C G(Ay¢), we introduce the spaces

X1.0(Kf)=GQ\X1,5 x G(Ay)/ Ky

and
X(Ky)=GQ\X x G(Ay)/Ky=1lim X1 ;(Kj).
I1,J
We have a canonical identification
X1,5(Kg) = PrQ\(P(R)/KL Zoo x4, Ys) X G(Af)/Ky.

We fix an open compact subgroup Zy C Zg(Ay) (which will be assumed to be sufficiently small
later). In the following, we shall consider only such K that satisfy

KfﬂZG(Af)ZZf. (9)

The set of all K satisfying (9) is invariant under conjugation and under intersecting its members.
If Kp= K} - Zy for an open compact subgroup K} C G(l)(Af), then (9) is equivalent to the
condition K} NZa(Af) C Zs. In the case K} = I, K} and Zj = [1, Zp, the local conditions
K; N Za(Qp) C Zy, have to be checked only for those finitely many p where Z, is not maximal
compact in Zg(Qp). We define the group

C: Zg((@) N (Koo Lo X Zf).

It acts trivially (from the left) on each X ; x G(Ay)/Ky and on X x G(Ay)/K¢. We now assume
that

For all gf € G(Ay), goo € G(R), we have (ngfgfl G Koo Zoog) NG(Q) = C. (Assk,)
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LEMMA 1.26. Fach K satisfying (9) contains open subgroups satisfying (Assg, ).

Proof. By shrinking Ky, we may assume Ky = K} - Zy for an open compact subgroup K} =
Hp K; C G(l)(Af). We claim that we are done, if we replace some Kg by an open pro-p-
subgroup (which will be denoted by the same symbol): let ¢ = (ngfgfl oo Koo Zoogt) N G(Q).
If n denotes the order of the finite algebraic group G N Zg, then there exists an isogeny of
tori w: G/GM) — Zg such that 7 ow is the multiplication by n, where 7 : G — G/G™) is the
canonical projection and 7:Zg — G —» fG/G(l) the induced isogeny with kernel G N Zg.
For v € (, we get 4" = ¢ - p with 0 = w(7 (7)) € Ze(Q) N ¢ = ¢ and p € GV (Q) N {. The rational
element p is now of finite order, since its archimedian component lies in the compact group
Joo Koog!- But, the p-component of p is contained in the product of the torsion-free pro-p-group
9p - K; “Gp 1 and a subgroup of the finite central group (G N Zc)(Qp). Therefore, p must be

central, i.e. p € Zg(Q)NGM(Q) N ¢ = ¢ and thus 4" € ¢. Looking again at the p-component and
using that g, - KI% "Gy 1is a pro-p-group, we conclude that already v must be central, i.e. v € ¢. O

LEMMA 1.27. The action of G(Q)/( on each X1 ; x G(Ay)/Ky and therefore on X x G(Ay)/ Ky
is free of fixed points.

Proof. Let ((7,p,y), gf) be a representative of an element of X7 ; x G(Ay)/K; which is a fixed
point under 6 € G(Q). Then there exist p € P;(Q), koo € KL, a € A}, 200 € Zo, ky € Ky such
that
(67, 2,9, 895) = (vp, p~ ' Phoozoot; ay, grky).

This means p=~"1dy = 'yflgfk:fgflfy € 'yflngngTLy N Pr(Ay). Since the latter is a compact
subgroup of Pr(Ay), its image under the absolute value of each root o€ A — I must be 1.
Thus, |a(p)|e = ]a(p)\}l =1. On the other hand, we have a=z_k_p~!pp and therefore
a(a) = |a(a)] = |a(zeo) 7Y+ |alkoo) 7Y+ |a(p) oo = 1 for all a € A — I. Since we know this already
for a € JDI, we get a€ Ap={1}. Now pe G(Q), pe 7_1ngfg]?1'y and p € pKoo Zoop™ .
Therefore, p € ¢ by assumption (Assg f). Since p is central, the equation 6y = ~vp implies § = p € (,
i.e. 0 represents the identity in G(Q)/C. O

1.28 For each distance function d, : G(A) — R%, associated to a € A, we define a function
Da : vaj — R>0 by

Da(7, Poos ) = da((Poos 77 ) - lyal-
This is well defined, since we have |a|(do0, d7)| =1 for 6 € Py(Q) by the product formula for the
norm, so that

Do (78,8 peca, ay) = da(éo_olpooaa 5;17;1)_1 “Jea) - yal
= [a|(60, 55)| 7" - al(a) ™ - da(poo, vy )T - ()] - [yal
= Da('}/,poo,y)

In the same way, we consider the function
Do : Xy 5 (Ky) = G(Q\(Xp,s x G(Af)/Ky) = Rxo
defined by
Da((7; Poos ¥): 95) = da((Poos Y7 '97)) ™+ [yal-

76

https://doi.org/10.1112/5S0010437X11005641 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11005641

A TWISTED TOPOLOGICAL TRACE FORMULA FOR HECKE OPERATORS

Gluing together
1.29 The neighborhoods U7,y and V5 5

Let C1 be a constant as in Theorem 1.16 and Cy > Cj be an associated constant as in
Theorem 1.17. We define U; ; C Xy ; by

Uy ={x € Xy | Da(z) <Cy" for a €I, Do(z) < Cy' for a € A — I}

For I C J, we denote by V; ;j C X7 ; the image of U ; under the projection Xy ; — X7 ;.
We recall from §1.23 that

X= U {‘T € X o, Jo ‘ supp(x) = J()}.
JoCA

The relation Cfl > C’;l implies U7 ; CUK,; for I C K C L C J. Together with the canonical
inclusion Uk ; C Uk, 1, this gives U; j C Uk 1, and induces a map

K,L
CI)L:, ZV[’J — VK,L-

LEMMA 1.30. The maps CID?’]L are injective.

Proof. Let CIDf’]L(xl) :<I>§(ZIL(:CQ), where 1,20 € Vy ;. Write x; :éé’i(@), where Z; =

(7is Pis yi) € Ur,y. Since @éff(fyl,pl, Y1) = @éﬁf(fyg,pg, y2), there exist § € Px(Q) and a € A,
satisfying vo =1 - 071, po = dp1a, y2 = a - y1. Since the a-components of y; equal £1 for a € J,
we get a(a) =1for a € J,i.e. a € Aj. There exists ag € Ay such that yo := as - y; has components
—1,0, +1 and such that ds(p; - ag, (’yl);l) > Co and do(pe - a™ ! - ag, (’)/2);1) > (9 for all o with

/

(¥1)a = 0= (y2)a. Then we have z; = @éi(mz), where 2} = (y1,p1 - a2, y0) =: (71, P}, ¥o) and
¥y = (Y2, p2- ™" - az, yo) =: (72, Ph, yo). With g=(P{(71);') we have (py, (12);')=d-g and

da(9), da(0g) > Co for o € A — I and do(g), da(dg) > C1 for a € I. By Theorem 1.17, we get
0 € Pr(Q). This means x; =z in X7 . O

LEMMA 1.31. V;; contains {z € X ; |supp(z) = J}.

Proof. If x = (v, p, y) € X ;s has support J, we can find by Theorem 1.16 some 6 € P;(Q) such
that do (0 - g) > Cy for all € J, where g = (p, (vf) ™). Then &’ = (v6~ 1, 0p, y) € X s lies in Uy ;
and has x as its image in X ; (observe Dy (2’) =0 for a ¢ J and |y,| =1 for a € J). O

LEMMA 1.32. The composite map Vy,; N X1, S X is injective.

Proof. The support of each x € Vy ; contains J. Consider the following commutative diagram for

J CL.
{x eV |supp(z) =L} —={z eV |supp(z) =L} ={x € X1 1 |supp(z) =L}
{z € Vi |supp(z) = L} —— {z € Xy |supp(z) = L} = {z € X |supp(z) = L}
This implies the injectivity. O

From now on, we may and will identify V; ; with its image in X.
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LEMMA 1.33. With this identification we have

V]7JDVK7L:V[QK7JUL forICcJ K CL.

Proof. The inclusion D being trivial, we assume x € V7 ;N Vi 1, i.e. there are x1 = (71, p1, y1) €
U,y C Xy y and x3 = (72, p2, ¥2) € Uk, C Xy 1, having the same image € X. If S = supp(z1) =
supp(z2) denotes the support of x, then by Example 1.11 above z1 and 3 become equal in Xg g,
i.e. there exist 0 € Ps(Q) and a € Ag such that

Yo=m-0"" pp=d-pr-a, ya=a -y (10)
We may assume (y1)q = (y2)a = £1 for a € S. Since J, L C 5, we have Ag C A; and may assume
on replacing x1 by (71, p1 - a, a-y1) that we have a =1 in (10). We put g = (p1, (’yl);l). After
modifying p; and py by an element of Ag from the right, we may assume do(g) > Ca, do(dg) > Ca
for a ¢ S. Then the assumption on 1 and xs may be restated as
da(g) > Cyfora €1, do(g)>CsforacA -1,
do(6g) > Cy for a € K, do(dg) > Cs for a € A — K.

This implies § € Px(Q), 6 ! € P;/(Q) by Theorem 1.17 and therefore § € Pr(Q) N Pk (Q) =
Prnk(Q). So, we may assume x1 = 22 € Ur,; NUK, 1, = Uink,jur, and the claim is proven. O

1.34 Continuation of Example 1.11

For X =lim X7 ;, we denote by ®7,;: X7 7 — X the canonical map. For a subset Uz, j, C X1,,,5
we may compute the sets

u})’o‘] = (q)I,J)_I(@Io,Jo (Z/{IO:JO)) C XI,J

in the following way: we put

U? . @ for (I, J)%([o,Jg),
Z/{[07J0 for (I7 J) = (IOa JO)a

and then inductively for 5 > 0:

2j+1 . K,L\—1/7 2]
Ury = U (CI)I,J ) (UK,L)v
ICKCLCJ
242 LJ (7,241
UI,J = U (PK,L(UK,L )-
Kcl,JcL
Then we get
0o __ J
Ury = U UI,J-
j=0

Recall from Example 1.8 the description of the topology on X, if X.. is a functor to the
category of topological spaces.

LEMMA 1.35. If the maps @f(f are all open, then the maps ®y ; are open, too.

We have to show that all L{IO:”J C Xy j are open if Uz, j, C X175, is open. But, by induction,

all L{; s are open for all j > 0 and so is their union U}?;.
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Now we associate to X7 ; the quotient topology with respect to the actions of Pr(Q), Z
and Aj, where P;(Q) C G(Q) carries the discrete topology and the other two factors the usual
topology. Then it is obvious that the maps i;[)f’]L are open.

We conclude from Lemma 1.31 that the V; ; form an open cover of X and that already the
V1,1 form an open cover.

LEMMA 1.36. For & €Ur ; and [ € J, there exists a constant Co = Cy(I, 3, %) >0 depending
continuously on Z such that Dg(0z) > Cy for all 6 € Py(Q) with 0z €Uy ;.

Proof. Let & be represented by (7, poo, ¥). Put g = (oo, 'yf_l) € Py(R) x G(Ay). After modifying
the representative, we may assume y, € {—1,0, +1} for all a € A, especially |y,| =1 for a € J,
and dy(g) > Cs for a € A — J. We have to prove that

ds(6g) < Cyt for all § € Py(Q) with 6% € Uy,

Let 0 € P;(Q) with 0z € U;;. We may assume dq(dg) > Cy for all o« € A —J by modifying
Poo Once more without changing dn(dg) and do(g) for a € J: if |yo| =1, then the condition
D, (6z) < Cy s equivalent to dy(6g) > Cy, while, for y, = 0, we can modify p,, by multiplication
with a suitable element of A ;, which does not change the other values of distance functions.

For B€J, there exists a character x;_sg,3€ X" (Pr_{33) ® Q whose restriction to
X*(S;_{p;) coincides with the restriction of 3. In X*(Sp) ® Q, we have a relation of the type

XJ—{B},8 = B+ Z ciga- o with cygo € Q.
acJ—{G}
Assume dg(dg) > Co. This implies § € P;_;5,(Q) by Theorem 1.17 and furthermore
dXJ*{ﬁ},B (g) = dXJ—{ﬁ},ﬁ (5g)7

which can be rewritten

(6g)\ B
dg(6g) = ds(g) - H <c;a(<gg>)) i

acJ—{8}
< C;ZaeJ—{ﬁ} CJ,B,a . dﬁ(g) . H da(g)cjﬁ’a —- C3'
acJ—{B}
Thus, we have proved dg(dg) < max(Cy, C3). If we put Cp:= (max(Ca, C3))~!, we get the
claim. |

ProrosiTiON 1.37. The space X is Hausdorft.

Proof. Let us assume Z €Urr maps to x € Vyr and g €Uy maps to y €V, and x # vy,
supp(x) = I and supp(y) = J. If I =J, then we can use the fact that V; ; C X7 1 is Hausdorft,
so let us assume I # J; without loss of generality, a ¢ I, a € J for some a € A. For € > 0, define
U-(y) to be the (topological) interior of the set

{zeV;s| Dy tora (2) > ¢ for all Z €Uy ; mapping to z}.

Let U1(g) be an open neighborhood of g lying relatively compact in some neighborhood Us (7).
Let €9 > 0 be half the maximum of the set of numbers Cy(J, «, §o) - HBGJ—{a} Co(J, B, go)re8,

where g ranges over U; (). Then U; () maps into U, (y) via the projection map: let yo = p(%o)
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be in the image of U; (7). We have to prove that Dy; toym
0o € Uy ;. But, this may be deduced from Lemma 1.36.
Next we define UI,J(OQ) and VI,J(C'Q) to be the sets obtained by replacing Cs by Co > Oy
in the definitions of Uy ; and Vr ;. We have x € V1.1(C) for all such C, since supp(x)Nz 1
and since Vy 1(C2) is an open neighborhood of . We claim that Vi 1(Co) NU(y) =0 if Cy is
sufficiently large.
Let z € VI,I(C~’2) NU,(y) C VL[(C'Q) NVs(C2) = Vins1us(Co, C’g), the latter being defined

as the image under projection of

(0g0) > €p for all 6 € P;(Q) such that

) Deo(z) <Oyt foraeIndJ,
Urnsus(Ca, Co) = { © € Xg ug | Dalz) <Cy' forael—(INJ),
Dy (x) < Cy! forae A-1T

We have a commutative diagram.
Ur g <—Urngug —=Ug g

.

Vig<—Vingug —=VyJ

Ifz € V[,[(OQ) N Uz, (y) is the image of some Z € Urn 7 107 (Ca, C3), then we have Dy tora (2) > eo
by the definition of U, (y). On the other hand,

Dy, (aya(Z) =Da(%) - H Dy(3)7—{ares < C5 L C;Zg Ci—{a},a,8
peJ—{a}

and this is < g if Cy is sufficiently large. This contradiction proves V(Cy) MUz, (y) = 0. O

PROPOSITION 1.38. The action of G(Q)/¢ on X x G(Ay)/ K is properly discontinuous.

Proof. In view of Proposition 1.37, this reduces to the same statement for the action of G(Q)/¢
on spaces of the form V;; x G(A¢)/Ky, where the property is well known. O

PROPOSITION 1.39. The space G(Q)\X x G(Ay)/Ky is compact. It is a differentiable manifold,
if Ky satisfies (Assk, ).

Proof. The Hausdorff property of the quotient is a consequence of Propositions 1.37 and 1.38. To
prove compactness, it is thus sufficient to prove that the image of each Vi x G(Ay)/Ky under
the quotient map is relatively compact for every I C A. This may be deduced from ordinary
reduction theory, especially the properties of Siegel sets. The manifold property is a consequence
of Lemma 1.27. O

1.40 We recall the sign map sign : X — X2, where ¥ = {—1, 0, 1}. We denote by Xpg the inverse
image of {0, 1}* in X under the sign map and by Xsp ~ G(R)/Ko - Zso the inverse image of {1}~
under the sign map. Similarly, we introduce the spaces Xps(Ky¢) = G(Q)\Xps x G(Af)/K; and
Xop(Ky) = G(Q\Xsp x G(Af)/Ky.

PROPOSITION 1.41. (a) The space Xpg is homeomorphic to the quotient space X/SA under
the canonical map Xgg — X —» X/SA.
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(b) The space Xps(Ky) is homeomorphic to the quotient space X (Ky)/S? for every open
compact subgroup Ky C G(Ay).

(c) The space Xps(Ky) is the compactification of X, (Ky) in the sense of Borel and
Serre [BST73].

Proof. Parts (a) and (b) are clear. Since we do not use the original construction of Borel and
Serre in this paper, we leave the proof of part (c) as an exercise to the interested reader. O

2. Sets of fixed points of Hecke correspondences

Normalizations of outer automorphisms

In the following technical subsection, we introduce the quantities g, and p, attached to an
automorphism of finite order 1 and derive some properties of them. The reader may skip these
considerations, since we have g, =1 and p, =1 in several applications.

2.1 n and m

Let n: G — G be an automorphism of GG, which is defined over Q and which is of finite order n.
Since Z, is by its definition an invariant subgroup, we have

N(Zoo) = Zoo-

Since all pairs (P, S), where P is a minimal Q-parabolic and S is a maximal Q-split torus lying
in P, are conjugate by elements of G(Q), there exists g, € G(Q) such that

n(Po) =gy Po-g,"s 1(S0) =gy So0-g,"
We may thus define the automorphism
m:G— G, 33»—>g771 “n(x) - gp.
Since 11 (Py) = Py and 11(Sp) = Sp, there must be a permutation of A, which we denote also by
7, such that
aont=n(a) foracA a:S)— Gy,
and thus
m(Sy) ={m(s) | a(s) =1 for all « € J}°
= {s|a(n (s)) =1 for all a € J}°
= Pn(J)
and therefore
m(Pr) = Py, m(Myg)= My,

ie.
n(Pr) =gy Pyngn's  n(My) = gyMyng, "
2.2 2
The finite group {1,7, ..., 1" !} has a common fixed point when acting (as group of isometries!)

on the connected (!) symmetric space (of negative sectional curvature!) of maximal compact
subgroups of G(R) (compare [BGS85, Lemma 6.3]). Since all maximal compact subgroups
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of G(R) are conjugate by elements of Py(R), there exists b € Py(R) such that
nb- K2 b H=b- K" b}
or equivalently
(K%)= n(b) "0 K2 - b~ '(b).
Write
g,?l )t b=p, -k, with p, € Py(R), k, € Koo. (11)
Then m (KZ2) :ano"gpgl and n(KZ) = gnanngpglggl. Define

n2: G(R) = G(R), z— p, 'mi(x)py =py" 9, ' n(x)gnpy-
We have n2(K2) = K and assume that (the assumption is automatically satisfied if K is an
invariant subgroup of K7, e.g. if Ko, = (K2)°)
nZ(KOO) = K, (ASSK)
ie.
N(Koo) = gnpnKoopy, "9,
Since no(K7Z) = KT, the algebraic involution 7206p0m,"': G(R) — G(R) fixes K
pointwise. By [BS73, 1.6], it has to be the Cartan involution 6y:
n2 0 6o = by o 1.
Since p, € Py(R), we have
n2(Fo(R)) = Fo(R). (12)
Therefore,
12(Mo(R)) = n2(Po(R) N 6o(FPo(R))) = n2(Fo(R)) N2 (6o (Fo(R)))
= Po(R) N 6o (12(Fo(R))) = Mo(R).

Since m (Mo(R)) = Mp(R), we get p;lMg(]R)p?7 = My(R). If we write p, =my, - u, with m,, €
Mo(R), up € Up(R), we get u,'Mo(R)u, =Mo(R), which implies u,=1 by Lemma 1.3.
Therefore,

pn € Mo(R). (13)
From this relation, we conclude
n2(Pr(R)) = Py (R),
n2(M1(R)) = M) (R),
m(KL) = KD,

2.3 Norm maps

The (naive) norm map N =Np: G — G is defined by

N(g)=n""g)-n"2(g) -+ 1(9) - 9.
There are analogous maps N7, N3 : G — G defined by
Ni(g) =ni" g) - ni™*(g) -+~ - milg) - 9.
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The norm maps satisfy the following rules (i =0, 1, 2; we put No =N, ng =1n):

Ni(ni(z) - g-2~") =nf'(z) - Ni(g) -z, (14)
Ni(ni(x)™ - - g) =i (x) ™" - Ni(zgz™) -2 (15)
and we remark that
z=n"(x) = 0" (ggpyma()p, 1g,7 b
= Wn_l(gnpn) ‘77n_2(9npn) ( ($)) " 2(977]977)_1 -n”_l(gnpn)_l

= :N(gnpn) -1y () - N(ann) ! (16)

and

12(N (gqpn)) = 1y 9 11N (99P1)) 9P
=0y 9y 0" (9nPn) N (g0Pn) = N (gmpn)- (17)
Using (12), the equation (16) implies Py(R) = N (gyp,) - Po(R) - N(g,py) !, and we conclude
N(gnpy) € Po(R).
On the other hand, we reformulate (11):
oy =n(0) "1 bkt
This implies
N(gypn) =b"" - N -k, b7 b
= (b~ 1" l(b’% ') - (
_ -1
= Ns(k, "),

where A3 is the norm map associated to the automorphism 73 : G — G, g — b~ n(bgb~1)b. Since

13(g) = ()~ -0)" - nlg) - (n(b) - b) =kt - (gqpy) ™" - 0(g) - gnpnkn =kt - m2(g) - ky, we have
n3(Keo) = k;l Koo - ky =Ko and therefore N(gypy) € K. This implies part (a) of the
following lemma.

1, n—2 —17—1 —1 —1;—1 —1
b=y 2 bk ) < (b~ Ln(bk, o)) - k;

LEMMA 2.4. (a) N(gypy) € K = Po(R) N Koo = Mp(R) N K.
(b) N(gnpng) =N (gnpy) - N2(g) for g € G(R).
(c) N(gng) =N(gy) - Ni(g) for g € G(R).

The proof of part (b) is by induction on n (this may be done if we ignore the assumption
that 7™ =1id for the original n): let N7, M} be the norm maps with respect to the index n — 1.
Then

N(gnpyg) = 1" (gnpng) - N (gnpng) = 0" (gupn) - 1" (9) - N (gypn) - N3(9)
= 0" (gnpy) - N (ggpn) - 115 (9) - N (gp) ™1 - N (gupn) - N3 (9)
= N(gnpn) 'NQ(Q)‘

The proof of part (c) is completely analogous.

2.5 We remark that N(g,y) € Pr(Q) if ve€ P;(Q) and n(I)=1I. This is a consequence of
N(gyy) =N(gn)N1(7): we have N(gy) € Py(Q) C Pr(Q), since Py(Q)=n"(Fo(Q)) =N(gy) -
Nt (Po(Q)) - N(gn) "t =N(gn) - Po(Q) - N(gy) ™!, and Ni(7) € P1(Q), since n1(Pr) = Pyy = Pr.
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Correspondences and fixed point sets

In this section, we will define an action of 7 on the space X (Kf) and will define a Hecke
correspondence H. In the rest of this and the next section, we will compute the set of fixed
points F'(‘H) of this correspondence: F'(H) will be the disjoint union of sets F'(H); 4, which are
like locally symmetric spaces. The reader may read the summary §2.24 for more details.

2.6 The action of n on X7 j
Let n act on the family of spaces X7 ; as follows:

n:Xrg— Xy
(v, 2, y) = () - gn» m(p) - Py 1Y),

where v € G(Q),p € Pr(R),y € Y;. If we interpret ¥ = (ya)aca as a map A — R, then n(y) is
defined to be the map yon~': A — R. This means n(y) = (Yp-1(a))aca. The action 7 is well
defined on the quotient X j: if § € Pr(Q), k € K  ac Ay, then

n(v8, 6~ pka, a(ya)aca) = (n(v8)gy, m(8) " m(p)m (k)m (a) - py, n((a(a) - Ya)aea))
= (1) gym(8), m(6) ™" - m(p)pyma(k) - m(a), (1" (@) (@) - Yp-1(a))aca)
~ () gy, mP)Pys (Un-1(a))aea)) = 1(7; P; (Ya)aea)-

Here we used 7! (a)(a) = a(n1(a)), which is an immediate consequence of the defining equation
ao 771_1 =n(a). Observe p, € My(R) centralizes A for all J, so that 7;(a) = n2(a).

2.7 The action of n on X (Ky)

For K open compact, we have the following map induced by #:

n: Xr,0(Ky) — Xy men(n(Ky))
(-2, 9): 97) = (V) gy, m(P) - Pyy 1Y), n(gr))-

This induces a map 7 : X (Ky) — X(n(Ky)) in the obvious way. We may rewrite this map using
the identification

X1,5(Ky) = PrQN(Pr(R)/ K Zoo % a, Y1) x G(As)/Ky)

in the following form.

(Y, 95) —— (m(p) - pyy (W), 95+ - 1(gy))

(1,2, 9, 95) —— (1) - gy, m(p) - Py n()> m(gy))

2.8 The Hecke correspondence

Now we take some s € S2, some heo € K2 N Mo(R) and some hy € G(Ay). We consider the
map

H=H(sy) = (hoo, 5.1, hp) 0 : X (Ky) — X (n(Ky)) — X (h7 (K p)hy)
induced by the maps

X1,7(Ks) = Xy (0K f)) = Xy i (hy 'n(Kp)hy)
(P, > 95) = (m PPy 1Y), 9 ' 1(g5)) = (M (P)Py - hoos 1Y) - 5.0, 9 ' 1(gs)hf)-
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We put K = Ky N n‘l(thchTl). Then H maps as follows:
H: X(K) — X (hy (K )by 0 Kp) = X (07 'n(K})hyg) — X (K)).
We will also consider the canonical projection induced from the inclusion K } — Kjy:
»: X(K}) — X(Ky).

We finally make the assumption

n(Zs) = Zy. (Asszy)
This implies n(¢) =¢.

2.9 Set of fixed points: sign conditions
We want to describe the set of fixed points:

F(H)={z € X(K}) | »#(x) =H(z)}.
From sign(H(z)) =sign(n(z)) - s;» and sign(s(x)) =sign(z), we get the following necessary
condition for z € F(H):
sign(z) = (sign(z)) o™ - s, (19)
which implies for I = supp(z) that
n(I)=1 and #(J' n{a,n(a),...,n"  (a)}) is even for all a € I.

Conversely, if the last two conditions are satisfied for some I C A, one can construct an x such
that supp(z) = I and sign(z) satisfies (19). The conditions imply especially that

supp(z)’NJ =1.

2.10 Set of fixed points: conditions

Now let I =supp(x),x € F(H). By the description of E; C X, this means, if we write x =
(Y, gy) with p € Pr(R) and y = sign(),

(m(D)Prhos, N(W)s.r gy ' n(gr)hg) ~ (b, v, 97),
i.e. there exist v € Pr(Q), koo € KL, 200 € Zoo, a € Aj, ks € Ky such that

(1) 9y 1) gypyhoe = Y0k 25 a Y
(2) n(y)sy = a ty;
(3) gy gy =grky "

The condition (2) is equivalent to sign(n(x)) - s = sign(z), since we have a - y = y for supp(y) = 1
and a € Aj. As before, this implies n(I) = I. We rewrite (1) and (3) as follows:

(1/) n(p)71<977'7)p = gnpnhooazookOOS

(3 n(gr) " (gny) g5 = hyky.
The equation (1’) implies by taking norms
(1n) P N(gyy) p=N(gypy) - No(hoo - @ 20 + koo)-

The map 7o takes Ay, Zo, and K, C{o to themselves, and ho, normalizes K C’;OZOOA 1. Therefore, we
have the following necessary condition, if we take Lemma 2.4(a) into account:

P N(gyy) - p € Nalhoo) - KL Zo A (20)
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2.11 Converse conditions

For some I C A with n(I) =1 and some fixed v € P;(Q), let us assume conversely that N(g,7)
is conjugate in P;(R) to an element of Nj(hoo) - KL ZsAp, ie. that (20) is satisfied with
some p; € Pr(R) instead of p. We consider the map

My.hoo * P1(R) = Pr(R),
P = m@)pn - hoo =7 gy (D) gnPyboe =" Py m2(D) - oo
It is easy to calculate the nth power of 7, 5 (compare Lemma 2.4(b)):
(i) () = N (gy7) ™" - 1" (9) - N (gpyhoo)
= N(gy) ™" 2 N(gapn) - Na(hoo)- (21)

For ke KL ZoAr, we get fyn. (Pk) =1y n (D) hod -m2(k) - heo with hilne(k) - heo €
K1 Z.A;. Therefore, fj, 5 induces a map from Pr(R)/KL Z. Ay to itself, which will be denoted
by the same symbol. Let

Fgn,7) ={p € Pi(R) | (fiy,n..)"(0) € p- K& ZooAs}.

Then this set is invariant under right translations by elements of K. Z., A; and the quotient
space

F(gy.7) = F(gy, 1)/ K& Zoo Ar
is the space of invariants of the nth power map (7, 5. )" acting on Pr(R)/KL Z-cA;.
The map 7}, ., leaves F(g,,~) and F(gy, ) invariant.

By (21), we may describe F(g,, ) as the set of p € P;(R) satisfying p~'N (g,7)p € N (g,pn) -
No(heo) - KL Zoo A, But, since N (gyp,) € KL and since Ma(hoo) € (K2) N Mo(R) normalizes
K! 7. A, this condition may be rewritten in the following form:

F(gg,v) ={p € PI(R) | p"'N(gy7)p € Na(hoo) - K3 Zoo A1}
By assumption, we have F(g,,v) # 0.
2.12 Now fix some p1 € F(gy,7), i.e. pl_1 N (gny) - p1 =Na(hoo) - k1 with ki € Kl Z A We
want to describe the set of connected components of F(gy,v). Let KL™ = K™ 0 Pr(R) and let

p be a complement to Lie(K. Z, A;) in Lie(P;(R)) which is invariant under the adjoint action
of KX ZooAr.

LEMMA 2.13. FEach p € F(gy, ) has a unique representation
p=p1-exp(r)-k where k€ KL Z Ap and 7 € prdWNa(heo)kn), (22)

Conversely, each p € Pr(R) of the form (22) lies in F(g,, ). Here pAdN2(h)k1) denotes the set
of elements in p fixed by the adjoint action ofpl_lf\/(gn”)/)pl = Na(hoo ) k1.

Proof. Recall that pl_1 - p has a unique Iwasawa decomposition

prl-p=exp(n)-k where m €p and k€ KL Z, Af,
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and we have to prove 7 € pAd(NQ(hw)kl) for p € F(gy, ). We calculate
P~ N(gyy) -p = k=" exp(m) " py N (gyy)p1 exp(m)k
exp(ﬂ)_lj\/g(hoo)k:l exp(m)k
= kL exp(m) 7! exp(Ad(Na(hoo ) k1) T)No(hoo 1k
= eXp(Ad(k‘ D)™t exp(Ad(E ™I Ny (hoo )1 )7) - kT No(hoo ) 1 .
Now for p € F(gy, ) there exists k2 € KL Z.o Ay such that
P~ Nlgyy) - p=Na(heo) - ko (23)

The combination of the last two equations can be rewritten in the form
exp(Ad(k ™) Ad(Na(hoo)k1)7) - k™ No(hoo) ki = exp(Ad (k™)) - Na(hoo) k2
and, by the uniqueness of the Iwasawa decomposition, this is equivalent to the system of equations
Ad(Na(hoo)k1)m =7 and k™ Na(hoo)kik = Na(hoo k2, (24)
so that 7 € pAd(NQ(h“)kl).

Conversely, if p is of the form (22), we may define ky by the equation (24). But then ko
lies automatically in K. Z. A; because k; does so and KL is a normal subgroup in KL™ with
abelian quotient, so that

k7 N (hoo) KL Zoo Ark = Na(hoo )\ KL Z oo Ay

Reversing the above calculation then gives the equation (23), so that each p of the form (22)
belongs to F(gy, ). O

2.14 Description of ﬁ’(g,,, )
From KX™ N ZswAr = {1}, we get an isomorphism of cosets K" Zoo A/ KL ZooAp ~ K" /KL
Now the preceding lemma implies that we get a bijection

F(gy, ) = phdWaleh) s (KL /1)

p1-exp(m) -k — (7, k mod KZL).

Since the Iwasawa decomposition induces a homeomorphism, this is a homeomorphism, too.
Thus, we can read off immediately the description of the set of connected components of F'(gy, )
by the following isomorphism:

Pr: K" /KL < 0(F(gy, 7))

2
class of k —— class of pik. (25)

2.15 Fixed points of 7 p,

Next we assume that 7, has a fixed point if acting on the finite set m(E(gy,y)) of connec-
ted components. Then 7, 5, induces an isometric automorphism of finite order of this connected
component, which is a Riemannian manifold of negative curvature (i.e. the sectional curvature
is <0). By [Hel62, I, Theorem 13.5] or [BGS85, 6.3], it has a fixed point on this connected
component. We may already assume that p; is this fixed point:

7_1g,7_177(p1)g7,p7,h00 =p1-ko with ko LI = KI Z A;. (26)
The map P, satisfies Py o 92 = 1), © P1, since we have

Tyhoe (1K) = Ty s (P1) - h = m2(k) - hoo = prkohs na (k) heo
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and since ki koholkhs induces the identity on Kéom/Kgo Therefore, P; induces an
isomorphism

(K™ KS)™ = mo(F gy, 7))t

2.16 The centralizers G,Iym
For v € P;(Q), we define the automorphism

1

1y G— G, xe () () gy =" ml@) -y

and the algebraic subgroup Gﬁm = (Pr)™ of n,-invariants, i.e.

G (8) = {w € Py(8) |y (@) = 2} = {w € Pr(S) [ (@) ™" gy -2 = g7}
for a Q-algebra S. For I = A, we will drop the index I, i.e. G, =G"™.
We introduce the notation
LI =Kl 7z, A;, LEm=KLmz A
L=py-LL -pi', L™ =pi-LY"-pit,
Lyy=LNGyyR), LI =L"NGyyR).
We have for [ € L™, i.e. for p; - I pitel,
ny(p1- L prt) =g () n(Dn(p1) gy
= gy (1) ggpnm2 (1) (gqpn) " 0(p1) " gny
= p1 - kohsy me(Dhaoky - 7

Therefore, 1, (L™) = L™ and from 12 (L%,) = L., by (Assf) we conclude 7, (L) = L. Furthermore,
the conjugation with p; intertwines the no-action on K Lm /KL with the n4-action on m / L, since
conjugation by koho! acts as identity on L™/L.

2.17 The coset space R,Iw7
We introduce the coset space
R{W - L%\@m/E)’”
and denote by
01,5, hoo) = #RL,
its cardinality. Finally, we choose and fix a representative k, € L™ of each coset r € R{m.
LEMMA 2.18. The maps
¢1:(G) ) (R)/Lyy) x R, — (Pr(R)/ i)”ﬁ
(x mod L4, class of k;) — x - k, mod L

and
G2 (Pr(R)/L)™ — F(gy,7)toe = (Pr(R)/LL, )
xk, mod L ~ xk.p; mod LI

are isomorphisms.
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Proof. First, observe that ¢, is well defined, since each k, normalizes L. Then observe that
¢2: P(R)/L — Pr(R)/LL,
z mod L — xp; mod L.

is an isomorphism and that the diagram
P(R)/L —— Pr(R)/LL,
My Ty, hoo
Pi(R)/L - Pi(R)/1L,
commutes by a formal computation:

do(my () =" gy (@) gy v 21

Moo (P2(2)) =7 g7t (@) - n(p1) - gy - Py - oo

=g, (@) gy v ko
= ¢2(ny(x)) - ko,
where kg is defined in (26). Therefore, ¢o is an isomorphism.

Next we prove that ¢, is injective: if z1kq = zoky - k with k € L and 1, 29 € Gy ,(R), then
vy 'wy = kpkk; !, but 25wy € Gy (R), kokk, ' € L™. Therefore, kykk;' € LT, so that k, and
ky = (kykk, ') - ko - k=1 lie in the same coset in R{W. Since each coset has a unique representative,
we get k, = kp. But then k:bkk:;l € I~/, since k, normalizes L. This implies 1 mod L= 9 mod L.

To prove that ¢; is surjective, we reduce to the claim that the canonical map
61: Gl (R) — G\ (R) /LY, — (Pr(R)/L™)™
is surjective: if p € Pr(R) with n,(pL) = pL is given, then pL™ € (PI(I@)/i”i)”V and by
assumption on ¢; there exists x € G{W(R) with p=ak, k€ L™. Then kL =pL =n,(p)L =
1 ()1 (k)L =z 1, (k) L, which implies kL = n,(k)L, i.e. kL € (L™/L)". Therefore, there exist
yeLY, k€L and a€ R{M such that k =y - ks - k1. Then p= (zy) - ko - k1, so p mod L is in
the image of ¢1, since zy € Gém(R).
To prove surjectivity of ¢, it is enough to show the existence of an n,-invariant subspace
q inside the Lie algebra p; of Pr(R) such that the composite map e: g 22, P(R) — Pr(R)/L™
is an 7,-equivariant isomorphism. Then (P;(R)/L™)™ =e(q™) C e(p]") = e(Lie(Gan(R))) and
the claim follows.
We denote by m; the Lie algebra of the derived group of p1 M I(R)pfl. The Killing form is a
non-degenerate form on m;. We take g to be the sum of the following subspaces of p;:
— the orthogonal complement ¢; of Lie(legopfl) N m; inside my;
— the Lie algebra uy of the unipotent radical Ur(R) of Pr(R);
— some 7, invariant complement ¢y of Lie(Z) + (Lie(pKLp;t) NLie Zg(R)) inside
Lie(Zg(R)).
We observe that pj M;(R)py ! is n,-invariant: for m € M;(R), we have

1y (prmpy ) = v gy 0 (p1)gnmi (m) g, (1) " gy
= pikohso by m(m) - pyhooky 'pr by (26).

89

https://doi.org/10.1112/5S0010437X11005641 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11005641

U. WESELMANN

Now n1(m) € Mypy(R) = Mi(R), p, € Mo(R) C Mr(R), hoo, ko € LE™ C My(R) and there-
fore n,(pimp;t) =pimip; " with my € M;(R). For ke KL, we conclude n,(pikp;')=
plkohgolng(k)hookalpl_l Elegopl_l, since ko and he, normalize KL . This implies that ¢; is
n-invariant.

Since 1y acts as 1 on the center Zg(R), it acts as an automorphism of finite order on
Lie(Zg(R)). Therefore, co exists.

Now observe that p; is the direct sum of m;, of u; and of the Lie algebra of the center
of py M7(R)p; !, which itself is the direct sum of Lie(Zg(R)) and Lie(p; Arpyt). This implies
that q is an n,-invariant complement to Lie(L™) in p;. We get the surjectivity of e by Iwasawa
decomposition. This finishes the proof of Lemma 2.18. O

2.19 A first summary

We take R{W to be the empty set if 7o(F(gy, 7))o is empty. We may summarize: let v € Pr(Q)
be given. If the set

P = (Pr(R)/ L) hhee
= {p mod L, € Pr(R)/LL, | 1(p) " (957)P € gypyhoc - Lic}
is not empty, then N (g,y) is conjugate inside P;(R) to an element of Na(heo) - KIN (Zoo)Ar. If
N (gyy) is conjugate to such an element, then we have an isomorphism
¢+ (Gh y(R)/ L) x R, — (Pr(R)/LL)Mhos
(1‘, ka) — xkap1

n7’Y
for some p; € P;"’.

2.20 By Lemma 1.27, the class of v in G(Q)/( is uniquely determined by « = (p, y, g¢) and the
equations (1), (2), (3) in §2.10. Now let us take another representative & = (p, 7, gr) for the class
of x, where

P=6"D kclocb™', G=by, §r=20dgskys
with 6 € Pr(Q), Koo € KL, (oo € Zoo, b€ Ay, ki € K. Then the relation
(771 (ﬁ) : pnhooa 77(3])5J’a 917_177(§f)hf) ~ (ﬁu :&7 gf)

is due to elements 7, koo, oo, @, I;:f. Here we can take

=m0y, koo = hog (ks Y hoo - koo - ko,
Zoo = oo U(COO) “Zoo, A=b-a- 772(b)_17
kp=hptn(eg) " hy - ky kg,
since we have
9y (D) gnpnhoe = gy 1(8)N(P)N(KocCocb™ ) gnPyhico
= 11(8) - g ' 1(D) - GPyhoo - hog M2 (KooCoob ™ Vhoo

= m(0) - Yk 25 a™ " - had na (koo )n2(Coo) M2 (D™ ) hoo
( () )]3 (aOOCoolkoo oola 772(’%0)772(@0)772@ l)hOO)
=5 P ks A a
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and

n(@) - sx =n2(b) -n(y) - sk =ma(b) -a~' -y

=m(b)-a” b7 g=a"" g
Furthermore,

gy 0GPy = gy n@)n(gp)n(rp)hy =m(6) - gy nlgp)hy - by n(kp)hy
= m(8) - vgrky ' - hytn(kyp)hy
=m()yd gy my R (s p)hy =5 Gy - Ry
The relation 7 =11 () - -6~ ! is equivalent to

gy 7 =n(0) - gyy -6t

Therefore, we have to consider the elements g,y up to n-conjugacy, i.e. the fixed point sets are
indexed by the n-conjugacy classes of elements in G(Q)/(.

Remark 2.21. We recall Lemma 2.4(c): N'(g,7) = N(gy) - N1(7). The construction of g, implies

Ngy) - Po-N(gn) ™ =n""}
="

gn) < 77) 'gnpogw;l '77(977)71 T 77"71(977)71
n

g
gn) - 1(gn) - n(Po) - nlgn) ™" 0" Hgn) ™"
=n(0""2(gy) - nlgn) - gPogn ™ 1(gy) ™ 0" 2(gy)h)
= =0""YgyPog, ") =n"(Po) = Po.

Using Sy instead of Py, we obtain by the same calculation: N(g,) - So = So - N'(gy), i-e. N(gyp)
normalizes Py and Sp. But, the normalizer of Sy inside P, is the centralizer of Sy. This
implies N(gy,) € Mo(Q) C M (Q) C Pr(Q) for all I. Thus, if v € P(Q) and n(I) =1, we get
N (gn7) € P1(Q), since we have 01 (Pr(Q)) = Py1)(Q).

Parametrization of fixed point sets

2.22 Let g,y € G(Q) be a representative of a fixed n-conjugacy class, where v € Pr(Q). Define
as a subset of F(H):

Class of

p € P;(R), y = sign(z) such that there exist ko, € KL, }
x=(p.y, 95) '

F(H)1y = { Zoo € Zoos a € Ar, ky € K satistying (1), (2), (3) in §2.10 for this v

The condition (1) means that pL. is invariant under 7,4 as an element of Pr(R)/LL . We
recall the condition (3'):

(95) " (gn)9s € hy Ky,
In this condition, we can replace gy by bygrky for ky EK} :Kfﬂn_l(thfhfl) and by €
Go,n(Ay). Thus, we can arrange with respect to the double cosets in G+, (Af)\G(Af)/K}. Recall
that G-, = G = {z € G | n(x) " (g,y)x = g;yy} denotes the n-centralizer of g,.

Now we fix some representative gy of a double coset in G ,(Af)\G(Af)/K} satisfying
n(gs) " (gyv)gs € hs Ky and denote the corresponding set of fixed points F(H)1..9;- By (2.18),
we get a surjective map

(Gﬁm(R) /L) X Rgm X (S8 1.0 X Gy n(Ay) — F(H) Iv.gs
(P ka,y, bf) — (Pkap1,y, brgys),
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where
(2%)1. = {y € = such that supp(y) = I, n(y) - s.» = y}
and p is the element introduced in (2.12). We remark that (p, k., y, by) and (p/, ky, v/, b’f) have
the same image in F(H)Imgf if and only if there exist § € Pr(Q), »x € KC{O, Coo € Zso, Qoo € AJ,
»y € K} such that
pkap1 = 6 - p'Repr - 2 (Ll an),
Y = 0 - y,7 (27)
bfgf =4- b/fgf s Af.

Observe that the second equation is equivalent to y=1', since ao, € Ay and supp(y) =
supp(y’) = I. i

As an equation in the coset space Pr(R)/L, the first equation can be restated as follows:
pkq =0 - p'ky. Since 1,(L) = L and since we know from (2.18) that pk, and p'k; are n,-invariant
in the coset space, we conclude that the following computation is valid in P;(R)/L:

pko = nv(pka) = 777(5) : %(plkb) = 777(5) 'plkb = 777(5) 51 - pkq.

Similarly, we deduce from the third equation, thereby bearing in mind that n(gr)™ gy gr =
hy-kyandn(geses)™ - gy gr = hy - kp with kg, k¢ € K¢, so that ny(gf) = g5 - k;lhjil - gyy and

my(g575) = gpoesk By - gy
by -1y (gr) = 1y (brgp) =y (0 - Uy - gy - )
= 1y(0) - b - my(gsoer)
and therefore
brasky by gy =m0 (0) - V- gpaepk thi - gy,
1.e.
bygy =1(8) -V - gpoey - Kyt ky=my(6) - 07 - brgp -k kg

Thus, the element 7,() 671 transforms the pair (pk,,brgs) into itself as an element of
(Pr(R)/L) x G(Af)/Ky. By Lemma 1.27, we deduce from this:

c1(6) :=1,(0) - 071 € ¢ C Zg(Q).
The element 0 above is only unique up to elements of (. Since we have 7, (¢) =17(e) for € € (,
we conclude c¢; (de) = c1(68) - n(e) - 7. Furthermore, N'(c1(8)) = " (c1(9)) - - - n(c1(8)) - e1(8) =
M1 e1(6) -+ 1 (e1(8)) - 2(8) = 72() -6 1. But, we have

1 nfl( 1

2 (8) = (ggy) " mlgyy) ™ o
:N(gn'Y)_l -0 - N(gn7)-

g )" ™ (0) ™ gn) -+ (gn)

This means
N(e1(6) =N(gyy) ™ -6 N(gyy) -6~ (28)

2.23 Now, if we assume conversely 7,(d) - 6~ € ¢, it can easily be seen that (pkep1,y,brgs) €
F(H)r1,,9, implies (6 - pkap1,y, 0 - bpky) € F(H)1.9;-

The condition (28) implies that A(ci(d)) lies in the derived group G of G. But, the
intersection GV N Z¢ is finite. If we assume that K 7 and therefore also ¢ are sufficiently small,
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the following assumption is fulfilled:

¢NGM(Q) ={1}. (Assc der)

The assumption implies AV (c¢1(0)) = 1. If we identify 1-cocycles for the finite cyclic group ()
with their values at 7, this means that c; (&) represents a class in H'({n), ¢).

We make the further assumption

H({n), ) =1. (29)
This is satisfied for example if n =1id or if ¢ = {1}. If (29) is valid, we can assume without loss
of generality that 7,(d) = 9. Thus, § € G{W(Q). The third equation of (27) now implies
sp=g; ()76 by) g € Ky gy Go(Ag)gy
By conjugation we get

957195 € Gyn(Ay) NgrKpgr '

2.24 Summary
Under the assumption H'((n), () = 1, the following map « is an isomorphism:
a: X! (gr) x RL X (S2)1 5 — F(H) 1.,
((pa bf)a kaa y) = (pkapla Y, bfgf)7
where X1 (95) = G} (Q\(G] ,(R)/ Loy X Gryn(Ag) /(G (By) N1 g5 KGg7 )

If the group H'({n), ¢) is not trivial, it is still finite and the map « is still surjective. By the
considerations above, « is a finite covering, and the degree dé - of the covering is

aléyﬁY =#{z € HY((n),0) |z = n4(6) - 6! with 6 € P;(Q)}.

The set of fixed points F(H) is stratified by the strata F(H); for those I C A which satisfy
n(I)=1. Bach F(H)r is a union of F(H)r. over those n-conjugacy classes of elements ~ in
G(Q)/¢ for which N (g,y) is conjugate in Pr(R) to an element of N2 (hoo) - KL Zso Af.

Each F(H); itself is the union of F(H);4,4,, where gy runs over a set of representatives for
those double cosets in G, (Af)\G(Ay)/K} which satisty n(gr) " gyy)gr € hs K.

3. The Lefschetz fixed point formula

A general fixed point formula for manifolds

3.1 Consider a pair of differentiable maps f, g : X — Y between compact oriented differentiable
manifolds X and Y, such that g is locally a diffeomorphism. Let a local system M on Y be given
and also a morphism

p:f*M— g M.
Denote by I'y, I'y C X x Y the graphs, and consider the decomposition
LNy = F(f,g):={zeX|f(x)=g(=)}=]F
jeJ
of the set of fixed points F'(f, g) into connected components. We assume that the intersection of
I'y and I'y is transversal in the following sense:

— each Fj is a differentiable submanifold of X; and
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— for each x € F;, we have the following relation between the tangent spaces in the point
(x,y) e X xY:

T(x,y)l“f N T(x,y)l“g = T(;t,y) (Pf N Fg).
The global trace of the correspondence (f, g, ) is defined to be
tr(g.f*) = Z(_Di tri(g*f*),
120
where
tr' (g, f*) = te(H'(Y, M) HY (X, f* M) 2= BI(X, g M) Lo H (X, M)).

For = € Fj, we have an identification of the stalks (f*M); =~ (§"’M),, so that ¢, can be considered
as an endomorphism of (f*M), =~ Mj(,) and thus has a trace. Since M is a local system, this
trace is constant on each connected component F; and is denoted by tr(¢|F;). We denote by

X(Fy) =Y (—1)" - dimg(H'(F}, Q))
120
the Euler-Poincaré characteristic of Fj. Let N(Fj) denote the normal bundle of Fj
inside X, ie. N,(F;)=T,X/T,F; for x € F;. By the transversality assumption, we have
det(id — f.g*|NyF;) #0 for all x € Fj. Since this real number depends continuously on z, we
get a well-defined sign

¢j = sign(det(id — f.g*|N(F}))) for each j € J.

Remark 3.2. The transversality assumptions imply that each fixed point component F; has an
open neighborhood ¢/; which meets no other fixed point component Fj,. This implies that J is a
finite set by the compactness of X. Therefore, all sums occurring in the following are finite sums
and we have no problems with convergence.

We can state the Lefschetz fixed point formula.

THEOREM 3.3. With the above notation and assumptions, we have
tr(gef*) =Y tr(@l Fy) - x(Fy) - €.
jeJ
Proof. The fixed point theorem is well known if the F} are isolated points. If F} is a manifold
of positive dimension, one reduces to this case by considering a vector field £; on F}, which has
isolated and non-degenerate zeros {z;}, and extends &; to a vector field §; with support in an
open tubular neighborhood U; of F}, such that Hj meets no other Uj,.

If one modifies f =: fo to the homotopic f; = fy o exp(t¢;) for a small enough ¢t > 0, one does
not change tr(g.f*), but F(f, g) NU; consists of a set of isolated fixed points {z;}. Recall that
X(F;) equals the number of z; counted with an appropriate sign. We leave it as an exercise to
the reader that the right-hand side of the theorem does not change, too. O

The general setting
3.4 The local systems M

Let M be a (G(Q)/¢) x (n)-module. This gives rise to a local coefficient system M on X (Ky)
for each open compact Ky. We can obtain M as the quotient M = G(Q)\M x X x G(Ay)/Ky,
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where we use the G(Q)-action on M and on X, together with the canonical projection to
X(Ky)=G(Q)\X x G(Af)/Ky. Furthermore, we consider the following sheaf on X (K):

L ¢ locally constant; ¢(yz) = yo(x)
M) = {¢ O = Mol e G(Q),z € X x G(Af)/Kf}

for U C X(Ky) open, where 7: X x G(Ay)/Ky — X(Ky) denotes the canonical projection. If
the action of G(Q) on X x G(Ayf)/Ky is free of fixed points, then the sheaf M can be considered
as the sheaf of local sections of the map from the space M to X (Kj).

3.5 For J C A, we denote the inverse image of {0, 1}/ x {1}2\/ inside Xpg(Ky) by X7o(Ky),
and we denote the inclusion maps by i/ : Xop(Kf) — X3e(Ky) and i’ : X7 4(Kf) — Xps(Ky),
where the space called X, (K) in §1.40 is X%S(Kf) in the new notation.

For a sheaf M as above, we denote its restriction to the subspace Xg,(Kf) by Mg,. We
introduce the sheaf i, y M = i!A_Ji*A*JMSp on Xpg(Ky).

Ifr: X(Kf) = X(Ky)/S? ~ Xps(Ky) denotes the canonical projection, then the sheaf 7,M
on Xpg(Ky) is a sheaf with an action of S A If multiplication by two is an automorphism of M,
then we may decompose 7, M into eigenspaces (eigensubsheaves) of the reflection group S2.

The sign group S2 = {—1, +1}* may be identified with its dual group in such a way that
s €S2 may be identified with the character S2 3 (ra)aca = [lpes Ta-

LEMMA 3.6. The eigensubsheaf of m,M with respect to the character s; of S® is isomorphic to
the sheaf i, ) Msp.

Proof. 1t is clear that the restriction of .M to X¢,(K) is isomorphic to the tensor product of
M, with the group ring Z[S?] such that S acts on the group ring. The eigensubsheaf of 7.,M
with respect to the character s; is the subsheaf on which the reflection s, acts by —1 for a € J
and by +1 for a ¢ J. Then it becomes clear that the eigensubsheaf continues as a direct image
for the embedding 2=, while it has to be continued by 0 for the embedding 2. O

From the introduction, we recall the notation x _1 for the character sa : (Ta)aca = [[oca Ta-

ProprosITION 3.7. The Lefschetz number on the cohomology with compact support satisfies
tr((hoo X hy) on, HI(G(Q\G(A)/ Koo Zoo - Ky, M))
=278 N xealsa) (s, H (X(K), M)).

SJIGSA

Proof. We have an isomorphism which is equivariant with respect to the action of (ho X hy) o n:

H:(G(@)\G(A)/KOOZOO : Kfa M) = H:(XSP(Kf)ﬂ Msp)
= H*(XBS(Kf)a i!AMsp)a

where we used the fact that the cohomology with compact support may be computed as
the cohomology of the sheaf i!AMSp on the Borel-Serre compactification Xpg(Ks). Observing
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XﬁS(Kf) = Xps(Ky), so that A Mgp = i!AMSp, and the preceding lemma, we thus get
tr((hoo X hy) o, HI(G(Q)\G(A)/KsZo - K¢, M))
= tr((hoo X hiy) 0 0, H*(Xps(Ky), ixarMsp))
= tr((hoo X hy) o, H* (Xps(Ky), (mM)X1))
= #A. Z X—-1(877) - tr((hoo X hy) om X sy, H*(Xps(Ky), meM)),

s €SA
where s only acts on the sheaf 7, M in the last line so that it commutes with the action of
(hoo X hy) on. Here we used the fact that the trace of an operator on an SA eigenspace may be
computed as the composition of the operator acting on the whole space with a projector onto
this eigenspace, which is 27#2 . ZleesA X—1(sy/) - sy in our case. Raising the action to the
space X (Ky) now gives

27#8 N X a(s) - tr((hoo X by X sp) om, H* (X (Kf), M),
SJ/ESA

where sj now acts on the space in the last line. The definition of H(sy ) in §2.8 now implies
the claim. 0

Euler characteristics

3.8 We continue with the considerations of §2. The Euler characteristic with compact support
satisfies

Xe(F(H)1y) = Z Xc(F(H)L%gf)
9r€Gh (Ap\G(Af) /K
n(g5) " gnv-gs€hs Ky
RI *Cr. g/
= R S (K (0p))
¢y gr as above
where X! (g7) = GL (Q\(GL,(R)/LL, x GL (Ap)/(GL, (Ap) NgpKgph))  and  cr =
#2810 =#{y € {1, 1} x {0} n(y)sy = y}.
Let dgy be a Haar measure on G(Ay) and denote by db= dby - dby a Tamagawa measure

on the group G = GI Let h denote the characteristic function of hyK; multiplied with
(volag, (K f)) L From the definition of a quotient measure, we get immediately

#BRy - cr
Xe(F(H)1y) = 20—
dCW

3 xe(XL(07)) - vOla, (Go(Ag) N g7 K g7 D)
Gyn(Ap)\G(Ay)

h(n(gr) " (gn7)gy) dbg\dgs. (30)

3.9 The Gauss—Bonnet formula

We furthermore put K = GI R(Ap)N ngfgf , Koo = IN/ Now we are in the situation where
G= Gé is a linear algebraic group, K rC G(A ) is open, compact and sufficiently small and the
connected component of K, C G(R) is the product of some maximal connected and compact
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subgroup with a connected subgroup Zs, of the R-split center ZR'SP it such that Zs contains

the connected component of the R-split and Q-anisotropic torus ﬂ ker x N ZR Spht, where
X € X*(Zz) runs over all Q-rational characters of Z5
We furthermore put K = Ko - K [
We make the assumption that
G is a connected group if it is reductive, (AsSconn)

D(G) =0 if G'is not reductive or does not have a maximal torus, which
is compact modulo the center of G(R),

- _ #W(G/C,T/C)

D(G) = FNam /T if G is reductive and T C Ko - Za(R) is a maximal torus,

which is compact modulo Z5(R).

If D(G )7& 0, then the adjoint group Gaq has a maximal torus, which is compact, and we can
denote by G the inner form of G//R which is compact modulo the center of G. We do not care
about the definition of G if D(G) = 0.

The Haar measure db,, on G(R) determines uniquely a Haar measure on G(R), which will
be denoted by dbs, also. The isomorphism between G xp C and G xg C determines canonical
isomorphisms over R between the centers Zz of G and Z& of G and also between the torus
quotients G/G™M) and é/é(l). Each rational character y € X*(G) : G — G/GW) — G,, may thus
be viewed as a character from G — @/6(1) — Gy, and we may define G’ to be the intersection
of the kernels of these characters. Using some basis 1, . . . , X» of X*(G), the Haar measure db,
may be written as the product of some Haar measure db on é’( R) and the euclidean measure
[T;—, d*z; on (R*)", the image of G(R) under (x1,. .., X»). Also, we may view ¢ = Z Q) NK
as a subgroup of G (R).

We denote by 7(G) the Tamagawa number of G/Q and by

¢(G) = dim(GY(R) /(L] ,, N G (R)))

the dimension of the symmetric space associated to the derived group of G. Furthermore, we
consider the dimension

A(G, Koo) = dim(G(R)/Koo) — ¢(G) = dim(Z5™) — dim Zs,
Now we may state the following extension of Harder’s Gauss-Bonnet formula [Har71] to reductive
groups.
PROPOSITION 3.10. If G satisfies (AsSconn), then

~ AR 1

G(Q\G(A)/K) - volay, (Kf) = (—1)ACKee)+50(5)

G'(R)/C)

Proof. This is well known if G is semisimple (compare Rohlfs [Roh90, 3.3]: his statement agrees
with ours in the case that the torus quotient is anisotropic over R. In the case that the central
unit group ¢ has positive rank, the statement of Rohlfs simply reads 0 = 0, since his symmetric
space is a torus bundle, while our identity may be non-trivial due to the fact that K., contains
the connected component of the center of G(R)).

volgy_(

If the unipotent radical of G is not trivial, then the Euler characteristic of the symmetric
space vanishes, since it is a (topological) torus bundle, and the formula is clear from the
definition of D(G).
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It G is a torus, then we have ¢(G)=0, D(é)—l, é:é and the symmetric space
G(Q)\G(A)/K is a disjoint union over the index set G(Q)\G(A)/G(R)°K of affine spaces of

the form (R¥, )A(G Ke) The formula is thus equivalent to
#(G(Q)\G(A)/G(R)°Ky) - volgp, (Ky) - VOldbgo(é,<R)/5) =7(G).

But, if tl,...,trEG’(A) denotes a set of representatives for the double coset space
(G(Q)\G(A)/G(R)°K ), then we have an isomorphism

Ui (G'(R)/C) — (G(Q\G(A)/KyY

(goo)z — Jco - Ti-
The claim for tori is now clear from the definitions of measures.

So, it remains to prove the formula for a general connected reductive group G. We reduce
the claim to the semisimple and the torus case using an exact sequence

1—>C~¥(1)—>C~;L>C—>1,

where the derived group G(!) is semisimple and C' is a torus. We have ¢(G) = ¢(GM), D(G) =

D(GW) and A(G, Ks) = A(C, v(Ky)). The role of K for the torus C' will be played by v(K).

We may replace without loss of generality Zs, by the connected component of 7% split , since this

operation multiplies both sides of the formula with (— )A(G K<) Then v induces a surjection to
a finite set

G(Q\G(A)/K == v(G(A))/v(G(Q)r(K).

The fibre over the class of some 1/( ) € v(G(A)) is obviously the image of the map

O@\GW(A)/EY — GQ\G(A)/K

€1 g — gt,

with f(t(l) =GW(A)NtKt™'. But, ¢ is in general not injective: from git =y - got - k with
91,92 € G, v € G(Q) and k € K, we conclude v(y~) = v(k), i.e. v(v) € G = v(G(Q)) Nv(K),
but to modify + to an element in G (Q) it would be necessary to have v(v) € v(). (Recall that
GQNK = ¢, since K ¢ is assumed to be sufficiently small.) In fact, it is easy to see that ¢ is a
covering with covering group (;/v(¢). Therefore,

Q\G(A/F (GD@\G(4)/K})
X(GQ\G(A)/K) = X NS AR/B )
teu(ém))/zu(:é(@»u(k) #(C1/v(0)

Now we may assume that the Tamagawa measure dc on the torus C' is the quotient of the
Tamagawa measures db on G and of db' on GV). From the semisimple case and the definition of
a quotient measure, we get

Xe(G(Q\G(A)/K) - volg, (Ky)
_ Z volap, (K'f) . (_1)%11((”;(1)) .D(G(l)) .
ey @i VOl (K ) volay (@ (®) - #(G/v(0)

= #(v(G(4) /v(G(Q)(K)) - volae, (v(K7)) -
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In the following commutative diagram, the columns are exact and the map pg is surjective.

Using the notion of an index ind(p) := # coker(u)/# ker(u), we get
ind(psp) = ind(p) - # ker(ux),
where ker(ux) = (v(K) N C(Q))/(v(K) Nv(G(Q))) = (/¢ with (o = C(Q) Nu(K). From the

torus case, we conclude

#(v(G(A))/v(G(Q)v(K)) - volae, (v(K/))

_ #O(A)/C(Qu(K)
ind (pisp)

7(C)
ind(ﬂsp) : VOldc{)O (C/(R)/CQ) .

Now, using the Tamagawa number relation [San81, 10.4]

7(GW) - 7(C) =7(G) - ind(n),

volge, (v(Ky)) =

we may summarize
Xe(G(Q\G(A)/K) - volgy, (Kf)
D(G)-7(G)
volggs, (G (R) - #(Ga/v(0)) - volaey, (C'(R)/G2)

and the claim is implied by the relation

volgy_(G'(R)/€) = volg (G (R)) - #(Ca/v(0)) - volaer (C'(R)/Ca). O

= (—1)29(@)

3.11 If we introduce the (n-)twisted orbital integral
Oy(v, h) = / h(n(gs)~" (997)9y) dbs\dgy,
GE L (Ap\G(Ay)

we can thus rewrite the equation (30):

#RL cp . . e DG)-T(G)
o(F =220 0y, k) - (=1)A G L) +5a(G) - . 31
Xe(F(H)15) ar (7, h) - (=1) vl (@ (R)/) (31)
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Local analysis
3.12 We recall the map

H:(p,y, g7) = (M(P)Py - hoos 1Y) - .75 Gy 1(gs)Py).
Let zo = (po, Yo, gf) be a point in F'(H)r , i.e. there exist ko € Kl 20 € Zy,a€ Arand k € Ky

such that:
(1) g;ln(po)gnpnhoo — f}/poko—olzo—ola—l;
(2) n(yo)sy = a ‘yo;
(3) gy n(gp)hy = g5k

We want to analyze the effect of H in a neighborhood of xq:
H(ppo, yo + ¥, 95) = (m(P)m(po)pnhee: n(yo +y) - s, gy 1(gs)hy)
= (m(P)po - k' zos e a™ - yo+(y) - s,y - g k)
~ (ny(p) - Po, yo +a-n(y) - 51, gf)-

As in §1.20, we denote by °P; the intersection of the kernels of all x2, where y ranges over all
characters x : P — P;/Zg — Gy,. Then there is a unique decomposition Pr(R)="P;(R) x A;.
We can write each p € P;(R) in the form

p=p"poa(p)py" where p’ € "P(R), a(p) € Ar.

(Apply the above decomposition to py Lppo and observe that °P; is a normal subgroup of Pr.)
Now we can write

H(ppo, yo + Y. 95) ~ (1,(p)° - po, aliy(p)) ™+ (yo +a-1(y) - s.), gy)-
We remark that
(Pr(R)/KL Zoo x RAT 5 {+1})/A; ~OPr(R) /KL Zoo x RA™T 5 {£1}.
Since supp(zo) = I, we can assume yo € {027 x {£1}!. Then our equation reads

H(ppos yo + v, g7) ~ (1, (0)° - po, Yo + a - a(ny(p)) ™ - n(y) - s, g5)-

We identify the tangent space of X(K}) at zo with Ad(po) Lie(°P;(R) /KL Zy) x RA~1. The
tangent space of X (Ky) at r(xg) = H(zo) can be identified with the same vector space, such
that the differential of the canonical projection r: X (K’) — X (Ky) becomes the identity. Here
we use the notation Lie(G/H) = Lie(G)/Lie(H), if H C G is a Lie subgroup.

Then the differential of the map H in the point xg = (po, Yo, gf), which is the differential of
the map (p, y) — H(ppo, vo + ¥, g¢) in (p,y) = (1,0), is:

— the differential of the map pr—wh(p)o in the neutral element, considered as an
endomorphism of Ad(pg) Lie(°P;(R)/ K1 Z),

times:
— the linear map 1 : R - RA ysa-n(y) - sy.

Observe that the differential of the map p — a(n,(p)) ™! at p=1 does not come into the picture,
since it has to be multiplied with 7(0) = 0 by the product formula.
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3.13 The map [[,.a_; @ induces an isomorphism between A equipped with the automorphism

n2 and the product ( *>0)A_I equipped with the automorphism 7. The logarithm map log®~/

induces an n-equivariant isomorphism ( *>0)A*1 ~ RAT,

We conclude H'({n2), As) ~ H'((n), (R%y)A™T) ~ HY({n),RA~1) =0, since n is of finite

order. This means that every a € A; satisfying Na(a) =1 is of the form a = b - no(b) L.

If we replace po by pj =po - b, where b € Ay, we get

gn " 1(D0) - gyPnhoo = gyt (Do) - oo - M2(D)hoo = YP0k 250 T - 2 (D)

= ypbkt 2t (@)t where a/ = a-b-na(b) 7.

Thus, the class of @ modulo coboundaries is unique.

3.14 We decompose A — I into orbits under n and assume without loss of generality that

{1,...,m} C A — I is such an orbit; more precisely, we may assume
n(a)=air1 i=1,...,m—1,n(an)=a.
We write
a; =aj(a) fori=1,...,m,...,
Syp=1(€1y.-.,€m,...), wheree ==1.

Then R™ =R™ x {0} C RAT is an 7- and S®-stable factor of RA~1 on which the map I is
described as follows:

l : (y17 L Z/m) = (alym€1, @291627 sty amym—lﬁm)-
The characteristic polynomial is det((7"-id — I)|gm) =T™ —aj - - - Gy, - €1 - - - €. We remark that
a;(N2(a))=ay-as---apy fori=1,... m.
3.15 The case a1 +--a,,=1and €1 ---€,, =1

If a1 -+ am =1, we can modify py such that we get a1 =---=a,, =1. But then we get from
the definitions that F'(H);, is a component of the boundary of F'(H)uq,. if additionally
€1 - - €n = 1: the vector

M}y

m
U:(€1,61€2,...,61-'-Em_l,l)ER

is an eigenvector of [ with eigenvalue 1, such that the algebraic multiplicity of this eigenvalue is 1.
Via the embeddings R™ c RA~! ¢ T,,X, the vector v can be viewed as a tangent vector of the set
of fixed points F'(H) u(1,... m},y- More precisely, if we consider the map a = a; : X#n(gf) X Ry X

(™) — F(H)1.,g, from §2.24, then F(H); g, lies in the boundary of F'(H) uq1,....m} g, and

the latter is the image of Xﬁ,{l’“”m}(gf) X Ry X (Z‘A)IU{L._’W}’J/ under ajyfy,..my- One gets

the index set (ZA)IU{L...,m},J’ from (EA)[,J/ by replacing the part (0, ...,0) € R™ by the vectors
+o.

The action of [ on R™/(v) now gives a positive contribution to the expression
det(id — dH|Norm(F(#),)), Where Norm(F (H),) is the normal bundle of F'(H),: one can easily
see that the determinant in the part belonging to R /(v) in the normal bundle is m > 0 using
the formula (T — 1) = (T —1)- (T™ ' +--- 4+ T +1).
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3.16 Thecaseayi---am=1and €1 ---€,, = —1

If ai---am=1 and € - €, =—1, the number 1 is not an eigenvalue of the linear
map [ and det((id —1I)|gm)=2 1is also a positive contribution to the expression

Sign(det(id - dH’NOrm(F(H)V)) :
We conclude
S e - sign(det(id — dH) lxom(rr),))) = 0. (32)
€1,--,€m

ifay---am,=1.

3.17 In the case a1 -+ am # 1

The number 1 is not an eigenvalue of the linear map [ for all choices of ¢;, so that
sign(det(id — [)|rm ) is a factor of the expression sign(det(id — dH)|Norm(F(1),))). We compute

Z €1 - €y sign(det(id — 1) |gm) = Z €1 emsign(l—ay - am- €1 €p)

€1 4ees€m €1 4ees€m,

)0 ifay - -am <1,
Sl —2m ifay---an, > 1.

LEMMA 3.18. Assume HjeJ a; >1 for all n-orbits J in A — 1. Then the eigenvalues of the
differential of the map p — n,(p)° have absolute value <1.

Proof. For v € A — I, there exists a positive integer €7, such that the restriction of €7, - a to
Ar has a continuation to a rational character from P;/Zg to Gy,. Let X1, be the square of this
character. Thus, we have

XIala)= a(a)zqva for all a € Aj.

If we apply xr1,o to equation (1xr) in §2.10, we get

Xra(N(gq7)) = a(Na(a))* e,

since N (gnpy), N2(hoo) and No(zookso) € K2 N Pr(R) are all elements of ker(x7,q).

The differential of the map ppo — 1 (p)po, from the space PY(R)/KZ Z. to itself, is the same
as that of the analogous endomorphism on P;(R)/L._. The nth (iterated) power of this map is
ppo = 102 (p)po =N (gyy) ™" - p- N(gyY) - po- The claim about the eigenvalues of the differential
of the original map is equivalent to the corresponding claim about the nth composed map. But,
now we have

Ty, (P1(R)/ L) = Lie(M; (R))/Lie(LZ,) x Lie(Ur(R)).

Now the differential of the conjugation map p+— N(gyy)™" p-N(g,y) has eigenvalues of
absolute value 1 on the first factor, since N (gnfy) € Lgo = KC{OZOOAI, where Z. A centralizes
the group M(R) and KL is compact. The effect of the map on Lie(U;(R)) on the other hand is
described by the inverses of the roots followed by a conjugation with something compact. Since
the values of the roots are >1 by assumption, the proof is complete. O
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ProrosITION 3.19. We may summarize the contribution of the I-component:
o—#A Z sign(det(id — H(s))|Norm(F(#);.,)) - €107 - X-1(5)
se{£1}A

0 if X1,a(N(gyy)) <1 for some e A —1,
(—1)#(A=D/1)  otherwise.

Proof. From (32) and (33), the vanishing in the first case is clear. If we have x7.(N(gy7)) > 1
for all & € A — I, then the eigenvalues «; of the map p+ n,(p)°? have absolute value <1 by
Lemma 3.18. Since the non-real ones of them appear in pairs of complex conjugates, we conclude
that [[; o 21(1 — o) is strictly positive. We furthermore may compute

>ooar-Ila= Y. e #Hye {1} x{03* ) sy =y}

ee{£1} iel ee{+1}! i€l
= > xaly-n)H=2#
ye{£1}H

since x—1(y - 7(y) 1) = x=1(y) - x=1(n(y)) = x-1(y)? = 1. Now we get the claim from this formula
together with (33): the powers of 2 cancel against 2~ #% and from each n-orbit in A — I we get
one minus sign. O

First version of the trace formula
3.20 The assumptions on Z, Z¢, ¢
Recall that we fixed an open compact subgroup Z; C Zg(Ay) satisfying

n(Zy) = 2. (Asszy)
This implies 7(¢) = ¢. We will consider only K satisfying
Ky N Za(Ag) = Zy.
The group Zo, C Zg(R) satisfies
1(Zoe) = Zoo, (Ass7)

since it is invariantly defined to be the connected component of the group of R-valued points of
the R-split part of the center of G. Then the group

C: Zg((@) N (KOO Too - AA X Zf)
is m-invariant and has to satisfy
(ngngjl 9o Koo ZooAng ) NG(Q) = ¢  for all gy € G(Ay), goo € G(R). (Assk,)

Finally, Z; and therefore also ¢ are sufficiently small, in the sense that the following assumption
is fulfilled:

¢NGY(Q) = {1}. (ASS¢ der)
Recall from §2.17 the definition O7°(7, heo) = #R, 5y of a substitute of an orbital integral at the
infinite place. Finally, we recall the assumption on the twisted centralizers:

Gﬁm is a connected group if it is reductive. (AsSconn)

THEOREM 3.21. Let hy be a Schwartz—Bruhat function on G(A) which is right invariant under
Ky, let M be a G(Q) x (n)-module and let ho € KJ} N My(R). If all assumptions in § 3.20 are
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fulfilled, then we have
tr((hoo X hy) on, HI(G(Q\G(A)/ Koo Zoo - Ky, M))

=S (CDEGDm LS (C)A@E ). O L, 7, hoe)
{nCiAI 'YE(PI(Q))U dC"Y
B N()~LE
XI,a(N(7))>1

for all ae A—1
I I
D(G) - T(G%n).
volay, ((G1,,)'/¢)
Remarks. The inner sum is formally over all n-conjugacy classes in Pr(Q) which satisfy the two
listed conditions, but the factor D(Gém) encodes the further conditions that Gé,n is reductive

and contains a maximal torus which is compact modulo the center at the archimedean prime.
For the definition of Op°(I, v, heo), we refer to §2.17.

- Oy(, hy) - tr(yon|M) -

Proof. First, we use Proposition 3.7 and then we apply the general fixed point formula for
compact manifolds (Theorem 3.3) to each correspondence H(s ;). Then we use the additivity of
the Euler characteristic with compact supports with respect to stratifications into locally closed
manifolds. We get

tr((hoo X hy) o, H: (GQN\G(A)/ Koo Zoo - Ky, M)
—2#A LS (s) - S sign(det(id — H(s) Inorm(r00) - Xe(F(H)1) - tr(y 0 nlM).
sesSA v

Now we use Proposition 3.19 and (31) to get the claim. O

4. Stabilization and Galois cohomology

Abelianized Galois cohomology

4.1 Let K be a perfect field. Recall the definition of abelianized Galois cohomology of Borovoi
and Kottwitz [Bor98]: if G/K is a reductive group, let G() = G e be its derived group and Gi.
the simply connected cover of Gge;. We denote by Z C G the center, by T C G some torus
containing Z (in the applications, 7' will be a maximal torus) and by Zi. =p '(Z) and
Ti. = p~1(T) their inverse images in Gy under the composite map p: Gsc — Gger — G. One
defines H., (K, G) to be the Galois hypercohomology of the complex 1 — Zs. — Z — 1, where
Zsc sits in degree —1 and Z in degree 0. Since this complex is quasi-isomorphic to the complex
1—1T,.—T —1, we can as well define

H (K, G)=HY(K,1— Ty —T —1).
There exists a canonical map ab' : H*(K, G) — HL, (K, G): if (1») € Z'(K, G) denotes a cocycle,

we may write 1, = p(¢)) - & for ¥ € Gs.(K) and a cochain &, € Z(K). Then A\, - := 1, - 9L -
(Yh )71 € Zy(K) and the pair ((As,r), (&) € C*(K, Zs.) x CL(K, Z) defines a cocycle in the
double complex which computes the hypercohomology H'(K,1 — Zs. — Z — 1). Then ab! of
the class of (¢),) is the class of this pair.

We denote by X, the following complex of abelian groups with action of Gal(K /K) living in

degrees —1 and 0:
Xe:0— Xy (Tye) = Xi(T) — 0.
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Then we have Hl, (K,G)=H'(K,X.®K ). We recall the definition of the algebraic
fundamental group from [Bor98|:

m(G) = H(X.) = X.(T)/p. X.(Tic).

4.2 Now let G be defined over Q. Following [Bor98|, the vanishing theorem of Kneser
(H'(Qp, Gsc) =1) and the Hasse principle for semisimple simply connected algebraic groups
(Kneser, Harder and Chernousov) generalize to the statement that the following diagram is
cartesian.

H(Q,G) ¥~ HL, (Q, G)
H'(R,G) -2~ HL, (R, G)

(In the case G = Gy, the groups H}lb(K , G) are trivial, and the diagram being cartesian just
means that the left-hand arrow is a bijection.)

The short exact sequence 1 — @* R AT@ - A% /@* 1 gives rise to an exact sequence,
H'(QX. Q) H'(Q X, @ Ag) HY(Q, X, ® A5/T)

H;,b(ELQ’ G) @, H' (@vl, X, ®Q,) ! (@? m(G))

vyhere we have used the Tate-Nakayama isomorphism in the right-hand column. Observe
HYQ,m(Q)) = (m1(G) Gai(@/q)tors- The local Tate-Nakayama map gives us an isomorphism

Hellb(]R7 G) = Iglil(R’ ﬂ-l(G)) = (ﬂ-l (G)Gal((C/]R))tors-

4.3 The group of connected components of a real algebraic group

For G/R, we consider the homomorphism ab’:G(R)— H°(R, X, ®C*), which maps
g=p(s)-z€ G(R) with s€ G (C) and z€ Zg(C) to the class of the O0-hypercocycle
(s-57%2) € Z°(R, Zs.(C) — Zg(C)). Here (a,b) € Zs(C) x Zg(C) is a 0-hypercocycle if and
only if p(a)=b-b"! and a-a=1. The hypercoboundaries are of the form (¢-c™', p(c) - dd)
for c € Zs.(C),d € Zg(C). We define the torus Z2 to be the connected component of Zg as an
algebraic group.

LEMMA 4.4. (a) The kernel of ab® is the group p(Gsc(R)) - {dodo | do € Z&(C)}.
(b) The map ab’ induces an injection mo(G(R)) — HO(R, X, @ C*).

Proof. (a) If ab®(g) = 1 with g = p(s) - 2, then s - ¢ € Gs(R) and g = p(s - ¢) - dd with ¢ € Zs.(C)
and d € Zg(C). But, since we can write d = p(9) - dp with § € Zs(C) and dy in the torus Zz(C),
we get the representation g = p(scdd) - dodp with scdd € Gg.(R). On the other hand, it is easy
that each element of the form g = p(s) - dd with s € Gs(R) and d € Z&(C) lies in the kernel of
ab’.

(b) Since Ggc(R) and Zg(C) are connected as Lie groups, the same holds for their continuous
images p(Gsc(R)) and {dodp | do € Z&(C)}. Thus, the kernel of ab® is connected. On the other
hand, the kernel of ab" is an open subgroup of G(R), since its Lie algebra coincides with the Lie
algebra of G(R). This implies the claim. O
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Stabilization

DEFINITION 4.5. We say that a pair (G, n), where G/Q is a reductive group and n € Aut(G) is
of finite order, has trivial Galois cohomology if all maps H(F, G, ,) — H'(F, G) are trivial for
F =Q and for all F'=Q@Q,, v being an arbitrary valuation of Q.

Remark 4.6. The groups G = GLy, SLy, Spy,, GSpy, have trivial H L over every field F. The
pair (PGL2y.1,7), where 7 is of the form A+ J-tA~!. J~1 also has trivial Galois cohomology,
since every stabilizer G, has a unique lift to the group SLg, 11 (compare the proof of [BWWO02,
Proposition 6.5]), so that H(F, G,.,) — H(F, G) factorizes over the trivial set H'(F, SLay1).

Remark 4.7. If (G, n) has trivial Galois cohomology (which we will assume in the following), then
it is well known that the conjugacy classes inside the n-stable conjugacy class of some v € G(F)
are parameterized by the elements in H'(F,G,,). In the following, we will not distinguish
between classes in H'(F, G,;) and representatives of conjugacy classes corresponding to them.
This applies in the following definition, where we furthermore use the Kottwitz sign e, (G) € {1}
for an algebraic group G/Q, if v is a place of Q, as defined in [Kot83].

4.8 We introduce the local stable orbital integral

SOy (70, hp) = Z ep(nypm) Oy, hyp)
’yPeHl(QING’yO,n)

and its analog in the finite adelic setting:

SOn(v0, hg) = [ SOu(v0,hp) i
p finite

he=I1 P

p finite

We extend this definition by linearity to all Schwartz-Bruhat functions on G(Ay).

THEOREM 4.9. Assume that the pair (G,n) has only trivial Galois cohomology. For I C A and

Y € Pr(Q), assume G= G'Iyo,n is a connected reductive group, let éqs be the quasi-split inner

form of G' and define A(vo, 1) = A(G, Ly, ) + %q(éqs). Then we have
tr((hoo X hy) o, H: (GQN\G(A)/ Koo Zoo - Ky, M))

= (—p#EDM N (40, hoo) - SOy (0, hy) - (70 0 9| M),
ICA €(Pr(Q))n-st
)
XI,a(N(70))>1
for all ae A—T
with

. O??O(Ia 70, hOO)

Qoo (70, hoo) = . (_1)A(707n) . #HI(R T)

7 - .
de volap,, ((GL,.,)'/€)
Here ~y runs over the stable n-conjugacy classes inside P;(Q) satisfying the two listed conditions.

Proof. We start with a twisted conjugacy class 7 in G(Q). Then all elements stably conjugate

to ~ are parameterized by the kernel of the map H'(Q, G) — H*(Q, G), where G = Géo,n' Since

(G, n) has trivial Galois cohomology, this kernel equals H'(Q, é) Let us consider the following
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diagram, where the right-hand column is exact and the left-hand square is cartesian.

0
11(Q, G)
H'(Q G) —* > Hl, (Q,&) HL,(Q, G)
\L l loc
HYR, T) 2> 1R, G) ——— HI, (R, ) D, HL\ (Qy, )
(m1(@)Gare/r)iors —= (11(G) gargg) tors

We remark that ig is surjective if G = Gém and v is an [-elliptic element. Furthermore, if v is

I-elliptic, then we have the equality of the Q-rank with the R-rank of the torus G / Ger- Recall
that the Kottwitz signs e, (G) satisfy

ep(G) = —1)rank@1°(é)_rank@@(éqs) for p finite

(
eoo(G) = (—1)2%(Caer)=54((Cas)aer)
1

Here q(éder) denotes the dimension of the symmetric space associated to the derived group éder.
Thus, we have

(_1)%q(éder) =(—1)z¢ ((Ggs)der) . H ep( é (34)
p finite
The Tamagawa numbers satisfy [San81]

N #(m1(G)cag)iors
"O="me.e O (35)

Recall that 7(Gs.) = 1 by the main result of [Kot88].

Finally, note that if D(G) does not vanish, it equals the order of the kernel of the map
HY(R,T) — H'(R, C;’) More precisely: if Gﬁ denotes the inner form of G obtained by twisting
G/R with 3 € H'(R, G), then D(G) equals the cardinality of the inverse image of 3 in H'(R, T')
(compare [She79)).

The process of stabilization now works as follows: the sum over all (n-twisted) conjugacy
classes in the stable class of 70, Wthh is a sum over v¢€ H'(Q, ), may be replaced by a
sum over those pairs («, 3) € H, (Q, ) x HY(R, G) which have the same image in H! (R, G).
This may be replaced by a sum over pairs («,d) € HL, (Q, G) x H'(R, T) having the same
image in H!, (R, Q) if we remove the factor D(G) from the trace formula. If we introduce an
additional factor #I11(Q, G) in the formula, we may replace the sum over (v, §) by a sum over
those (3, ¢) € HY(R, T) x @, H!, (Q,, G) for which the image of ¢ in (Wl(G)Gal(@/Q))tors vanishes

and for which the image of ¢ in ]H[ab(R, G) is the archimedean component e,,. But, since the
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maps i7, aby and ig are surjective, we may simply replace the sum over (8, €) by a sum over
wE @p fnite Hip (Qp, G) after introducing an extra factor # ker(H' (R, T) — (W£<G)Gal(@/(@))t0rs)'
But now the product of this last factor with #11(Q, (}) equals #H' (R, T) - 7(G)~! by (35). Now
observe that H!, (Q,, G) ~ H(Q,, G) ~ ker(H*(Q,, G) — H'(Q,, G)) describes the local twisted
conjugacy classes in the local stable twisted conjugacy class of vy. Putting everything together,
especially (34), we get the claim. O

5. Comparison of fixed point formulas

Twisted stable endoscopy

5.1 Split groups with automorphism

Let G/R be a connected reductive split group scheme. We fix some ‘splitting’, i.e. a triple
(B, T,{Xa}acn), where T denotes a maximal split torus inside a rational Borel B, A = Ag =
A(G,B,T) Cc ®(G,T) C X*(T) the set of simple roots inside the system of roots and the X, for
the simple roots o € A are a system (nailing) of isomorphisms between the additive group scheme
G, and the unipotent root subgroups B,,. If R is a field, we may think of the X, as generators of
the root spaces g, in the Lie algebra. Here X*(T') = Hom(T, G,,,) denotes the character module
of T, while X, (T") = Hom(G,,, T') will denote the cocharacter module of T'. Let n € Aut(G) be
an automorphism of G which fixes the splitting, i.e. stabilizes B and T and permutes the X,.
We assume 7 to be of finite order [. We denote by

G =G x ()

the (non-connected) semidirect product of G with 7. n acts on the cocharacter module via

X.(T) > aV +—noa" and on the character module via X*(T) > a+ aon~ L.

5.2 The dual group

Let G = G(C) be the dual group of G. By definition, G has a triple (B, T, {X4}) such that we have
identifications X*(T) = X, (T), X.(T)= X*(T) which identifies the (simple) roots & € X*(T")
with the (simple) coroots o € X, (T) and the (simple) coroots & € X, (T) with the (simple)
roots o € X*(T). There exists a unique automorphism 7 of G which stabilizes (B, T, {X4}) and
induces on (X, (T), X*(T)) the same automorphism as 7 on (X*(T), X,.(T)).

5.3 The n-invariant subgroup in G

Let H = (G)° be the connected component of the subgroup of #-fixed elements in G. It is a
reductive split group with triple (By, TH, {XB}/geAﬁ), where By = B, Ty =1" and the X
are of the form Xﬁ’ = SﬁXd as elements of the Lie algebra g, where the map Sy : g — g will be
explained soon.

We have the inclusion of cocharacter modules X, (Ty) = X.(T)" C X,(T) and a projection

for the character module
Py XH(T) - (X*(1)5)tree = X*(Tt1),
where (X *(T)ﬁ)free denotes the maximal free quotient of the coinvariant module X *(T),7 For a
Zln]-module X, we define a map
ordz(n)—1
SyX X we Y ()
i=0

where ord,(n) = min{i > 0 | n*(z) = x} is the length of the orbit (n)(z).
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For the roots ® of a given root datum (X*, X,, ®, ®V) we have to introduce a modified map

Sy, by
2
(@Y, Sy(a))’
The map 57’7 is defined on the coroots ®" by exchanging the roles of a and " in this formula. For
all simple root systems with automorphisms which are not of type As,, we have (a", n'(a)) =0
fori=1,...,orda(n) — 1, which implies c¢(a) =1, i.e. 5] (a) = S;(a). We furthermore introduce
the subset of short-middle roots and the dual concept of long-middle coroots:
O(G, TP ={a e ®(G,T) | 5 Pyla) ¢ Py(®(G,T))},
(G, T =3V(G, 7)™ ={a"|aec®G T) "}

5;7(0‘) =c(a) - Sy(a) where c(a) =

ProprosiTION 5.4. With the above notation, we have
O(H, Ty) = Py(®(G, T)™) for the roots, (36)
OV(H,Ty) =S (®V(G,T)™)  for the coroots, (37)
AY = AV(H, By, Ty) = Sp(A})  for the simple coroots,
A = A(H, By, Ty) = Py(A

@) for the simple roots.

Proof. This may be deduced from [Ste68, 8.1]. O

DEFINITION 5.5 (Stable n-endoscopic group). In the above situation, a connected reductive
split group scheme H /R will be called a stable n-endoscopic group for (G,n) respectively
for G=G x (n) if its dual group is together with the splitting isomorphic to the above

(I:I7 BH? TH; {Xﬂ}ﬁGAﬁ)

Remarks. Since H is unique up to isomorphism (up to unique isomorphism if we consider H
together with a splitting), we can call H the stable n-endoscopic group for (G, n). For a maximal
split torus Ty C H, we have

Xi(Th) = (Xu(T)p)fee  for the cocharacter module,

X*(Ty) = X*(T)"  for the character module. (38)
5.6 To get examples, we use the following notation:
diag(as, . .., an) € GL,, denotes the diagonal matrix (9; ; - a;)i;; and
antidiag(ai, . . . , a,) € GL,, the antidiagonal matrix (0; n+1—; - a;)i; with a1 in the upper right

corner. We introduce the following matrix:
J=Jn = (6int1-(=1)" 1< jen = antidiag(1, —1, ..., (=1)"" ') € GL,(R)

and its modification Jj = antidiag(1, —1,1,...,(=1)""% (=1)""L, ... 1,—1,1). Since 'J, =
(—=1)"1. J, and JJ, is symmetric, we can define the

standard symplectic group Sp,,, = Sp(Jan),
standard split odd orthogonal group SOg2p,4+1 = SO(J2n+1),
standard split even orthogonal group SOa, = SO(J3,,).

We consider the groups GL,,, SL,,, PGL,,, Sps,,, SO,, with the splittings consisting of the diagonal
torus, the Borel subgroup consisting of upper triangular matrices and the standard nailing. We
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remark that the following map defines an involution of GL,,, SL,, and PGL,,:
n=nn:igeJn-tgt I
Ezample 5.7 (Asgy, < Cy). The group Sp,,, is a stable endoscopic group for the pair PGLgy, 41, 7.
G =PGLap11, 7 =1n2ns1 has dual G = SLon+1(C), 1 = n2pn+1,

U
H = Sp,, has dual H = SOg,,1(C).

Ezample 5.8 (Agp—1 <> By). The group G = GLg, X G,, has the automorphism

n: (gu CL) = (772n(g)7 det(g) ’ CL),
which is an involution since det(n2,(g)) = det g~'. The dual /) € Aut(QG) satisfies

ﬁ(g7 b) = (772n(g) - b, b)a
so that we get

G = GLy, X Gy, has dual G = GLy,(C) x C*, 7,
U

H = GSpin,,,,; has dual H = GSp,,(C).
Recall that GSpin,,, ,; can be realized as the quotient (G,,, x Spiny,, ,1)/u2, where pp ~ {1} is
embedded diagonally, so that we get an exact sequence

1 — Sping,, ;1 — GSping,, G —1,

where the ‘multiplier’ map p is induced by the projection to the G, factor followed by squaring.
Thus, the derived group of GSpiny,, is Spiny, 4, i.e. a connected, split and simply connected

group.

Ezample 5.9 (Agp—1 <> By, modified). In Example 5.8, the subtorus Zy = {(z - Ida,, 27") |z €
Gm} C Z is n-stable, in fact n acts by inverting elements of G,, ~ Zj. Therefore, the n-action
descends to the quotient group G’ = G/Zy. We may identify

G/ ~ GLQn/an
(A,b) mod R — A - /b.
The induced n-action reads A mod i, — 12, (A4) - {/det(A).

We remark that n acts as identity on the center of G’, which is G,/ =~ Gy,. The group of
n-invariants in the center is therefore a connected group.

The dual group G’ is the following n-stable subgroup of G:
G'={(A,b) € G| det(A) = b"}.

Since G C G, we may consider H = GSpin,,, ., as a stable endoscopic group for (G, 7).

Comparison of characters
5.10 Matching of finite-dimensional representations

Let k£ be a field of characteristic 0. Let M = M, be the finite-dimensional representation of
G of highest weight x € X*(T)7. We also denote by M, the extension of this representation
to G =G % (), such that 7 acts as identity on one (every) highest weight vector vy. Let
My = My, be the corresponding representation of H, where we now consider x as a weight
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in X*(Ty) = X*(T)". In this situation, we say that the G-module M matches with the H-module
M.

We can as well consider My, as an element in the Grothendieck group Gro(H,alg) of
finite-dimensional algebraic representations of H and M = M, as an element of the quotient
group Gro(G,n) = Gro(G, alg)/Ind%Gro(G, alg). The correspondence My, — M, induces an
isomorphism between these groups (recall that the order of n is a prime). This isomorphism
enables us to introduce the notion of matching on the level of Grothendieck groups.

5.11 Recall that ®(H, Tpy) = ®V(H, Ty) = S,(®V(G, T)!™) = S (D(G, T)™) by (37) of Propo-
sition 5.4. We may define ®(G,T)*™ by the same formula as above using the projection P, :
X*(T) = (X*(T)4)trec- In the case of an irreducible root system, each oy € ®(G,T) — ®(G,T)™
(which exists only for type As, and 7 of order two) is of the form a; = ag + n(ag) for some
ap € ®(G,T) — ®(G, T)™ and vice versa. We have c(q;) =2 and the n-orbit of aq is uniquely
determined by «;. Compare [Bal01, 2.5] for details.

LEMMA 5.12. Suppose that the root system ®(G,T) is irreducible. If o€ ®(G,T)"™,
ie. $P,(a) & Py(®(G, T)), then there exists a set of root vectors { X, € g, \{0} |y € n%(a)} such
that n acts by permutation on these root vectors.

If o is such that P, (a) € Py(®(G, T)), then n(a) =, n has order two and n acts as —1
on g,.

Proof. This is essentially [Bal0l, Lemma 2.9]. O

PROPOSITION 5.13. Let the finite-dimensional irreducible representation M of G match with
the representation My of the stable endoscopic group H. Let vy € G(k) be n-semisimple and 7(y)
be a matching element in H (k). Then we have

tr(no~y, M) =tr(r(v), Mn).

Proof. The proof is similar to a proof of the Weyl character formula (compare [Hum?72, 24.3]).
In fact, one can get the result by comparing a Weyl character formula for non-connected groups
as in [Wen01] with the formula for the endoscopic group.

We may assume that k is an algebraically closed field and therefore that v € T'(k) and
7(v) € Ty (k). We will work in the Grothendieck group Gro(b_) of finitely generated b_-modules,
where b_ =n_ + t is the Borel subalgebra containing the negative roots in the decomposition
g=Lie(G) =ny @ t&n_ and t=Lie(T'). For A € X*(T'), we denote by Zy the Verma module

Z\ =U(9) ®u(o, ) kr =IndG A =~ U(b_) @) k.
Then we can write
M=M= Y signgw): Zupée)—ic:
weW (G,T)

where 0¢ = 3 > aca(c,r)+ @ is half the sum of the positive roots. Since signg(n(w)) = signg(w),
we may collect the Verma modules on the right-hand side indexed by Weyl-group elements w in
the same n-orbit to get G-modules on the right-hand side. Here 7 acts as intertwining operator
from Zy,(\50)-sc 10 Zy(w)(r\+5¢)—sc I such a way that n acts by permutation on the set of
some highest weight vectors m,(x1s,)—s.- Then the above identity becomes an identity in the

Grothendieck group of G-modules. The computation of tr(n oy, M) reduces to the computation
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of the formal traces tr(n o7, Zy(r\t55)—s,) for w € W(G, T)", since the trace of 1o« on a direct

sum of Zy,(x164)—é; 18 obviously zero if w is not n-invariant.

To compute the formal trace, we can view Z) ~U(n_) as a symmetric algebra over n_. We
may take a basis (Xq)aeco— of n_ as in Lemma 5.12 and view Z) as a polynomial algebra in this
basis. Then the action of 1 o v respects the set of one-dimensional monomial subspaces of Z) and
only those monomials contribute to the trace, which contain all X, in an n-orbit with the same
exponent. If we have no a with %Pn(a) € P)(®(G,T)), then the formal trace may be written up
to the factor A(y) in the form

-1
I (- I o) = I (-Genon’

a0€P(G,T)~ /n aenZ(ap) ao€®(G,T)~ /n
= [ a-dEm) (39)
o' €®(H,Ty)~

This coincides with the formal trace of 7(7) acting on a Verma module for the endoscopic group
H. If we have some o; with 3P,(a;) € P,(®(G,T)), then we have to replace ®(G,T)~ in the
above formula by (®(G, T)*™)~ and multiply with additional factors of the form (since n acts
by —1 on X,,, we get alternating signs in the geometric sum)

I+ a() ' =1-al) +ar)?----.

But each such qy is of the form ag + 1(a) = Sy (ap) and thus this factor may be multiplied with
the corresponding factor (1 — S, (co)(7)) ™! to give the factor

(1= ()™ =1 = S(a) (),

since Sy (a;) = 28,(y) in this case. Now (37) of Proposition 5.4 tells us that we again arrive at
the right-hand side of (39).

From the above considerations, we deduce moreover that dg = 0y as elements in X*(Ty) =
X*(T)", so that w(A + dg) — d¢ may be identified with the corresponding element w(\ + ) —
O in X*(Ty) for we W(G,T)"=W (H, Ty). Reversing the computation for the group H, we
immediately get the claim. O

LEMMA 5.14. In the notation of Proposition 5.13, let n be the unipotent radical of a standard
parabolic subalgebra p C g = Lie(G) and let ny be the unipotent radical of the corresponding
subalgebra py C h = Lie(H). Let L respectively Ly denote the corresponding Levi groups. Then,
for every w € W(H) = W(G)", we have that

(=Dl JH ) (M Dirs)—5 € Gro(Lu)

matches with
(_1)ZG(w) : ch(w) (na Mx)w(er(S)fJ € QTO(L, 77)'

Proof. Recall that H"(n, M, ), denotes the subspace of H"(n, M, ) which transforms under
the action of L as the irreducible representation of highest weight x. Recall from [Kos61,
Theorem 5.14] that the space H'e(®)(n, M) w(x+5)—s is an irreducible L-module if w is a Kostant
representative for the coset space W(G)/W (L). The theorem of Kostant furthermore tells us that
the highest weight vector in H'¢()(n, M) w(y+5)—s is the cohomology class having €’ g @ My
as a representing cocycle, where m,,, € M, is some weight vector for the extremal weight wx
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and {€’ 4} for ® C ®(n) denotes the basis of A'n’ dual to the basis {es} of A'n, where

ep =¢ep, N---Neg, if@:{¢1,...,¢y}

and the ey €n are generators of the root spaces. From this description, it is clear that the
lemma is correct up to sign. At first, recall from the existence of Steinberg representatives
[Bal01l, Lemma 2.7] that there exists an n-invariant representative w € G(k) of w. We can
takem,, = w(m,) for some highest weight vector m,. Since n acts trivially on m, by the
definition of M, as an G-module, we deduce that 7 acts as identity on Mapy-

Therefore, it remains to prove that 7 acts as (—1)lc®)—ta() o ¢ o, recall that &, =
w(®(G, T)")N®(G,T)" and lg(w) = #P,. We compare the contributions of the n-orbits of
roots « to lg(w) — lg(w). Let A be the length of the n-orbit of a.

For a € (G, T)™ N ®(G, T)™, the contributions are A to lg(w) = #®,, and 1 to Ig(w)=
#®(H, TH)w- By Lemma 5.12, we can take basis elements ey for ¢ in the n-orbit of «, which are
permuted by 7. Now 7 acts by (—1)*~! on the exterior product of these vectors, which gives the
correct contribution.

If o is such that 2P, (o) € P,)(®(G, T)), then there exists another root o’ such that 2P, (o) =
P,(a/). In fact, o/ =a+n(«) and n(a’) =d/, so that o € ®,, if o€ ®,. But the converse
implication also holds: if o ¢ ®,,, then « lies in at least one of the halfsystems w(®(G,T)")
and ®(G,T)”. But, since n stabilizes the decomposition in positive and negative roots and
furthermore fixes w, we get that n(a) also lies in this halfsystem. Since the halfsystems are
closed under addition of roots, we deduce that o’ lies in one of them, i.e. & ¢ ®,,. Thus, we may
compute the contribution of the n-orbit of o together with the contribution of o/. We conclude
that we have a contribution A 41 to lg(w) = #®,,. Only S (a’) contributes a 1 to Iy (w), since
a ¢ ®(G, T)™. By the same argument as above, 1 acts by (—1)*~! on the exterior product of
the ey for ¢ in the n-orbit of a, but as —1 on e,/ (again by Lemma 5.12), which gives the correct
contribution (—1)* to e’ o, Lhis finishes the proof. O

Lifts

5.15 Let G; = H/F be the stable endoscopic group of the pair (G, 1), where G/OF is a reductive
connected split group over the ring of integers O of a number field F' and 7 is an automorphism
of finite order fixing some splitting of G. In the following definitions, we denote by F' either some
local non-archimedean field F}, or the ring of finite adeles A ;.

While it does not matter in the following which Haar measures we take on the initial groups G
and G (we just have to multiply hs respectively hy; by a scalar), we have to be careful in using
Haar measures on the (-)centralizers of matching semisimple elements 7o and v, when we define
the matching of Schwartz—Bruhat functions in the following. If F' is a local non-archimedean field,
we normalize the Haar measures such that they give the measure 1 to the integral points of the
connected component of the centralizer.

If F=Ay, we take the Haar measures as finite parts of some Tamagawa measures db=
dbs X dby respectively dby = dby . X dby y which are normalized in such a way that the following
identity holds:

|too (Y0, DI = |atoo (71, 1] (40)
Recall from Theorem 4.9 that the definition of (7, 1) involves the infinity component of the
Haar measure of the (n-)centralizer of ~.
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Warning. We do not assume that the product of the normalized local Haar measures at the finite
places gives the Haar measure on the finite adeles. Therefore, the results in the next subsection
will need some careful analysis of the local factors |as (70, 1)| (compare [Wei08]) before they can
be used to get exact multiplicity statements in the lifting of representations.

DEFINITION 5.16. The Schwartz-Bruhat functions hy € C2°(G(F)) and hyy € C°(G1(F)) are
matching if they have matching stable orbital integrals, i.e. if

SOy (7, hy) =SO(11, by 1)
for all matching semisimple elements v € G(F') and v; € G1(F).

Recall that a distribution on G(F') is called n-stable if it lies in the closure of the space of
stable orbital integral distributions hy + SOy (v, hy).

DEFINITION 5.17. The admissible representation w € Rep(G(F)xn) is a lift of m €
Rep(G1(R)) if tr(hy - n|m) =tr(hs1|m) for all matching hy € C°(G(F)) and hyy € C2°(G1(F))
and if furthermore the characters xr : hy +— tr(hy - n|m) and xx, : by +— tr(hys|m1) are (n-)stable
distributions.

Some virtual admissible representation II € Gro(G(F) x n) is the lift of II; € Gro(Gy(F))
if we can write them in the form II=m — 7' and II; =m — 7] such that the admissible
representations 7, 7’ € Rep(G(F') x n) are the respective lifts of m, 7] € Rep(G1(F)).

5.18 Now we assume that we are in one of the following situations:

(Ga 7, Gl) = (PGLQTL+17 7, Sp2n)7
(G,n, G1) = (GL2, x GLy, n, GSping,, ;).

In an earlier paper [BWWO02], we have shown that the twisted fundamental lemma for these
situations can be reduced to a statement (‘ BC-conjecture’) comparing stable orbital integrals on
the groups Spy,, and SOg;,+1, a phenomenon which has been worked out by Waldspurger in more
generality [Wal08]. This statement has been proven by Ngo [Ngol0, Théoréme 2] in the case of
positive characteristic, but the work of Waldspurger [Wal06, Wal08] allows us to reduce the case
of p-adic fields to this fundamental result of Ng6. We remark that the cases n=1 and n =2
have been obtained earlier using explicit calculations of p-adic orbital integrals [F1i96, F1i99]
and [BWW02, 7.10]. We thus have the following theorem.

THEOREM 5.19. In the case that F' is a local field with sufficiently large residue characteristic
and (G, n,G1) is as in § 5.18, the characteristic functions of G(Op) and G1(Op) match.

Remark 5.20. In the case that F'is a local field, it is well known that for each hy there exists
some matching hy; and vice versa. This is elementary for functions having support in the set of
(n-)regular elements and may be deduced in the above situations from [Wal97] (for the case n = 2,
compare [Hal94]) and [Wal08] for all Schwartz—Bruhat functions. We conclude from this local
matching property and the fundamental lemma that in the above situations the corresponding
statement holds in the case I’ = A for sufficiently many functions to get weak lifting statements.
Details will be explained elsewhere.

THEOREM 5.21. In the case that F' is a local field with residue characteristic not two and
(G,n,G1) is as in §5.18, then two elements of the Hecke algebra f € S(G(F)//G(OF)) and
f1 € S(G1(F)//G1(OF)) match if f maps to f; under the Satake isomorphism.
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Proof. If the group Z/, is connected, this statement is reduced to the special case (5.19) in [Wei06],
which is an extension of the results of [Hal95] to the twisted case. In the case G = GLa, X Gy,
we may reduce to the situation (G’,n, G1) = (GLan/ptn, 7', GSping, ;) of Example 5.9, where
the n-invariants of the center form a connected group.

If t € T(F) maps to t; € T1(F') under the norm map, we have to show that the characteristic
functions f of G(Op)tG(OF) and fi of G1(Op)t1G1(OF) match. This is equivalent to the same
statement for G’ and the characteristic function f' of G'(Op)-t' -G’ ((’)F) since we have the
following identity between the stable orbital integrals: O3 (f, G) = 'ymod r(f',G'); compare
[BWW02, Lemma 5.8].

Lifting of cohomology
5.22 In the next theorem, G will be defined over a totally real number field F.

As maximal connected and compact subgroups of G(R), we choose the following: K.
Hv‘oo Ky CGR) = Hvbo G(R), where K, =S0,(R) for G =GL,, GL, x GL; and in the
case that n is odd also for G =PGL,,, K« = Up(R) for G = GSp,,, and for G = Sp,,,.

THEOREM 5.23. Let F' be a totally real number field. Assume that (G/F,n,G1/F) is as in
§5.18. For the groups G = Resp/g G and G = Resp/g G1, we have that, if the G-module M
matches with the G1-module M,

H:(GQ\G(A)/KooZoo, M) € Gro(G(Ay) 3 n) = Gro(G(Apr) x 1)
is the lift of
H:(G1(Q\G1(A)/ Koo 1 Zoo, M1) € Gro(G1(Af)) = Gro(G1(Ay r)).

Proof. Let hy and hy; be matching Schwartz-Bruhat functions. We choose open compact
subgroups Ky respectively Ky of G(Af ) respectively G'1(Af ) such that hy is right invariant
under Ky and hjy; right invariant under Ky;. Since we may make K; smaller, we can
furthermore assume that (Assg,) and (Ass¢ger) are satisfied. Replacing Ky by Ky Nn(Ky),
we may furthermore assume that K is n-invariant, so that Zy = Ky N G(Ay) satisfies (Asszy).

We remark furthermore that (Assconn) is fulfilled in the cases under consideration: this is
clear for the endoscopic groups, since Sp,y, and the derived group of GSping,,; are simply
connected, which implies that the centralizer of a semisimple element is connected. Furthermore,
it is well known that the connected component of the centralizer of a non-semisimple element is
not reductive.

On the other hand, it follows from the computations in [BWW02] (compare Lemma 2.9 and
Step 3 in the proof of Theorem 5.11) that the n-centralizer of an element in GLg, x GL; is a
product of a symplectic group, a special orthogonal group, some centralizer inside a symplectic
group and G,,. This implies that the centralizers G,Iy777 are connected. The case of PGLg,41
reduces to the n-centralizers in SLa, 41 (proof of Proposition 4.5 loc. cit.) and can be handled by
the same argument.

Then we have to prove
tr(n o hy|HI(GQ\G(A)/ Koo Zoo - Ky, M))
= tr(hp1 [HZ (G1Q\G1(A) [ Koo1 Zoo - K1, M1)).

Since the assumptions of the trace formula in § 3.20 and the assumptions for the stabilization in
64 are satisfied, we may replace the traces by the right-hand sides of Theorem 4.9.
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First of all, we note that the (stabilized) trace formula implies that the two virtual characters
which are defined by the two sides of this equation are stable respectively n-stable distributions,
so that the lifting claim makes sense.

We remark that the set Ay of simple roots of G; can be identified with the set of n-orbits
in the set of simple roots of A, i.e. we have a projection 7: A — A/n~ Ay, so that we have a
bijection between the set of n-invariant subsets I C A with the set of subsets I1 C A; given by
I+ 7(I) and I; — 7~ (I;). Since this bijection satisfies (—1)#(A=1/m) = (—1)#(A21=I we are
reduced to prove

> (10, 1) SO0, ) - tr(yo 0 9| M)
Y E(Pr(Q))n-st
N (v0)~LE,
X1,a(N(70))>1
for all aeA—-T
= > Qoo(7151) - SO(y1, hg 1) - tr(ya|Ma).
71 €(Pry (Q))st
'71NL2>,1
X1y,aq (71)>1
for all a1 €A1 —11
We observe that My, is the stable endoscopic group of (My, n). We remark that an element g €
P;(Q), such that A'(7p) has a conjugate in L., is n-semisimple, since L’ contains no unipotent
elements. Thus, its n-conjugacy class meets the Levi group M;(Q), so that we are reduced to
consider elements vy € M7(Q). The definition of stable endoscopy implies that we have a bijection
between n-semisimple 7-conjugacy classes in M;(Q) and semisimple conjugacy classes in the
corresponding M, (Q) such that this induces the projection T(Q) — T(Q), ~T1(Q) on the dia-
gonal tori. From [BWWO02, Corollary 6.4, Proposition 7.5(b) and Corollary 7.6], we deduce that
‘matching’ defines a bijection between those (7-)stable (n-)conjugacy classes which have rational

representatives o € M1(Q) respectively v, € My, (Q). With this notation, it remains to prove
(a) x1.a(N (7)) >1for all w € A — I if and only if x7, 4, (71)) > 1 for all a; € Ay — I3

(b) N'(y0) ~ LL 71 ~ LI 5

(C) O[OO(’YO7 1) = Oloo(’Yly ]-)7

since we already know SO, (70, hy) = SO(v1, hy,1) by assumption and tr(yg o n|M) = tr(y1|M;)
by Proposition 5.13. O

5.24 To prove (a), we may replace vy by an n-conjugate v, € T(Q) and 7, by a conjugate 71,
such that 1f) maps to 7} under the canonical projection T(Q) —» T1(Q). The element N (7o) is
then a conjugate of N(v(). But under the identification X*(71) = X*(T')" we can take X7, «, to
be a positive rational multiple of x7 o (id + 7). The claim is now an immediate consequence of

this.

5.25 To prove (b), we use 7 and <] as in the proof of (a). Then +; may be conjugated
into Lg}l if and only if 7(a(v})) has absolute value 1 for all embeddings 7:Q — C and all

roots a1 € I1 and if vy satisfies a certain condition, which characterizes L&,l inside LQT This
condition is p(u(y1)) > 0 for all p: F'— R in the case G = GSpiny,,, | and is the empty condition
for Gy = Spy,. Similarly, V(y9) may be conjugated into LZ if and only if 7(a(N(7{))) has

absolute value 1 for all 7:Q — C and if in the case G = GLa, x GL; we have p(a? - det A) >0
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for all p: F— R, where 9= (A, a). But, since «a o N =c«o (id + ) is either a root or twice
a root in I; and since the sign conditions correspond to each other under the identification
X*(Ty) = X*(T)", (compare [BWWO02, 1.15]), the claim (b) is now clear.

5.26 The statement of (c) is up to sign just the assumption in normalizing the Haar measures
on the centralizers made in (40) above. It remains to check that A(yo, n) = A(71,1d) (at least
modulo 2).

To prove that q(é{mm) = q(éﬁll q) for the quasi-split forms, we remark that we may deduce
from [BWWO02] that the centralizers of vy and ~; have factorizations in factors which are either
isogenous for the two groups or are of the shape that some SO2441 for one group corresponds to
some Spy, for the other group. Since these two groups have no outer automorphism, we have to
take their split forms and then get

2 . . )
+ dim(SO — dim(SO,41 x SO +
q(SPQg) 979 and  q(SOgq11) = (SO24+1) : (SOg+1 9) _9 . g.

The remaining summand A(G, K ) is just the difference between the dimension of the maximal
real split torus Z%sPit 51 the center of G and the dimension of its intersection with the center
of the original group. By the result already cited from [BWWO02|, the centers of the two
centralizers are isogenous, so the dimensions of their real split tori coincide. The dimensions
of the intersections with the original centers also agree (they are 0 in the situation G = PGLgj 41
and G =Sp,, and are the degree of the totally real ground field, for G = GLy, x G,, and

G = GSpiny,, ;). The equality of the signs is proven.

COROLLARY 5.27. Under the assumptions of Theorem 5.23, we have that
H*(G(Q\G(A)/ Koo Zoo, M) € Gro(G(Ag) x ) = Gro(G(As,p) 1)
is the lift of
H*(G1(Q\G1(A)/ Koo 1200, M1) € Gro(G 1 (Af)) = Gro(G1(Af F)).
Proof. This may be deduced from the previous theorem by Poincaré duality: we have
H(G(Q)\G(A)/ Koo Zoo, M) 7
~ Hom(H{ D™ (G(Q\G(A)/ Koo Zoo, M), HIO(G(Q\G(A) /Koo Zoo, C)),
and a similar relation holds for the group G;. It is clear that the cohomology with compact

support in the highest dimension lifts from the group G; to (G, ).

Ezample 5.28. Let us consider the special case where G = GL4/Q x GL;/Q and G; = GSp,/Q
and M and M; are the constant sheaves. Furthermore, let hy respectively hy; be the
characteristic functions of the maximal compact subgroups K f:GL4(Z) x 7* and K =

~

GSp,4(Z). In this case, the statement reduces to an identity, which can be shown to be true
by other methods: we have isomorphisms

X = G(Q\G(A)/ Koo Zo - Ky = SLy(Z)\SL4(R) /SO4 ()
and

X1 :=G1(Q)\G1(A)/ Koo Zoo,1 - K1~ Spy(Z)\Spy(R)/Usz(R)
and the formula states that

tr(n o hy|H*(X, C)) = tr(hs|H* (X1, C)).
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But, the right-hand side is just the Euler characteristic of X1, which is known to be homeomorphic
to P3(C) — P!(C), i.e. the Betti numbers are b;(X;) =1 for i =0,2 and b;(X;) =0 otherwise.
Thus, the right-hand side equals 2. The left-hand side is the Lefschetz number of the involution
acting on X. It is known [LS78, Theorem 2] that H*(X, C) is one dimensional for i =0, 3 and is
zero for all other values of i. The fact that the left-hand side also equals 2 is thus equivalent to
the assertion that 7 acts by —1 on H3(X, C). Since the antidiagonal matrix .J; lies in Koo X Ky,
the involution 1 on X may be written in the form: ng: A+ fA~1,

By Poincaré duality (which holds for coefficient domains in characteristic 0, since X is a
quotient of a manifold by a finite group), we get isomorphisms H*(X,C) ~ Hg ;(X,0X,C),
where X denotes the Voronoi compactification of X and 0X =X — X the complement
(compare [LS78]). Now Hg(X,0X,C) is generated by the relative fundamental class ¢ of
X, and np acts on it by —1, since the action on the tangent space sly(R)/sos(R), which
may be identified with the space of real symmetric matrices, is minus the identity and since
dim(X) =9 is odd. A generator of Hg(X,dX, C), which is called of in the notation of [LST78,
3.2], is easily seen to be the image of the relative fundamental class of the locally symmetric
space S = SL3(Z)\GL3(R)*/SO3(R) under the embedding of spaces, which is induced from the
embedding of groups ¢ : A — diag(A, det(A)~!). One checks immediately that 79 acts by —1 on
the six-dimensional tangent space, so that Hg(X, X, C) is no-invariant. Since Poincaré duality
is induced by cap product with ¢, we deduce that 19 acts by —1 on H3(X, C). O
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