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Abstract

For the locally symmetric space X attached to an arithmetic subgroup of an algebraic
group G of Q-rank r, we construct a compact manifold X̃ by gluing together 2r copies
of the Borel–Serre compactification of X. We apply the classical Lefschetz fixed point
formula to X̃ and get formulas for the traces of Hecke operators H acting on the
cohomology of X. We allow twistings of H by outer automorphisms η of G. We stabilize
this topological trace formula and compare it with the corresponding formula for an
endoscopic group of the pair (G, η). As an application, we deduce a weak lifting theorem
for the lifting of automorphic representations from Siegel modular groups to general
linear groups.

Introduction

0.1 Topological trace formula

The aim of this paper is to develop a topological trace formula for Hecke operators acting on
the ordinary cohomology of locally symmetric domains X attached to congruence subgroups of
an algebraic group G/Q. We want to deal with the twisted case also, where we allow the Hecke
operators to be twisted by an outer automorphism of G. In the untwisted case, such formulas
have already been developed or applied by several authors: [Bew85, GKM97, GKM98, GM92,
Har93, Har95, KS72, RS93, Wei09].

We will deduce our formula from a Lefschetz fixed point formula for compact manifolds,
restated in Theorem 3.3. Since the spaces X are not compact, we have to use a trick for
this reduction: we construct a compact manifold X̃, which is obtained by gluing together
2r pieces of the Borel–Serre compactification X̄ [BS73] along their boundary strata, where
r denotes the Q-rank of G. On X̃, we have an action of the group S∆ := {±1}r, such
that the quotient X̃/S∆ is isomorphic to X̄. Under this isomorphism, we can identify the
ordinary cohomology of X with the S∆-invariant part of the cohomology H(X̃) and similarly
the cohomology with compact supports of X with the χ−1-eigenspace of H(X̃), where χ−1 :
S∆→{±1} denotes the character (ε1, . . . , εr) 7→ ε1 · · · εr. By twisting our (twisted) Hecke
correspondences with all elements σ ∈ S∆, we thus get the correspondences, to which we can
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apply the simple fixed point formula for manifolds. By this method, we avoid the application
of intersection cohomology to a singular compactifications (e.g. the reductive Borel–Serre
compactification [GHM94, GT99]).

It should be noted that a similar construction already appears in the work of Oshima [Osh78].
But, while she gave a compactification ỸOsh of the symmetric space Y of G(R), i.e. she made a
construction over R, we want to construct a compactification of the locally symmetric quotient
Γ\Y , where Γ denotes some congruence subgroup in G(Q), i.e. we have to introduce an arithmetic
construction. In fact, we will construct some extension (not a compactification) Ỹ of Y , such
that the action of Γ can be continued to a proper discontinuous action on Ỹ (at least for some
smaller neat congruence subgroup of Γ), such that X̃ ' Γ\Ỹ . But, the space Ỹ is topologically
highly non-trivial and has no relation to ỸOsh apart from the fact that it contains 2r copies
of Y , too.

0.2 The example SL2

The upper half plane H = H+ ' SL2(R)/SO2(R) is the symmetric space for SL2(R). Then
Oshima’s construction just gives the complex projective line ỸOsh = P1(C) = H+ ∪H− ∪ P1(R),
but the action of Γ cannot be continued in a satisfactory way from H to P1(C), so that we do
not get a good compactification of Γ\Y in this way.

Our construction can be described as follows: we too can take H+ and H− as the two copies
of H, but we embed them into the complex affine line A= C in the following way:

ι : H+ ∪H− ↪→ C, −x+ i · y 7→ x+ i · 1
y
.

We take a set of representatives {δ}δ∈∆ for SL2(Q)/B(Q)' P1(Q), where B ⊂G denotes the
Borel subgroup of upper triangular matrices, and define the embeddings

ιδ : H+ ∪H− ↪→ C, z 7→ ι(δ(z)).

Now Ỹ is obtained by gluing together
⋃
δ∈∆ C along their open subspaces H+ ∪H−, where each

subspace is embedded via ιδ into the component C which is indexed by δ. So, we get for
each rational cusp in P1(Q) a real line which lies in the common closure of H+ to H− and
a homotopy class of paths from H+ to H−.

Let us illustrate the procedure of computing Euler characteristics χ(X) and Lefschetz
numbers via the compactification procedure in some examples.

Example 0.3. Let X be a Riemann surface of genus g with n> 1 small disks removed. If
one glues together two copies of X along the boundary ∂X which is the disjoint union
of n copies of S1, one gets a compact Riemann surface X̃ of genus 2g + n− 1. One has
χ(X̃) = 2− 2(2g + n− 1), χ(∂X) = 0 and

χ(X) = χc(X) =
(2− 2(2g + n− 1)) + 0

2
= 1− (2g + n− 1) = h0(X)− h1(X).

Example 0.4. Let X be an open interval. Then ∂X consists of the two boundary points of X
and X̃ is homoeomorphic to S1, i.e. χ(X̃) = 0 and χ(∂X) = 2. In this case, we get

χ(X) = 1 =
χ(X̃) + χ(∂X)

2
, χc(X) =−1 =

χ(X̃)− χ(∂X)
2

.
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0.5 In § 1, we construct the spaces X̃ and Ỹ carrying an action of the group S∆ in an adelic
language. We avoid referring to constructions in the paper of Borel and Serre [BS73] and
formulate our constructions in a more group theoretical language, which gives the manifold
structure of Ỹ immediately. It would be rather unnatural to start with manifolds with corners
to get the manifold structure. The group theoretical description in an adelic language enables
us to compute and describe the sets of fixed points.

0.6 In § 2, we compute the sets of fixed points of Hecke correspondences twisted by an outer
automorphism η. This section uses well-known methods [Bew85, GM03] and is of computational
nature.

0.7 In § 3, we develop a general Lefschetz fixed point formula for η-twisted Hecke correspondences
on locally symmetric spaces. At first, we restate a more or less well-known version of the Lefschetz
fixed point formula for compact oriented manifolds. We do not assume that the correspondence
has only isolated fixed points but allow higher dimensional submanifolds Yj of fixed points, such
that the correspondence is only transversal to the diagonal in the normal direction to Yj .

We apply this fixed point formula to the η-twisted Hecke correspondences H twisted with
elements σ ∈ S∆ acting on X̃. Of course, we have to prove that our modified transversality
assumptions hold. The Lefschetz number of H on the cohomology (respectively cohomology with
compact support) of X can then be obtained as a linear combination of the Euler characteristics
of different sets of fixed points. One has to stratify the sets of fixed points with respect to the
different boundary strata of the Borel–Serre compactification. Fixed point strata on the boundary
contribute several times to the fixed point formula. These contributions may cancel each other
depending on the signs with which the fixed point components contribute to the trace formula.
This corresponds to the theory of contracting and expanding fixed points in the work of Goresky
and MacPherson [GM93] and of Bewersdorff [Bew85]. The Euler characteristics involved can be
handled with the Gauss–Bonnet formula of Harder [Har71, Leu96], so that we arrive at a first
version of the trace formula involving orbital integrals.

0.8 In § 4, we stabilize this trace formula under certain conditions on the vanishing of the Galois
cohomology of the group G, which are satisfied in the main applications we have in mind. We give
a self-contained version of this stabilization process independent of the general theory of [KS99],
since the topological trace formula kills several difficulties of the general trace formula of Arthur
and Selberg [Art88] but requires some additional considerations at the archimedean place.

0.9 In § 5, we compare two topological trace formulas for a group G with outer automorphism η
and its stable endoscopic group G1. We formulate a lemma which compares the traces of matching
elements on the coefficient systems. We get that the Lefschetz numbers of matching (η-twisted
for G) Hecke correspondences on the two locally symmetric spaces coincide. Using the work of
Ngô and Waldspurger on the (twisted) fundamental lemma, this implies that the cohomology
of X̃G may be considered as the lift of the cohomology of X̃G1 modulo representations induced
from G(Af ) to G(Af ) o 〈η〉. We will formulate our final result for the lifting from Sp2n to
PGL2n+1 and for the lifting from GSpin2n+1 to GL2n ×GL1 over a totally real number field F .
We remark that GSp4 is GSpin5, so that we get two liftings from symplectic groups of genus
two to general linear groups. A lifting from PGSp4 to PGL4 has been obtained already by
Flicker [Fli05] using a variant of Arthur’s trace formula.

67

https://doi.org/10.1112/S0010437X11005641 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005641


U. Weselmann

Our result depends on a naive definition of liftings of representations of the finite adele
group: we have to assume that the normalization of Haar measures on the centralizers of global
elements is in such a way that certain factors involving the infinity component agree. This will
be sufficient to get weak lifting statements, but requires a more subtle analysis to get precise
lifting statements including multiplicity formulas.

Details and applications of this result will be given in a forthcoming paper.

1. The spaces

Levi and maximal compact subgroups

1.1 Reductive groups

Let G/Q be a connected reductive group, G(1) its derived group and Z = ZG its center. We fix
a minimal parabolic Q-subgroup P0 and a maximal Q-split torus S0 ⊂ P0. Let Φ = Φ(G, S0)⊂
X∗(S0) be the set of Q-roots of G with respect to S0, Φ+ ⊂ Φ the subset of positive roots with
respect to P0 and ∆⊂ Φ+ the set of simple roots.

1.2 Parabolics

The subsets J of ∆ are in 1–1 correspondence with the G(Q)-conjugacy classes of rational
parabolic subgroups. Each conjugacy class contains exactly one standard parabolic subgroup,
denoted by PJ , i.e. satisfying P0 ⊂ PJ ⊂G. We define for J ⊂∆:

SJ =
(⋂
α∈J

ker α
)◦
⊂ S0,

MJ = Cent(SJ) = centralizer of SJ in G,

AJ = (SJ(R) ∩G(1)(R))◦.

As usual, the upper index ◦ describes the connected component of the identity (in the first line
for the Zariski topology, in the last line for the real topology). We denote by UJ (respectively
U0) the unipotent radical of PJ (respectively P0). Then we have

PJ =MJ · U0 =MJ n UJ ,

S∅ = S0, P∅ = P0, P∆ =G

and S∆ is the maximal Q-split torus in ZG.

Lemma 1.3 (Compare [Bor91, 20.6(i), 11.23(ii)]). (a) IfM ⊂ PJ is a Levi subgroup with SJ ⊂M ,
then M =MJ .

(b) If u−1 ·MJ · u=MJ for some u ∈ UJ(Q̄), then u= 1.

Proof. (a) Since MJ is a Levi subgroup of PJ and any two Levi subgroups of PJ are conjugate,
there exists u ∈ UJ(Q̄) such that

M = u ·MJ · u−1. (1)

This implies u−1SJu⊂ u−1Mu=MJ = Cent(SJ), i.e. (u−1s1u) · s2 = s2 · (u−1s1u) for all s1, s2 ∈
SJ(Q̄). We can rewrite this equation in the form (since SJ is abelian)

s1 · (s−1
2 us2u

−1) = (s−1
2 us2u

−1) · s1.
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Since this is valid for all s1 ∈ SJ(Q̄), we get

(s−1
2 us2) · u−1 ∈MJ(Q̄) = Cent(SJ(Q̄)).

On the other hand, we have (s−1
2 us2) · u−1 ∈ UJ(Q̄), since s2 normalizes UJ . Therefore,

s−1
2 us2 · u−1 ∈MJ(Q̄) ∩ UJ(Q̄) = {1}, i.e. us2 = s2u for all s2 ∈ SJ(Q̄), so that u ∈ Cent(SJ(Q̄)) ∩
UJ(Q̄) = {1} and therefore M =MJ , which proves (a).

If we start with M =MJ in (1), we arrive again at u= 1 with the same proof, i.e. we get the
statement (b). 2

Lemma 1.4. There exists a maximal compact subgroup Km
∞ ⊂G(R) such that

MJ(R) ∩Km
∞ = PJ(R) ∩Km

∞ for all J ⊂∆.

Proof. Let K1 be some maximal compact subgroup of G(R). We denote by θ1 the Cartan
involution of G/R with respect to K1 [BS73, 1.6]. The group M1 := P0 ∩ θ1(P0) is the unique
Levi subgroup of P0 stable under θ1 (apply [BS73, 1.8] for L=G, H = P0). We have M1 =
u ·M0(R) · u−1 for some u ∈ U0(R). Put Km

∞ := u−1K1u. Now θ0 := int(u)−1 ◦ θ1 ◦ int(u) is
the Cartan involution of G/R with respect to Km

∞. (This may be deduced easily from the
characterization in [BS73, 1.6].) We have θ0(M0) = int(u)−1θ1(M1) = int(u)−1(M1) =M0. For
arbitrary J ⊂∆, we get

θ0(PJ) ∩ PJ ⊃ θ0(P0) ∩ P0 = u−1(θ1(P0) ∩ P0)u= u−1M1u=M0 ⊃ S0 ⊃ SJ .
Again, by [BS73, 1.8], the left-hand group is a Levi subgroup of PJ , so that we get
MJ = θ0(PJ) ∩ PJ by Lemma 1.3(a). Now PJ(R) ∩Km

∞ = {p ∈ PJ(R) | θ0(p) = p} ⊂ PJ(R) ∩
θ0(PJ(R)) =MJ(R). Therefore, PJ(R) ∩Km

∞ =MJ(R) ∩Km
∞ for all J ⊂∆. 2

Lemma 1.5. The family of simple roots (α)α∈∆−J induces an isomorphism of groups:

AJ
∼−−→ (R∗>0)∆−J .

Proof (Compare [BS73, 4.2(2)]). The exact sequence of algebraic groups

1→ S∆ ∩G(1)→ SJ ∩G(1)→ (Gm)∆−J → 1

induces an exact sequence

1→ S∆(R) ∩G(1)(R)→ SJ(R) ∩G(1)(R)→ (R∗)∆−J →H1(R, S∆ ∩G(1))→ 1,

since SJ ∩G(1) is a split torus. Now the first and fourth terms are finite groups, so that the middle
map induces an isomorphism between the connected components of the identity of the second and
third terms. Since AJ is the connected component of the second term, the claim is now clear. 2

Multi-pushouts
1.6 The category J∆

For a set ∆, we denote by P(∆) the set of its subsets. We define a category J∆ whose objects
are pairs (I, J) with I ⊂ J ⊂∆, i.e.

Ob(J∆) = {(I, J) ∈ P(∆)× P(∆) | I ⊂ J},
and where

Morph((I, J), (K, L))

{
consists of one element ΦK,L

I,J if I ⊂K ⊂ L⊂ J,
= ∅ otherwise.

There is a unique and obvious composition of morphisms.
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If C is another category, we denote by CJ∆ the category of functors F : J∆→C. The category
C may be embedded as a full subcategory into CJ∆ if we associate to every c ∈Ob(C) the constant
functor Fc : (I, J) 7→ c, ΦK,L

I,J 7→ idc.

For F ∈ CJ∆ , we denote by lim−→J∆
F ∈Ob(C) the direct limit of F (if it exists). This means

that

HomCJ∆ (F, Fc) = HomC

(
lim−→
J∆

F, c

)
for all c ∈Ob(C). (2)

Example 1.7. If C is the category of sets, one can construct lim−→ F in the following way: let
X =

⋃̇
j∈Ob(J∆)F (j) be the disjoint union of all F (j). Define an equivalence relation ∼ by: for

x ∈ F (j) and x′ ∈ F (j′), we have x∼ x′ if and only if there are sequences

j = j0, j1, . . . , j2n = j′ of objects in J∆,
xi ∈ F (ji), i= 0, 1, . . . , 2n, of elements and
φ2i+1 : j2i+1→ j2i, φ2i+2 : j2i+1→ j2i+2, i= 0, 1, . . . , n− 1, of morphisms such that
x= x0, x′ = x2n, F (φ2i+1)(x2i+1) = x2i, F (φ2i+2)(x2i+1) = x2i+2.

Then it is obvious that X/∼ satisfies the defining property (2) of the direct limit lim−→J∆
F .

Example 1.8. If (I, J) 7→XI,J is a functor from CJ∆ to the category T of topological spaces, we
may construct X = lim−→XI,J as follows: the set X is the limit in the category of sets; it carries the
quotient topology with respect to the map

⋃̇
XI,J →X. This means that a subset U ⊂X is open

if and only if all Φ−1
I,J(U)⊂XI,J are open. Here we denote by ΦI,J :XI,J →X the natural map.

Example 1.9. If ∆ = {e} consists of just one element, then lim−→ F is the pushout in the following
diagram.

F ((∅, {e})) //

��

F (({e}, {e}))

��
F ((∅, ∅)) // lim−→ F

For general ∆, we can think about lim−→J∆
F as a multi-pushout.

Example 1.10. Assume that there exists J0 ⊂∆ such that F fulfills the following properties:

F (I, J) = ∅ (the initial object in the category C) if J * J0, (3)
Φ : F (I, J)→ F (I, K) is an isomorphism for I ⊂K ⊂ J ⊂ J0. (4)

Then we have lim−→ F = F (J0, J0).

Proof. For c ∈Ob(C), consider the obvious map

Ψ : HomCJ∆ (F, Fc)−→HomC(F (J0, J0), c).

Conversely, if ϕ : F (J0, J0)→ c is given, we can associate to it the transformation ϕ∆ : F → Fc
such that we have for I ⊂ J ⊂ J0

ϕ∆(I, J) : F (I, J)
(ΦI,JI,J0

)−1

−−−−−−−→ F (I, J0)
Φ
J0,J0
I,J0−−−−−→ F (J0, J0)

ϕ−−→ c

and such that ϕ∆(I, J) is the unique map from the initial object ∅ to c if J * J0. It is easy to
check that ϕ∆ is an element of HomCJ∆ (F, Fc) and the only one satisfying Ψ(ϕ∆) = ϕ. Therefore,
Ψ is an isomorphism. 2
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Example 1.11. Let C be the category of sets and C∆ the category, whose objects are pairs (A, π),
where A is a set and π is a map from A to P(∆), and where morphisms φ : (A, πA)→ (B, πB)
are maps φ :A→B such that πB ◦ φ= πA. If F : J∆→C∆ is a functor, then we get for every
J0 ⊂∆ a functor FJ0 : J∆→C, such that FJ0(I, J) is the inverse image π−1(J0) inside the first
component of F (I, J). If we assume that FJ0 satisfies (3) and (4) for every J0 ⊂∆, then we can
describe the direct limit as follows:

lim−→
J∆

F '
( .⋃
J0⊂∆

FJ0(J0, J0), π
)
,

where the map π takes the value J0 on the component FJ0(J0, J0).

Distance functions and reduction theory
1.12 Absolute values of characters
The natural inclusion SI ⊂ PI induces a natural restriction map for characters r :X∗(PI)→
X∗(SI), which becomes an isomorphism after tensoring with Q:

rQ :X∗(PI)⊗Q ∼−−→X∗(SI)⊗Q,
i.e. for χ ∈X∗(SI) there exist N ∈ N and χ̃ ∈X∗(PI) such that χ= r(χ̃)N . Then we denote by

|χ| : PI(A) → R∗>0 the character
g 7→ |χ̃(g)|(1/N),

(5)

where χ̃ : PI(A)→ A∗ = Gm(A) and the absolute value denotes the idele norm.

Definition 1.13 (Distance functions). Let K =K∞Kf ⊂G(A) be a compact subgroup such
that K∞ ⊂G(R) is maximal compact and Kf ⊂G(Af ) is open. A distance function with respect
to I ⊂∆, to a character χ ∈X∗(SI) and to K is a map

d= dχ = dχ,K :G(A)−→ R∗>0 such that

dχ(pgk) = |χ|(p) · dχ(g) for p ∈ PI(A), k ∈K, g ∈G(A).
(6)

1.14 The Iwasawa decomposition G(R) = P0(R) ·K∞ = PI(R) ·K∞ implies the isomorphism of
double coset spaces:

PI(A)\G(A)/K ∼= PI(Af )\G(Af )/Kf .

The right-hand side is finite since it is the set of (open!) Kf -orbits in the compact quotient space
PI(Af )\G(Af ) (Kf acting via right translations on this space). Let {g

1
, . . . , g

n
} be a set of

representatives for PI(Af )\G(Af )/Kf . Then we have a bijection between the set of all distance
functions d with respect to I, χ, K and (R∗>0)n given by d 7→ (d(g

i
))16i6n: we get the injectivity

of this map from the construction of the g
i

together with the characterizing property (6) of
distance functions. The surjectivity may be deduced from the fact that an equation pg

i
k = p′g

i
k′

implies p−1 · p′ ∈ PI(Af ) ∩ g
i
Kfg

−1
i

and therefore |χ|(p) = |χ|(p′), since R∗>0 contains no non-
trivial compact subgroups, so that the image of the compact group PI(Af ) ∩ g

i
Kfg

−1
i

under
|χ| is trivial. This implies that one always gets via (6) well-defined distance functions if one
prescribes their values at the g

i
.

We observe that any two distance functions dχ, d̃χ with respect to the same triple I, χ, K are
equivalent in the sense that there exist c1, c2 ∈ R∗>0 such that

c1 · dχ(g)6 d̃χ(g)6 c2 · dχ(g) for all g ∈G(Af ).

In fact we can put c1 = min16i6n d̃χ(g
i
) · dχ(g

i
)−1 and c2 = max16i6n d̃χ(g

i
) · dχ(g

i
)−1.
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Example 1.15 (Compare [Har71]). Let

χI = χPI =
∑
α∈Φ+

α · dim(Lie(UI)α) ∈X∗(PI)⊂X∗(SI)⊂X∗(S0).

For g∞ ∈G(R), we denote by θg∞ the Cartan involution with respect to the compact group
g∞K∞g

−1
∞ , by Bg∞ the bilinear form Bg∞(X, Y ) =−B(X, θg∞Y ), where B is the Killing

form on g = Lie(G(R)), and by dg∞u∞ the Haar measure on UI(R) which is induced by the
restriction of Bg∞ to Lie(UI). Furthermore, let dgfuf be the Haar measure on UI(Af ) such that
UI(Af ) ∩ gfKfg

−1
f has volume 1. Then

dχI (g) = voldg∞u∞·dgf uf (UI(Q)\UI(A))

defines a distance function on G(A) with respect to χI and K.

Now we fix K and distance functions dα with respect to {α} ⊂∆, α ∈X∗(S{α})⊂X∗(S0)
and K.

The next two theorems summarize the main results of reduction theory.

Theorem 1.16. For every I ⊂∆, there exist C1 = C1(I)> 0 such that for every g ∈G(A) there
is δ ∈ PI(Q) satisfying

dα(δg)>C1 for all α ∈ I.

Remark. We may replace C1(I) by the constant C1 = minJ⊂∆ C1(J), which is independent
of I.

Proof. It is easy to see that it suffices to prove the theorem for one chosen K and a fixed family of
distance functions (dα)α∈∆. In the case I = ∆, i.e. PI =G, the claim is an immediate consequence
of Borel’s theorem as stated in [God62/63, Théorème 7]. For arbitrary I ⊂∆, let (xj)j∈J(I) with
xj ∈G(Af )⊂G(A) be a finite set of representatives for the double cosets PI(Af )\G(Af )/Kf .
For j ∈ J(I), define djα(p) = dα(pxj) as a distance function on MI = PI/UI with respect to {α},
α ∈X∗(S{α})⊂X∗(S0) and Kj = xjKfx

−1
j ∩ PI(A). Applying Borel’s theorem again, we get

constants Cj1 > 0 such that for every p ∈ PI(A) there exists δ ∈ PI(Q) satisfying djα(δp)>C1 for
all α ∈ I. In view of the double coset decomposition G(A) =

⋃
j∈J(I) PI(A)xjK, we now get the

claim with C1(I) = minj∈J(I) C
j
1 . 2

Theorem 1.17. For every C1 > 0 there exists C2 >C1 such that for I ⊂∆, δ ∈G(Q) and
g ∈G(A) the following implication holds:

if

dα(δg), dα(g)>C1 for all α ∈∆

and

dα(δg)>C2 for all α ∈∆− I,
then

δ ∈ PI(Q).

Proof. This is a reformulation of [Fra98, Theorem 1(3)]. 2
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The components

1.18 The spaces XI,J

Now we fix some maximal compact subgroup Km
∞ ⊂G(R) satisfying the conditions of Lemma 1.4

and some open normal subgroup K∞ ⊂Km
∞ satisfying G(R) = P0(R) ·K∞.

Let Z∞ be the connected component of the group of R-valued points of the maximal R-split
subtorus of the center ZG/R.

For J ⊂∆, we fix the notation

KJ
∞ = PJ(R) ∩K∞ =MJ(R) ∩K∞.

Let the group AJ (see 1.2, 1.5) act on the space

YJ := {(eα)α∈∆ ∈ R∆ | eα ∈ {+1,−1} for α ∈ J} ⊂ R∆

via the roots

a · (eα)α∈∆ = (α(a) · eα)α∈∆.

For I ⊂ J , the group AJ acts on the space PI(R)/KI
∞ · Z∞ via right translations, since AJ ⊂

SJ(R)⊂ SI(R) centralizes KI
∞ ⊂MI(R). For I ⊂ J , we can form the quotient space

XI,J :=G(Q)×PI(Q) (PI(R)/KI
∞ · Z∞)×AJ YJ . (7)

More precisely, we consider the quotient of G(Q)× PI(R)× YJ under the equivalence relation
(γ, p, y)∼ (γ′, p′, y′) if and only if there exist δ ∈ PI(Q), a ∈AJ , k ∈KI

∞ · Z∞ such that γ′ =
γδ, p′ = δ−1 · p · k · a, y′ = a · y.

Lemma 1.19. For I ⊂ I ′, the canonical map

PI(R)/KI
∞ · Z∞→ PI′(R)/KI′

∞ · Z∞

is an isomorphism.

Proof. The corresponding map with Z∞ replaced by {1} is injective by the definition of KI
∞.

Since the composite map P0(R)→ P0(R)/K∅∞→G(R)/K∞ is surjective by assumption, the claim
is now clear for Z∞ replaced by {1} and then obviously also for the original Z∞. 2

1.20 The manifold structure of XI,J

By the above lemma, we can replace PI(R)/KI
∞ · Z∞ by the corresponding space PJ(R)/KJ

∞ · Z∞
in (7). We denote by 0PJ the intersection of the kernels of all χ2, where χ ranges over all characters
χ : PJ → PJ/ZG→Gm. Then there is a unique decomposition PJ(R) = 0PJ(R) oAJ . We remark
that

(PJ(R)/KJ
∞Z∞ × R∆−J × {±1}J)/AJ ' 0PJ(R)/KJ

∞Z∞ × R∆−J × {±1}J .
Using a set of representatives for G(Q)/PI(Q) in G(Q), we can thus identify

XI,J = (G(Q)/PI(Q))× 0PJ(R)/KJ
∞Z∞ × R∆−J × {±1}J .

Since 0PJ(R)/KJ
∞Z∞ is a submanifold of the symmetric space PJ(R)/KJ

∞Z∞ 'G(R)/K∞Z∞,
we get a structure of XI,J as a differentiable manifold, if we equip G(Q)/PI(Q) and {±1}J with
the discrete topology, R∆−J with the usual structure as a manifold and then take the product
structure.
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1.21 Functoriality for XI,J

The isomorphism of Lemma 1.19 induces surjective maps which are coverings in the category of
differentiable manifolds:

π :XI,J �XI′,J for I ⊂ I ′ ⊂ J.
If I ⊂ J ′ ⊂ J , we get an injective map (injective by the definition of AJ)

i :XI,J ↪→XI,J ′ ,

which is induced from the inclusion YJ ↪→ YJ ′ . For I ⊂ I ′ ⊂ J ′ ⊂ J , we get a commutative
diagram.

XI,J //

��

XI′,J

��
XI,J ′ // XI′,J ′

(8)

Consequently, we get a functor X.,., from the category J∆ into the category of topological spaces.
We denote by X the direct limit over all spaces XI,J , where I ⊂ J ⊂∆:

X = lim−→XI,J .

1.22 The group H∞

We introduce the group

H∞ = (Km
∞ ∩ P0(R))/K∅∞ = (Km

∞ ∩ P0(R))/(K∞ ∩ P0(R)).

For all I ⊂∆, we have a canonical isomorphism ιI :H∞
∼−−→ (Km

∞ ∩ PI(R))/KI
∞: injectivity of

ιI is implied by KI
∞ ∩ P0(R) =K∅∞. For the surjectivity, observe that each g∞ ∈Km

∞ ∩ PI(R)
can be written in the form g∞ = p∞ · k∞ with p∞ ∈ P0(R) and k∞ ∈K∞. But then also
p∞ = g∞ · k−1

∞ ∈Km
∞, i.e. p∞ ∈Km

∞ ∩ P0(R) and therefore k∞ = p−1
∞ g∞ ∈ PI(R) ∩K∞ =KI

∞.
Since each element in Km

∞ ∩ P0(R) normalizes the groups KI
∞, Z∞ and AI , the group H∞

acts by right translations on the spaces XI,J and these actions are compatible with the maps π
and i.

1.23 Sign maps
Next we introduce the sign space Σ∆ = {−1, 0,+1}∆ and the sign map sign : R∆→ Σ∆, which
is component for component the usual sign map.

For y = (yα)α∈∆ ∈ R∆, we call supp(y) = {α ∈∆ | yα 6= 0} its support. This definition also
applies to the sign space Σ∆ ⊂ R∆, such that we have supp(y) = supp(sign(y)) for y ∈ R∆.

Since the action of AJ ⊂A∅ on R∆ fixes the signs, we get sign maps

sign :XI,J −→ Σ∆ and sign :X −→ Σ∆.

For I ⊂ J ′ ⊂ J , we have
XI,J

∼= {x ∈XI,J ′ | supp(x)⊃ J}.
We define, for J ⊂∆,

EJ := {x ∈X | supp(x) = J},
so that

X =
.⋃

J⊂∆

EJ .
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We have

{x ∈XI,J | supp(x) = J0}= ∅ for J * J0

and

{x ∈XI,J | supp(x) = J0} ∼= {x ∈XI,J0 | supp(x) = J0} for I ⊂ J ⊂ J0.

We consider XI,J as a set together with the support map to P(∆). The functor (I, J) 7→
(XI,J , sign) satisfies the conditions of Example 1.11 above. Then it is easy to see that

EJ0 = lim−→
I⊂J⊂J0

{x ∈XI,J | supp(x) = J0} ∼= {x ∈XJ0,J0 | supp(x) = J0}

∼= G(Q)×PJ0
(Q) PJ0(R)/KJ0

∞ ·AJ0 · Z∞ × {−1,+1}J0 × {0}∆−J0 .

1.24 The sign group S∆

The set S∆ = {−1,+1}∆ forms a group under componentwise multiplication. It acts on R∆, Σ∆

and YJ for all J ⊂∆ by componentwise multiplication and therefore also on all XI,J . We write
the action of S∆ as a right action. The sign map and all maps π, i are S∆-equivariant, so that
S∆ acts on X. S∆ may be identified with the set of all subsets of ∆: for J ⊂∆, we denote by
sJ = (rα)α∈∆ the element with rα =−1⇔ α ∈ J . It is rather obvious that

XsJ = {x ∈X | x · sJ = x}=
.⋃

I∩J=∅

EI .

1.25 The quotients XI,J(Kf) and X(Kf)
For a compact open subgroup Kf ⊂G(Af ), we introduce the spaces

XI,J(Kf ) =G(Q)\XI,J ×G(Af )/Kf

and

X(Kf ) =G(Q)\X ×G(Af )/Kf = lim−→
I,J

XI,J(Kf ).

We have a canonical identification

XI,J(Kf ) = PI(Q)\(PI(R)/KI
∞Z∞ ×AJ YJ)×G(Af )/Kf .

We fix an open compact subgroup Zf ⊂ ZG(Af ) (which will be assumed to be sufficiently small
later). In the following, we shall consider only such Kf that satisfy

Kf ∩ ZG(Af ) = Zf . (9)

The set of all Kf satisfying (9) is invariant under conjugation and under intersecting its members.
If Kf =K1

f · Zf for an open compact subgroup K1
f ⊂G(1)(Af ), then (9) is equivalent to the

condition K1
f ∩ ZG(Af )⊂ Zf . In the case K1

f =
∏
p K

1
p and Zf =

∏
p Zp, the local conditions

K1
p ∩ ZG(Qp)⊂ Zp have to be checked only for those finitely many p where Zp is not maximal

compact in ZG(Qp). We define the group

ζ = ZG(Q) ∩ (K∞ · Z∞ × Zf ).

It acts trivially (from the left) on each XI,J ×G(Af )/Kf and on X ×G(Af )/Kf . We now assume
that

For all gf ∈G(Af ), g∞ ∈G(R), we have (gfKfg
−1
f · g∞K∞Z∞g

−1
∞ ) ∩G(Q) = ζ. (AssKf )
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Lemma 1.26. Each Kf satisfying (9) contains open subgroups satisfying (AssKf ).

Proof. By shrinking Kf , we may assume Kf =K1
f · Zf for an open compact subgroup K1

f =∏
p K

1
p ⊂G(1)(Af ). We claim that we are done, if we replace some K1

p by an open pro-p-
subgroup (which will be denoted by the same symbol): let ζ̃ = (gfKfg

−1
f · g∞K∞Z∞g

−1
∞ ) ∩G(Q).

If n denotes the order of the finite algebraic group G(1) ∩ ZG, then there exists an isogeny of
tori ω :G/G(1)→ ZG such that π̃ ◦ ω is the multiplication by n, where π :G�G/G(1) is the
canonical projection and π̃ : ZG ↪→G� fG/G(1) the induced isogeny with kernel G(1) ∩ ZG.
For γ ∈ ζ̃, we get γn = σ · ρ with σ = ω(π(γ)) ∈ ZG(Q) ∩ ζ̃ = ζ and ρ ∈G(1)(Q) ∩ ζ̃. The rational
element ρ is now of finite order, since its archimedian component lies in the compact group
g∞K∞g

−1
∞ . But, the p-component of ρ is contained in the product of the torsion-free pro-p-group

gp ·K1
p · g−1

p and a subgroup of the finite central group (G(1) ∩ ZG)(Qp). Therefore, ρ must be
central, i.e. ρ ∈ ZG(Q) ∩G(1)(Q) ∩ ζ̃ = ζ and thus γn ∈ ζ. Looking again at the p-component and
using that gp ·K1

p · g−1
p is a pro-p-group, we conclude that already γ must be central, i.e. γ ∈ ζ. 2

Lemma 1.27. The action of G(Q)/ζ on each XI,J ×G(Af )/Kf and therefore on X ×G(Af )/Kf

is free of fixed points.

Proof. Let ((γ, p, y), gf ) be a representative of an element of XI,J ×G(Af )/Kf which is a fixed
point under δ ∈G(Q). Then there exist ρ ∈ PI(Q), k∞ ∈KI

∞, a ∈AI , z∞ ∈ Z∞, kf ∈Kf such
that

(δγ, p, y, δgf ) = (γρ, ρ−1pk∞z∞a, ay, gfkf ).

This means ρ= γ−1δγ = γ−1gfkfg
−1
f γ ∈ γ−1gfKfg

−1
f γ ∩ PI(Af ). Since the latter is a compact

subgroup of PI(Af ), its image under the absolute value of each root α ∈∆− I must be 1.
Thus, |α(ρ)|∞ = |α(ρ)|−1

f = 1. On the other hand, we have a= z−1
∞ k−1

∞ p−1ρp and therefore
α(a) = |α(a)|= |α(z∞)−1| · |α(k∞)−1| · |α(ρ)|∞ = 1 for all α ∈∆− I. Since we know this already
for α ∈ J ⊃ I, we get a ∈A∆ = {1}. Now ρ ∈G(Q), ρ ∈ γ−1gfKfg

−1
f γ and ρ ∈ pK∞Z∞p−1.

Therefore, ρ ∈ ζ by assumption (AssKf ). Since ρ is central, the equation δγ = γρ implies δ = ρ ∈ ζ,
i.e. δ represents the identity in G(Q)/ζ. 2

1.28 For each distance function dα :G(A)→ R∗>0 associated to α ∈∆, we define a function
Dα :X∅,J → R>0 by

Dα(γ, p∞, y) = dα((p∞, γ−1
f ))−1 · |yα|.

This is well defined, since we have |α|(δ∞, δf )|= 1 for δ ∈ P0(Q) by the product formula for the
norm, so that

Dα(γδ, δ−1p∞a, ay) = dα(δ−1
∞ p∞a, δ

−1
f γ−1

f )−1 · |α(a) · yα|

= |α|(δ∞, δf )|−1 · |α|(a)−1 · dα(p∞, γ−1
f )−1 · |α(a)| · |yα|

= Dα(γ, p∞, y).

In the same way, we consider the function

Dα :X∅,J(Kf ) =G(Q)\(X∅,J ×G(Af )/Kf )→ R>0

defined by

Dα((γ, p∞, y), gf ) = dα((p∞, γ−1
f gf ))−1 · |yα|.
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Gluing together

1.29 The neighborhoods UI,J and VI,J
Let C1 be a constant as in Theorem 1.16 and C2 >C1 be an associated constant as in
Theorem 1.17. We define UI,J ⊂X∅,J by

UI,J = {x ∈X∅,J |Dα(x)<C−1
1 for α ∈ I, Dα(x)<C−1

2 for α ∈∆− I}.

For I ⊂ J , we denote by VI,J ⊂XI,J the image of UI,J under the projection X∅,J →XI,J .
We recall from § 1.23 that

X =
.⋃

J0⊂∆

{x ∈XJ0,J0 | supp(x) = J0}.

The relation C−1
1 >C−1

2 implies UI,J ⊂ UK,J for I ⊂K ⊂ L⊂ J . Together with the canonical
inclusion UK,J ⊂ UK,L, this gives UI,J ⊂ UK,L and induces a map

ΦK,L
I,J : VI,J →VK,L.

Lemma 1.30. The maps ΦK,L
I,J are injective.

Proof. Let ΦK,L
I,J (x1) = ΦK,L

I,J (x2), where x1, x2 ∈ VI,J . Write xi = ΦI,J
∅,J (x̃i), where x̃i =

(γi, pi, yi) ∈ UI,J . Since ΦK,L
∅,J (γ1, p1, y1) = ΦK,L

∅,J (γ2, p2, y2), there exist δ ∈ PK(Q) and a ∈AL
satisfying γ2 = γ1 · δ−1, p2 = δp1a, y2 = a · y1. Since the α-components of yi equal ±1 for α ∈ J ,
we get α(a) = 1 for α ∈ J , i.e. a ∈AJ . There exists a2 ∈AJ such that y0 := a2 · y1 has components
−1, 0,+1 and such that dα(p1 · a2, (γ1)−1

f )>C2 and dα(p2 · a−1 · a2, (γ2)−1
f )>C2 for all α with

(y1)α = 0 = (y2)α. Then we have xi = ΦI,J
∅,J (x′i), where x′1 = (γ1, p1 · a2, y0) =: (γ1, p

′
1, y0) and

x′2 = (γ2, p2 · a−1 · a2, y0) =: (γ2, p
′
2, y0). With g = (P ′1(γ1)−1

f ) we have (p′2, (γ2)−1
f ) = δ · g and

dα(g), dα(δg)>C2 for α ∈∆− I and dα(g), dα(δg)>C1 for α ∈ I. By Theorem 1.17, we get
δ ∈ PI(Q). This means x1 = x2 in XI,J . 2

Lemma 1.31. VJ,J contains {x ∈XJ,J | supp(x) = J}.

Proof. If x= (γ, p, y) ∈XJ,J has support J , we can find by Theorem 1.16 some δ ∈ PJ(Q) such
that dα(δ · g)>C1 for all α ∈ J , where g = (p, (γf )−1). Then x′ = (γδ−1, δp, y) ∈X∅,J lies in UJ,J
and has x as its image in XJ,J (observe Dα(x′) = 0 for α /∈ J and |yα|= 1 for α ∈ J). 2

Lemma 1.32. The composite map VI,J
i−→XI,J

π−−→X is injective.

Proof. The support of each x ∈ VI,J contains J . Consider the following commutative diagram for
J ⊂ L.

{x ∈ VI,L | supp(x) = L} //

∼
��

{x ∈ VL,L | supp(x) = L}= {x ∈XL,L | supp(x) = L}

∼
��

{x ∈ VI,J | supp(x) = L} // {x ∈XI,J | supp(x) = L}= {x ∈X | supp(x) = L}

This implies the injectivity. 2

From now on, we may and will identify VI,J with its image in X.
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Lemma 1.33. With this identification we have

VI,J ∩ VK,L = VI∩K,J∪L for I ⊂ J, K ⊂ L.

Proof. The inclusion ⊃ being trivial, we assume x ∈ VI,J ∩ VK,L, i.e. there are x1 = (γ1, p1, y1) ∈
UI,J ⊂X∅,J and x2 = (γ2, p2, y2) ∈ UK,L ⊂X∅,L having the same image x ∈X. If S = supp(x1) =
supp(x2) denotes the support of x, then by Example 1.11 above x1 and x2 become equal in XS,S ,
i.e. there exist δ ∈ PS(Q) and a ∈AS such that

γ2 = γ1 · δ−1, p2 = δ · p1 · a, y2 = a · y1. (10)

We may assume (y1)α = (y2)α =±1 for α ∈ S. Since J, L⊂ S, we have AS ⊂AJ and may assume
on replacing x1 by (γ1, p1 · a, a · y1) that we have a= 1 in (10). We put g = (p1, (γ1)−1

f ). After
modifying p1 and p2 by an element of AS from the right, we may assume dα(g)>C2, dα(δg)>C2

for α /∈ S. Then the assumption on x1 and x2 may be restated as

dα(g)>C1 for α ∈ I, dα(g)>C2 for α ∈∆− I,
dα(δg)>C1 for α ∈K, dα(δg)>C2 for α ∈∆−K.

This implies δ ∈ PK(Q), δ−1 ∈ PI(Q) by Theorem 1.17 and therefore δ ∈ PI(Q) ∩ PK(Q) =
PI∩K(Q). So, we may assume x1 = x2 ∈ UI,J ∩ UK,L = UI∩K,J∪L and the claim is proven. 2

1.34 Continuation of Example 1.11

For X = lim−→XI,J , we denote by ΦI,J :XI,J →X the canonical map. For a subset UI0,J0 ⊂XI0,J0 ,
we may compute the sets

U∞I,J := (ΦI,J)−1(ΦI0,J0(UI0,J0))⊂XI,J

in the following way: we put

U0
I,J =

{
∅ for (I, J) 6= (I0, J0),
UI0,J0 for (I, J) = (I0, J0),

and then inductively for j > 0:

U2j+1
I,J :=

⋃
I⊂K⊂L⊂J

(ΦK,L
I,J )−1(U2j

K,L),

U2j+2
I,J :=

⋃
K⊂I,J⊂L

ΦI,J
K,L(U2j+1

K,L ).

Then we get

U∞I,J =
⋃
j>0

U jI,J .

Recall from Example 1.8 the description of the topology on X, if X·,· is a functor to the
category of topological spaces.

Lemma 1.35. If the maps ΦK,L
I,J are all open, then the maps ΦI,J are open, too.

We have to show that all U∞I,J ⊂XI,J are open if UI0,J0 ⊂XI0,J0 is open. But, by induction,
all U jI,J are open for all j > 0 and so is their union U∞I,J .
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Now we associate to XI,J the quotient topology with respect to the actions of PI(Q), Z∞
and AJ , where PI(Q)⊂G(Q) carries the discrete topology and the other two factors the usual
topology. Then it is obvious that the maps ΦK,L

I,J are open.
We conclude from Lemma 1.31 that the VI,J form an open cover of X and that already the

VI,I form an open cover.

Lemma 1.36. For x̃ ∈ UI,J and β ∈ J , there exists a constant C0 = C0(I, β, x̃)> 0 depending
continuously on x̃ such that Dβ(δx̃)> C0 for all δ ∈ PJ(Q) with δx̃ ∈ UJ,J .

Proof. Let x̃ be represented by (γ, p∞, y). Put g = (p∞, γ−1
f ) ∈ P0(R)×G(Af ). After modifying

the representative, we may assume yα ∈ {−1, 0,+1} for all α ∈∆, especially |yα|= 1 for α ∈ J ,
and dα(g)>C2 for α ∈∆− J . We have to prove that

dβ(δg)6 C−1
0 for all δ ∈ PJ(Q) with δx̃ ∈ UJ,J .

Let δ ∈ PJ(Q) with δx̃ ∈ UJ,J . We may assume dα(δg)>C2 for all α ∈∆− J by modifying
p∞ once more without changing dα(δg) and dα(g) for α ∈ J : if |yα|= 1, then the condition
Dα(δx̃)<C−1

2 is equivalent to dα(δg)>C2, while, for yα = 0, we can modify p∞ by multiplication
with a suitable element of AJ , which does not change the other values of distance functions.

For β ∈ J , there exists a character χJ−{β},β ∈X∗(PJ−{β})⊗Q whose restriction to
X∗(SJ−{β}) coincides with the restriction of β. In X∗(S0)⊗Q, we have a relation of the type

χJ−{β},β = β +
∑

α∈J−{β}

cJ,β,α · α with cJ,β,α ∈Q.

Assume dβ(δg)>C2. This implies δ ∈ PJ−{β}(Q) by Theorem 1.17 and furthermore

dχJ−{β},β (g) = dχJ−{β},β (δg),

which can be rewritten

dβ(δg) = dβ(g) ·
∏

α∈J−{β}

(
dα(δg)
dα(g)

)−cJ,β,α
< C

−
∑
α∈J−{β} cJ,β,α

1 · dβ(g) ·
∏

α∈J−{β}

dα(g)cJ,β,α =: C3.

Thus, we have proved dβ(δg)6max(C2, C3). If we put C0 := (max(C2, C3))−1, we get the
claim. 2

Proposition 1.37. The space X is Hausdorff.

Proof. Let us assume x̃ ∈ UI,I maps to x ∈ VI,I and ỹ ∈ UJ,J maps to y ∈ VJ,J , and x 6= y,
supp(x) = I and supp(y) = J . If I = J , then we can use the fact that VI,I ⊂XI,I is Hausdorff,
so let us assume I 6= J ; without loss of generality, α /∈ I, α ∈ J for some α ∈∆. For ε > 0, define
Uε(y) to be the (topological) interior of the set

{z ∈ VJ,J |DχJ−{α},α(z̃)> ε for all z̃ ∈ UJ,J mapping to z}.

Let U1(ỹ) be an open neighborhood of ỹ lying relatively compact in some neighborhood U2(ỹ).
Let ε0 > 0 be half the maximum of the set of numbers C0(J, α, ỹ0) ·

∏
β∈J−{α} C0(J, β, ỹ0)cJ,α,β ,

where ỹ0 ranges over U1(ỹ). Then U1(ỹ) maps into Uε0(y) via the projection map: let y0 = p(ỹ0)
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be in the image of U1(ỹ). We have to prove that DχJ−{α},α(δỹ0)> ε0 for all δ ∈ PJ(Q) such that
δỹ0 ∈ UJ,J . But, this may be deduced from Lemma 1.36.

Next we define UI,J(C̃2) and VI,J(C̃2) to be the sets obtained by replacing C2 by C̃2 > C2

in the definitions of UI,J and VI,J . We have x ∈ VI,I(C̃2) for all such C̃2, since supp(x) = I
and since VI,I(C̃2) is an open neighborhood of x. We claim that VI,I(C̃2) ∩ Uε0(y) = ∅ if C̃2 is
sufficiently large.

Let z ∈ VI,I(C̃2) ∩ Uε0(y)⊂ VI,I(C̃2) ∩ VJ,J(C2) = VI∩J,I∪J(C2, C̃2), the latter being defined
as the image under projection of

UI∩J,I∪J(C2, C̃2) =

x ∈X∅,I∪J
∣∣∣∣∣∣
Dα(x)<C−1

1 for α ∈ I ∩ J,
Dα(x)<C−1

2 for α ∈ I − (I ∩ J),
Dα(x)< C̃−1

2 for α ∈∆− I

.
We have a commutative diagram.

UI,J

��

UI∩J,I∪Joo //

��

UJ,J

��
VI,I VI∩J,I∪Joo // VJ,J

If z ∈ VI,I(C̃2) ∩ Uε0(y) is the image of some z̃ ∈ UI∩J,I∪J(C2, C̃2), then we have DχJ−{α},α(z̃)> ε0

by the definition of Uε0(y). On the other hand,

DχJ−{α},α(z̃) =Dα(z̃) ·
∏

β∈J−{α}

Dβ(z̃)cJ−{α},α,β < C̃−1
2 · C−

∑
β cJ−{α},α,β

1

and this is < ε0 if C̃2 is sufficiently large. This contradiction proves V(C̃2) ∩ Uε0(y) = ∅. 2

Proposition 1.38. The action of G(Q)/ζ on X ×G(Af )/Kf is properly discontinuous.

Proof. In view of Proposition 1.37, this reduces to the same statement for the action of G(Q)/ζ
on spaces of the form VI,I ×G(Af )/Kf , where the property is well known. 2

Proposition 1.39. The space G(Q)\X ×G(Af )/Kf is compact. It is a differentiable manifold,
if Kf satisfies (AssKf ).

Proof. The Hausdorff property of the quotient is a consequence of Propositions 1.37 and 1.38. To
prove compactness, it is thus sufficient to prove that the image of each VI,I ×G(Af )/Kf under
the quotient map is relatively compact for every I ⊂∆. This may be deduced from ordinary
reduction theory, especially the properties of Siegel sets. The manifold property is a consequence
of Lemma 1.27. 2

1.40 We recall the sign map sign :X → Σ∆, where Σ = {−1, 0, 1}. We denote by XBS the inverse
image of {0, 1}∆ in X under the sign map and by Xsp 'G(R)/K∞ · Z∞ the inverse image of {1}∆
under the sign map. Similarly, we introduce the spaces XBS(Kf ) =G(Q)\XBS ×G(Af )/Kf and
Xsp(Kf ) =G(Q)\Xsp ×G(Af )/Kf .

Proposition 1.41. (a) The space XBS is homeomorphic to the quotient space X/S∆ under
the canonical map XBS ↪→X �X/S∆.
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(b) The space XBS(Kf ) is homeomorphic to the quotient space X(Kf )/S∆ for every open
compact subgroup Kf ⊂G(Af ).

(c) The space XBS(Kf ) is the compactification of Xsp(Kf ) in the sense of Borel and
Serre [BS73].

Proof. Parts (a) and (b) are clear. Since we do not use the original construction of Borel and
Serre in this paper, we leave the proof of part (c) as an exercise to the interested reader. 2

2. Sets of fixed points of Hecke correspondences

Normalizations of outer automorphisms
In the following technical subsection, we introduce the quantities gη and pη attached to an
automorphism of finite order η and derive some properties of them. The reader may skip these
considerations, since we have gη = 1 and pη = 1 in several applications.

2.1 η and η1

Let η :G→G be an automorphism of G, which is defined over Q and which is of finite order n.
Since Z∞ is by its definition an invariant subgroup, we have

η(Z∞) = Z∞.

Since all pairs (P, S), where P is a minimal Q-parabolic and S is a maximal Q-split torus lying
in P , are conjugate by elements of G(Q), there exists gη ∈G(Q) such that

η(P0) = gη · P0 · g−1
η , η(S0) = gη · S0 · g−1

η .

We may thus define the automorphism

η1 :G→G, x 7→ g−1
η · η(x) · gη.

Since η1(P0) = P0 and η1(S0) = S0, there must be a permutation of ∆, which we denote also by
η, such that

α ◦ η−1
1 = η(α) for α ∈∆, α : S0→Gm

and thus

η1(SJ) = {η1(s) | α(s) = 1 for all α ∈ J}◦

= {s | α(η−1
1 (s)) = 1 for all α ∈ J}◦

= Sη(J)

and therefore

η1(PJ) = Pη(J), η1(MJ) =Mη(J),

i.e.

η(PJ) = gηPη(J)g
−1
η , η(MJ) = gηMη(J)g

−1
η .

2.2 η2

The finite group {1, η, . . . , ηn−1} has a common fixed point when acting (as group of isometries!)
on the connected (!) symmetric space (of negative sectional curvature!) of maximal compact
subgroups of G(R) (compare [BGS85, Lemma 6.3]). Since all maximal compact subgroups
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of G(R) are conjugate by elements of P0(R), there exists b ∈ P0(R) such that

η(b ·Km
∞ · b−1) = b ·Km

∞ · b−1

or equivalently

η(Km
∞) = η(b)−1b ·Km

∞ · b−1η(b).

Write

g−1
η · η(b)−1 · b= pη · kη with pη ∈ P0(R), kη ∈K∞. (11)

Then η1(Km
∞) = pηK

m
∞p
−1
η and η(Km

∞) = gηpηK
m
∞p
−1
η g−1

η . Define

η2 :G(R)→G(R), x 7→ p−1
η η1(x)pη = p−1

η g−1
η η(x)gηpη.

We have η2(Km
∞) =Km

∞ and assume that (the assumption is automatically satisfied if K∞ is an
invariant subgroup of Km

∞, e.g. if K∞ = (Km
∞)◦)

η2(K∞) =K∞, (AssK)

i.e.

η(K∞) = gηpηK∞p
−1
η g−1

η .

Since η2(Km
∞) =Km

∞, the algebraic involution η2 ◦ θ0 ◦ η−1
2 :G(R)→G(R) fixes Km

∞
pointwise. By [BS73, 1.6], it has to be the Cartan involution θ0:

η2 ◦ θ0 = θ0 ◦ η2.

Since pη ∈ P0(R), we have

η2(P0(R)) = P0(R). (12)

Therefore,

η2(M0(R)) = η2(P0(R) ∩ θ0(P0(R))) = η2(P0(R)) ∩ η2(θ0(P0(R)))
= P0(R) ∩ θ0(η2(P0(R))) =M0(R).

Since η1(M0(R)) =M0(R), we get p−1
η M0(R)pη =M0(R). If we write pη =mη · uη with mη ∈

M0(R), uη ∈ U0(R), we get u−1
η M0(R)uη =M0(R), which implies uη = 1 by Lemma 1.3.

Therefore,

pη ∈M0(R). (13)

From this relation, we conclude

η2(PI(R)) = Pη(I)(R),
η2(MI(R)) =Mη(I)(R),

η2(KI
∞) =Kη(I)

∞ .

2.3 Norm maps

The (naive) norm map N =N0 :G→G is defined by

N (g) = ηn−1(g) · ηn−2(g) · · · · · η(g) · g.

There are analogous maps N1,N2 :G→G defined by

Ni(g) = ηn−1
i (g) · ηn−2

i (g) · · · · · ηi(g) · g.
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The norm maps satisfy the following rules (i= 0, 1, 2; we put N0 =N , η0 = η):

Ni(ηi(x) · g · x−1) = ηni (x) · Ni(g) · x−1, (14)
Ni(ηi(x)−1 · x · g) = ηni (x)−1 · Ni(xgx−1) · x (15)

and we remark that

x = ηn(x) = ηn−1(gηpηη2(x)p−1
η g−1

η )

= ηn−1(gηpη) · ηn−2(gηpη) · ηn−2(η2
2(x)) · ηn−2(gηpη)−1 · ηn−1(gηpη)−1

= · · ·=N (gηpη) · ηn2 (x) · N (gηpη)−1 (16)

and

η2(N (gηpη)) = p−1
η g−1

η η(N (gηpη))gηpη
= p−1

η g−1
η ηn(gηpη)N (gηpη) =N (gηpη). (17)

Using (12), the equation (16) implies P0(R) =N (gηpη) · P0(R) · N (gηpη)−1, and we conclude

N (gηpη) ∈ P0(R).

On the other hand, we reformulate (11):

gηpη = η(b)−1 · b · k−1
η .

This implies

N (gηpη) = b−1 · N (b · k−1
η · b−1) · b

= (b−1ηn−1(bk−1
η b−1)b) · (b−1ηn−2(bk−1

η b−1)b) · · · · · (b−1η(bk−1
η b−1)b) · k−1

η

= N3(k−1
η ),

where N3 is the norm map associated to the automorphism η3 :G→G, g 7→ b−1η(bgb−1)b. Since
η3(g) = (η(b)−1 · b)−1 · η(g) · (η(b)−1 · b) = k−1

η · (gηpη)−1 · η(g) · gηpηkη = k−1
η · η2(g) · kη, we have

η3(K∞) = k−1
η ·K∞ · kη =K∞ and therefore N (gηpη) ∈K∞. This implies part (a) of the

following lemma.

Lemma 2.4. (a) N (gηpη) ∈K∅∞ = P0(R) ∩K∞ =M0(R) ∩K∞.

(b) N (gηpηg) =N (gηpη) · N2(g) for g ∈G(R).

(c) N (gηg) =N (gη) · N1(g) for g ∈G(R).

The proof of part (b) is by induction on n (this may be done if we ignore the assumption
that ηn = id for the original n): let N ′,N ′2 be the norm maps with respect to the index n− 1.
Then

N (gηpηg) = ηn−1(gηpηg) · N ′(gηpηg) = ηn−1(gηpη) · ηn−1(g) · N ′(gηpη) · N ′2(g)
= ηn−1(gηpη) · N ′(gηpη) · ηn−1

2 (g) · N ′(gηpη)−1 · N ′(gηpη) · N ′2(g)
= N (gηpη) · N2(g).

The proof of part (c) is completely analogous.

2.5 We remark that N (gηγ) ∈ PI(Q) if γ ∈ PI(Q) and η(I) = I. This is a consequence of
N (gηγ) =N (gη)N1(γ): we have N (gη) ∈ P0(Q)⊂ PI(Q), since P0(Q) = ηn(P0(Q)) =N (gη) ·
ηn1 (P0(Q)) · N (gη)−1 =N (gη) · P0(Q) · N (gη)−1, and N1(γ) ∈ PI(Q), since η1(PI) = Pη(I) = PI .
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Correspondences and fixed point sets
In this section, we will define an action of η on the space X(Kf ) and will define a Hecke
correspondence H. In the rest of this and the next section, we will compute the set of fixed
points F (H) of this correspondence: F (H) will be the disjoint union of sets F (H)I,γ,gf which are
like locally symmetric spaces. The reader may read the summary § 2.24 for more details.

2.6 The action of η on XI,J

Let η act on the family of spaces XI,J as follows:

η :XI,J → Xη(I),η(J),

(γ, p, y) 7→ (η(γ) · gη, η1(p) · pη, η(y)),

where γ ∈G(Q), p ∈ PI(R), y ∈ YJ . If we interpret y = (yα)α∈∆ as a map ∆→ R, then η(y) is
defined to be the map y ◦ η−1 : ∆→ R. This means η(y) = (yη−1(α))α∈∆. The action η is well
defined on the quotient XI,J : if δ ∈ PI(Q), k ∈KI

∞, a ∈AJ , then

η(γδ, δ−1pka, a(yα)α∈∆) = (η(γδ)gη, η1(δ)−1η1(p)η1(k)η1(a) · pη, η((α(a) · yα)α∈∆))
= (η(γ)gηη1(δ), η1(δ)−1 · η1(p)pηη2(k) · η1(a), (η−1(α)(a) · yη−1(α))α∈∆)
∼ (η(γ)gη, η1(p)pη, (yη−1(α))α∈∆)) = η(γ, p, (yα)α∈∆).

Here we used η−1(α)(a) = α(η1(a)), which is an immediate consequence of the defining equation
α ◦ η−1

1 = η(α). Observe pη ∈M0(R) centralizes AJ for all J , so that η1(a) = η2(a).

2.7 The action of η on X(Kf)
For Kf open compact, we have the following map induced by η:

η :XI,J(Kf ) → Xη(I),η(J)(η(Kf ))
((γ, p, y), gf ) 7→ ((η(γ)gη, η1(p) · pη, η(y)), η(gf )).

This induces a map η :X(Kf )→X(η(Kf )) in the obvious way. We may rewrite this map using
the identification

XI,J(Kf )∼= PI(Q)\((PI(R)/KI
∞Z∞ ×AJ YJ)×G(Af )/Kf )

in the following form.

η : (p, y, gf ) � // (η1(p) · pη, η(y), g−1
η · η(gf ))

(1, p, y, gf ) � // (η(1) · gη, η1(p) · pη, η(y), η(gf ))

2.8 The Hecke correspondence
Now we take some sJ ′ ∈ S∆, some h∞ ∈Km

∞ ∩M0(R) and some hf ∈G(Af ). We consider the
map

H=H(sJ ′) = (h∞, sJ ′ , hf ) ◦ η :X(Kf )→X(η(Kf ))→X(h−1
f η(Kf )hf )

induced by the maps

XI,J(Kf )→Xη(I),η(J)(η(Kf ))→Xη(I),η(J)(h
−1
f η(Kf )hf )

(p, y, gf ) 7→ (η1(p)pη, η(y), g−1
η η(gf )) 7→ (η1(p)pη · h∞, η(y) · sJ ′ , g−1

η η(gf )hf ).
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We put K ′f =Kf ∩ η−1(hfKfh
−1
f ). Then H maps as follows:

H :X(K ′f )→X(h−1
f η(Kf )hf ∩Kf ) =X(h−1

f η(K ′f )hf )�X(Kf ).

We will also consider the canonical projection induced from the inclusion K ′f ↪→Kf :

κ :X(K ′f )→X(Kf ).

We finally make the assumption
η(Zf ) = Zf . (AssZf )

This implies η(ζ) = ζ.

2.9 Set of fixed points: sign conditions
We want to describe the set of fixed points:

F (H) = {x ∈X(K ′f ) | κ(x) =H(x)}.

From sign(H(x)) = sign(η(x)) · sJ ′ and sign(κ(x)) = sign(x), we get the following necessary
condition for x ∈ F (H):

sign(x) = (sign(x)) ◦ η−1 · sJ ′ , (19)

which implies for I = supp(x) that

η(I) = I and #(J ′ ∩ {α, η(α), . . . , ηn−1(α)}) is even for all α ∈ I.

Conversely, if the last two conditions are satisfied for some I ⊂∆, one can construct an x such
that supp(x) = I and sign(x) satisfies (19). The conditions imply especially that

supp(x)η ∩ J ′ = ∅.

2.10 Set of fixed points: conditions
Now let I = supp(x), x ∈ F (H). By the description of EI ⊂X, this means, if we write x=
(p, y, gf ) with p ∈ PI(R) and y = sign(x),

(η1(p)pηh∞, η(y)sJ ′ , g−1
η η(gf )hf )∼ (p, y, gf ),

i.e. there exist γ ∈ PI(Q), k∞ ∈KI
∞, z∞ ∈ Z∞, a ∈AI , kf ∈Kf such that

(1) g−1
η η(p)gηpηh∞ = γpk−1

∞ z−1
∞ a−1;

(2) η(y)sJ ′ = a−1y;
(3) g−1

η η(gf )hf = γgfk
−1
f .

The condition (2) is equivalent to sign(η(x)) · sJ ′ = sign(x), since we have a · y = y for supp(y) = I
and a ∈AI . As before, this implies η(I) = I. We rewrite (1) and (3) as follows:

(1′) η(p)−1(gηγ)p= gηpηh∞az∞k∞;
(3′) η(gf )−1(gηγ)gf = hfkf .

The equation (1′) implies by taking norms

(1N ) p−1 · N (gηγ) · p=N (gηpη) · N2(h∞ · a · z∞ · k∞).

The map η2 takes AI , Z∞ and KI
∞ to themselves, and h∞ normalizes KI

∞Z∞AI . Therefore, we
have the following necessary condition, if we take Lemma 2.4(a) into account:

p−1 · N (gηγ) · p ∈N2(h∞) ·KI
∞Z∞AI . (20)
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2.11 Converse conditions

For some I ⊂∆ with η(I) = I and some fixed γ ∈ PI(Q), let us assume conversely that N (gηγ)
is conjugate in PI(R) to an element of N2(h∞) ·KI

∞Z∞AI , i.e. that (20) is satisfied with
some p1 ∈ PI(R) instead of p. We consider the map

η̃γ,h∞ : PI(R)→ PI(R),
p 7→ γ−1η1(p)pη · h∞ = γ−1g−1

η η(p)gηpηh∞ = γ−1 · pη · η2(p) · h∞.

It is easy to calculate the nth power of η̃γ,h∞ (compare Lemma 2.4(b)):

(η̃γ,h∞)n(p) = N (gηγ)−1 · ηn(p) · N (gηpηh∞)
= N (gηγ)−1 · p · N (gηpη) · N2(h∞). (21)

For k ∈KI
∞Z∞AI , we get η̃γ,h∞(pk) = η̃γ,h∞(p) · h−1

∞ · η2(k) · h∞ with h−1
∞ η2(k) · h∞ ∈

KI
∞Z∞AI . Therefore, η̃γ,h∞ induces a map from PI(R)/KI

∞Z∞AI to itself, which will be denoted
by the same symbol. Let

F (gη, γ) = {p ∈ PI(R) | (η̃γ,h∞)n(p) ∈ p ·KI
∞Z∞AI}.

Then this set is invariant under right translations by elements of KI
∞Z∞AI and the quotient

space

F̃ (gη, γ) = F (gη, γ)/KI
∞Z∞AI

is the space of invariants of the nth power map (η̃γ,h∞)n acting on PI(R)/KI
∞Z∞AI .

The map η̃γ,h∞ leaves F̃ (gη, γ) and F (gη, γ) invariant.

By (21), we may describe F (gη, γ) as the set of p ∈ PI(R) satisfying p−1N (gηγ)p ∈N (gηpη) ·
N2(h∞) ·KI

∞Z∞AI . But, since N (gηpη) ∈KI
∞ and since N2(h∞) ∈ (Km

∞) ∩M0(R) normalizes
KI
∞Z∞AI , this condition may be rewritten in the following form:

F (gη, γ) = {p ∈ PI(R) | p−1N (gηγ)p ∈N2(h∞) ·KI
∞Z∞AI}.

By assumption, we have F (gη, γ) 6= ∅.

2.12 Now fix some p1 ∈ F (gη, γ), i.e. p−1
1 · N (gηγ) · p1 =N2(h∞) · k1 with k1 ∈KI

∞Z∞AI . We
want to describe the set of connected components of F̃ (gη, γ). Let KI,m

∞ =Km
∞ ∩ PI(R) and let

p be a complement to Lie(KI
∞Z∞AI) in Lie(PI(R)) which is invariant under the adjoint action

of KI,m
∞ Z∞AI .

Lemma 2.13. Each p ∈ F (gη, γ) has a unique representation

p= p1 · exp(π) · k where k ∈KI,m
∞ Z∞AI and π ∈ pAd(N2(h∞)k1). (22)

Conversely, each p ∈ PI(R) of the form (22) lies in F (gη, γ). Here pAd(N2(h∞)k1) denotes the set
of elements in p fixed by the adjoint action of p−1

1 N (gηγ)p1 =N2(h∞)k1.

Proof. Recall that p−1
1 · p has a unique Iwasawa decomposition

p−1
1 · p= exp(π) · k where π ∈ p and k ∈KI,m

∞ Z∞AI ,
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and we have to prove π ∈ pAd(N2(h∞)k1) for p ∈ F (gη, γ). We calculate

p−1 · N (gηγ) · p = k−1 exp(π)−1p−1
1 N (gηγ)p1 exp(π)k

= k−1 exp(π)−1N2(h∞)k1 exp(π)k
= k−1 exp(π)−1 exp(Ad(N2(h∞)k1)π)N2(h∞)k1k

= exp(Ad(k−1)π)−1 · exp(Ad(k−1N2(h∞)k1)π) · k−1N2(h∞)k1k.

Now for p ∈ F (gη, γ) there exists k2 ∈KI
∞Z∞AI such that

p−1 · N (gηγ) · p=N2(h∞) · k2. (23)

The combination of the last two equations can be rewritten in the form

exp(Ad(k−1) Ad(N2(h∞)k1)π) · k−1N2(h∞)k1k = exp(Ad(k−1)π) · N2(h∞)k2

and, by the uniqueness of the Iwasawa decomposition, this is equivalent to the system of equations

Ad(N2(h∞)k1)π = π and k−1N2(h∞)k1k =N2(h∞)k2, (24)

so that π ∈ pAd(N2(h∞)k1).
Conversely, if p is of the form (22), we may define k2 by the equation (24). But then k2

lies automatically in KI
∞Z∞AI because k1 does so and KI

∞ is a normal subgroup in KI,m
∞ with

abelian quotient, so that

k−1N2(h∞)KI
∞Z∞AIk =N2(h∞)KI

∞Z∞AI .

Reversing the above calculation then gives the equation (23), so that each p of the form (22)
belongs to F (gη, γ). 2

2.14 Description of F̃ (gη, γ)

From KI,m
∞ ∩ Z∞AI = {1}, we get an isomorphism of cosets KI,m

∞ Z∞AI/K
I
∞Z∞AI 'K

I,m
∞ /KI

∞.
Now the preceding lemma implies that we get a bijection

F̃ (gη, γ) ∼= pAd(N2(h∞)k1) × (KI,m
∞ /KI

∞)
p1 · exp(π) · k ← (π, k mod KI

∞).

Since the Iwasawa decomposition induces a homeomorphism, this is a homeomorphism, too.
Thus, we can read off immediately the description of the set of connected components of F̃ (gη, γ)
by the following isomorphism:

P1 :KI,m
∞ /KI

∞
∼−−→ π0(F̃ (gη, γ))

class of k 7−→ class of p1k.
(25)

2.15 Fixed points of η̃γ,h∞
Next we assume that η̃γ,h∞ has a fixed point if acting on the finite set π0(F̃ (gη, γ)) of connec-
ted components. Then η̃γ,h∞ induces an isometric automorphism of finite order of this connected
component, which is a Riemannian manifold of negative curvature (i.e. the sectional curvature
is 60). By [Hel62, I, Theorem 13.5] or [BGS85, 6.3], it has a fixed point on this connected
component. We may already assume that p1 is this fixed point:

γ−1g−1
η η(p1)gηpηh∞ = p1 · k0 with k0 ∈ LI∞ =KI

∞Z∞AI . (26)

The map P1 satisfies P1 ◦ η2 = η̃γ,h∞ ◦ P1, since we have

η̃γ,h∞(p1k) = η̃γ,h∞(p1) · h−1
∞ · η2(k) · h∞ = p1k0h

−1
∞ η2(k)h∞

87

https://doi.org/10.1112/S0010437X11005641 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005641


U. Weselmann

and since k 7→ k0h
−1
∞ kh∞ induces the identity on KI,m

∞ /KI
∞. Therefore, P1 induces an

isomorphism

(KI,m
∞ /KI

∞)η2 ∼−−→ π0(F̃ (gη, γ))η̃γ,h∞ .

2.16 The centralizers GIγ,η
For γ ∈ PI(Q), we define the automorphism

ηγ :G→G, x 7→ (gηγ)−1 · η(x) · gηγ = γ−1 · η1(x) · γ

and the algebraic subgroup GIγ,η = (PI)ηγ of ηγ-invariants, i.e.

GIγ,η(S) = {x ∈ PI(S) | ηγ(x) = x}= {x ∈ PI(S) | η(x)−1 · gηγ · x= gηγ}

for a Q-algebra S. For I = ∆, we will drop the index I, i.e. Gγ,η =Gηγ .

We introduce the notation

LI∞ =KI
∞Z∞AI , LI,m∞ =KI,m

∞ Z∞AI ,

L̃= p1 · LI∞ · p−1
1 , L̃m = p1 · LI,m∞ · p−1

1 ,

Lγ,η = L̃ ∩Gγ,η(R), Lmγ,η = L̃m ∩Gγ,η(R).

We have for l ∈ LI,m∞ , i.e. for p1 · l · p−1
1 ∈ L̃,

ηγ(p1 · l · p−1
1 ) = γ−1g−1

η η(p1)η(l)η(p1)−1gηγ

= γ−1g−1
η η(p1)gηpηη2(l)(gηpη)−1η(p1)−1gηγ

= p1 · k0h
−1
∞ η2(l)h∞k−1

0 · p
−1
1 .

Therefore, ηγ(L̃m) = L̃m and from η2(LI∞) = LI∞ by (AssK) we conclude ηγ(L̃) = L̃. Furthermore,
the conjugation with p1 intertwines the η2-action on KI,m

∞ /KI
∞ with the ηγ-action on L̃m/L̃, since

conjugation by k0h
−1
∞ acts as identity on L̃m/L̃.

2.17 The coset space RIγ,η
We introduce the coset space

RIγ,η = Lmγ,η\(L̃m/L̃)ηγ

and denote by

O∞η (I, γ, h∞) = #RIγ,η

its cardinality. Finally, we choose and fix a representative kr ∈ L̃m of each coset r ∈RIγ,η.

Lemma 2.18. The maps

φ1 : (GIγ,η(R)/Lγ,η)×RIγ,η → (PI(R)/L̃)ηγ

(x mod Lγ,η, class of kr) 7→ x · kr mod L̃

and

φ2 : (PI(R)/L̃)ηγ → F̃ (gη, γ)η̃γ,h∞ = (PI(R)/LI∞)η̃γ,h∞
xkr mod L̃ 7→ xkrp1 mod LI∞

are isomorphisms.
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Proof. First, observe that φ1 is well defined, since each kr normalizes L̃. Then observe that

φ2 : PI(R)/L̃ ∼−−→ PI(R)/LI∞
x mod L̃ 7−→ xp1 mod LI∞

is an isomorphism and that the diagram

PI(R)/L̃
φ2

//

ηγ

��

PI(R)/LI∞

η̃γ,h∞
��

PI(R)/L̃
φ2

// PI(R)/LI∞

commutes by a formal computation:

φ2(ηγ(x)) = γ−1 · g−1
η · η(x) · gη · γ · p1

η̃γ,h∞(φ2(x)) = γ−1 · g−1
η · η(x) · η(p1) · gη · pη · h∞

= γ−1 · g−1
η · η(x) · gη · γ · p1 · k0

= φ2(ηγ(x)) · k0,

where k0 is defined in (26). Therefore, φ2 is an isomorphism.
Next we prove that φ1 is injective: if x1ka = x2kb · k with k ∈ L̃ and x1, x2 ∈Gγ,η(R), then

x−1
2 x1 = kbkk

−1
a , but x−1

2 x1 ∈Gγ,η(R), kbkk−1
a ∈ L̃m. Therefore, kbkk−1

a ∈ Lmγ,η, so that ka and
kb = (kbkk−1

a ) · ka · k−1 lie in the same coset in RIγ,η. Since each coset has a unique representative,
we get ka = kb. But then kbkk−1

a ∈ L̃, since ka normalizes L̃. This implies x1 mod L̃= x2 mod L̃.
To prove that φ1 is surjective, we reduce to the claim that the canonical map

φ̃1 :GIγ,η(R)→GIγ,η(R)/Lmγ,η→ (PI(R)/L̃m)ηγ

is surjective: if p ∈ PI(R) with ηγ(pL̃) = pL̃ is given, then pL̃m ∈ (PI(R)/L̃m)ηγ and by
assumption on φ̃1 there exists x ∈GIγ,η(R) with p= xk, k ∈ L̃m. Then xkL̃= pL̃= ηγ(p)L̃=
ηγ(x)ηγ(k)L̃= x · ηγ(k)L̃, which implies kL̃= ηγ(k)L̃, i.e. kL̃ ∈ (L̃m/L̃)ηγ . Therefore, there exist
y ∈ Lmγ,η, k1 ∈ L̃ and a ∈RIγ,η such that k = y · ka · k1. Then p= (xy) · ka · k1, so p mod L̃ is in
the image of φ1, since xy ∈GIγ,η(R).

To prove surjectivity of φ̃1, it is enough to show the existence of an ηγ-invariant subspace
q inside the Lie algebra pI of PI(R) such that the composite map e : q

exp−−→ P (R)� PI(R)/L̃m

is an ηγ-equivariant isomorphism. Then (PI(R)/L̃m)ηγ = e(qηγ )⊂ e(pηγI ) = e(Lie(GIγ,η(R))) and
the claim follows.

We denote by m̃I the Lie algebra of the derived group of p1MI(R)p−1
1 . The Killing form is a

non-degenerate form on m̃I . We take q to be the sum of the following subspaces of pI :

– the orthogonal complement c1 of Lie(p1K
I
∞p
−1
1 ) ∩ m̃I inside m̃I ;

– the Lie algebra uI of the unipotent radical UI(R) of PI(R);

– some ηγ invariant complement c2 of Lie(Z∞) + (Lie(p1K
I
∞p
−1
1 ) ∩ Lie ZG(R)) inside

Lie(ZG(R)).

We observe that p1MI(R)p−1
1 is ηγ-invariant: for m ∈MI(R), we have

ηγ(p1mp
−1
1 ) = γ−1g−1

η η(p1)gηη1(m)g−1
η η(p1)−1gηγ

= p1k0h
−1
∞ p−1

η η1(m) · pηh∞k−1
0 p−1

1 by (26).
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Now η1(m) ∈Mη(I)(R) =MI(R), pη ∈M0(R)⊂MI(R), h∞, k0 ∈ LI,m∞ ⊂MI(R) and there-
fore ηγ(p1mp

−1
1 ) = p1m1p

−1
1 with m1 ∈MI(R). For k ∈KI

∞, we conclude ηγ(p1kp
−1
1 ) =

p1k0h
−1
∞ η2(k)h∞k−1

0 p−1
1 ∈ p1K

I
∞p
−1
1 , since k0 and h∞ normalize KI

∞. This implies that c1 is
ηγ-invariant.

Since ηγ acts as η on the center ZG(R), it acts as an automorphism of finite order on
Lie(ZG(R)). Therefore, c2 exists.

Now observe that pI is the direct sum of m̃I , of uI and of the Lie algebra of the center
of p1MI(R)p−1

1 , which itself is the direct sum of Lie(ZG(R)) and Lie(p1AIp
−1
1 ). This implies

that q is an ηγ-invariant complement to Lie(L̃m∞) in pI . We get the surjectivity of e by Iwasawa
decomposition. This finishes the proof of Lemma 2.18. 2

2.19 A first summary

We take RIγ,η to be the empty set if π0(F̃ (gη, γ))η̃γ,h∞ is empty. We may summarize: let γ ∈ PI(Q)
be given. If the set

P η,γI = (PI(R)/LI∞)η̃γ,h∞

= {p mod LI∞ ∈ PI(R)/LI∞ | η(p)−1(gηγ)p ∈ gηpηh∞ · LI∞}

is not empty, then N (gηγ) is conjugate inside PI(R) to an element of N2(h∞) ·KI
∞N (Z∞)AI . If

N (gηγ) is conjugate to such an element, then we have an isomorphism

φ : (GIγ,η(R)/Lγ,η)×RIγ,η → (PI(R)/LI∞)η̃γ,h∞
(x, ka) 7→ xkap1

for some p1 ∈ P η,γI .

2.20 By Lemma 1.27, the class of γ in G(Q)/ζ is uniquely determined by x= (p, y, gf ) and the
equations (1), (2), (3) in § 2.10. Now let us take another representative x̃= (p̃, ỹ, g̃f ) for the class
of x, where

p̃= δ · p · κ∞ζ∞b−1, ỹ = by, g̃f = δgfκf

with δ ∈ PI(Q), κ∞ ∈KI
∞, ζ∞ ∈ Z∞, b ∈AI , κf ∈Kf . Then the relation

(η1(p̃) · pηh∞, η(ỹ)sJ ′ , g−1
η η(g̃f )hf )∼ (p̃, ỹ, g̃f )

is due to elements γ̃, k̃∞, z̃∞, ã, k̃f . Here we can take

γ̃ = η1(δ)γδ−1, k̃∞ = h−1
∞ η2(k−1

∞ )h∞ · k∞ · k0,

z̃∞ = ζ∞ · η(ζ∞) · z∞, ã= b · a · η2(b)−1,

k̃f = h−1
f η(κf )−1hf · kf · κf ,

since we have

g−1
η η(p̃)gηpηh∞ = g−1

η η(δ)η(p)η(κ∞ζ∞b−1)gηpηh∞
= η1(δ) · g−1

η η(p) · gηpηh∞ · h−1
∞ η2(κ∞ζ∞b−1)h∞

= η1(δ) · γpk−1
∞ z−1
∞ a−1 · h−1

∞ η2(κ∞)η2(ζ∞)η2(b−1)h∞
= (η1(δ)γδ−1) · p̃ · (a∞ζ−1

∞ k−1
∞ z−1
∞ a−1η2(κ∞)η2(ζ∞)η2(b−1)h∞)

= γ̃ · p̃ · k̃−1
∞ · z̃−1

∞ · ã−1
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and

η(ỹ) · sK = η2(b) · η(y) · sK = η2(b) · a−1 · y
= η2(b) · a−1 · b−1 · ỹ = ã−1 · ỹ.

Furthermore,

g−1
η η(g̃f )hf = g−1

η η(δ)η(gf )η(κf )hf = η1(δ) · g−1
η η(gf )hf · h−1

f η(κf )hf

= η1(δ) · γgfk−1
f · h

−1
f η(κf )hf

= η1(δ)γδ−1 · g̃f · κ−1
f k−1

f h−1
f η(κf )hf = γ̃ · g̃f · k̃−1

f .

The relation γ̃ = η1(δ) · γ · δ−1 is equivalent to

gηγ̃ = η(δ) · gηγ · δ−1.

Therefore, we have to consider the elements gηγ up to η-conjugacy, i.e. the fixed point sets are
indexed by the η-conjugacy classes of elements in G(Q)/ζ.

Remark 2.21. We recall Lemma 2.4(c): N (gηγ) =N (gη) · N1(γ). The construction of gη implies

N (gη) · P0 · N (gη)−1 = ηn−1(gη) · · · η(gη) · gηP0g
−1
η · η(gη)−1 · · · ηn−1(gη)−1

= ηn−1(gη) · · · η(gη) · η(P0) · η(gη)−1 · · · ηn−1(gη)−1

= η(ηn−2(gη) · · · η(gη) · gηP0g
−1
η · η(gη)−1 · · · ηn−2(gη)−1)

= · · ·= ηn−1(gηP0g
−1
η ) = ηn(P0) = P0.

Using S0 instead of P0, we obtain by the same calculation: N (gη) · S0 = S0 · N (gη), i.e. N (gη)
normalizes P0 and S0. But, the normalizer of S0 inside P0 is the centralizer of S0. This
implies N (gη) ∈M0(Q)⊂MI(Q)⊂ PI(Q) for all I. Thus, if γ ∈ PI(Q) and η(I) = I, we get
N (gηγ) ∈ PI(Q), since we have η1(PI(Q)) = Pη(I)(Q).

Parametrization of fixed point sets

2.22 Let gηγ ∈G(Q) be a representative of a fixed η-conjugacy class, where γ ∈ PI(Q). Define
as a subset of F (H):

F (H)I,γ =
{

Class of
x= (p, y, gf )

∣∣∣∣ p ∈ PI(R), y = sign(x) such that there exist k∞ ∈KI
∞,

z∞ ∈ Z∞, a ∈AI , kf ∈K ′f satisfying (1), (2), (3) in § 2.10 for this γ

}
.

The condition (1) means that pLI∞ is invariant under η̃γ,h∞ as an element of PI(R)/LI∞. We
recall the condition (3′):

η(gf )−1(gηγ)gf ∈ hfKf .

In this condition, we can replace gf by bfgfkf for kf ∈K ′f =Kf ∩ η−1(hfKfh
−1
f ) and bf ∈

Gγ,η(Af ). Thus, we can arrange with respect to the double cosets in Gγ,η(Af )\G(Af )/K ′f . Recall
that Gγ,η =Gηγ = {x ∈G | η(x)−1(gηγ)x= gηγ} denotes the η-centralizer of gηγ.

Now we fix some representative gf of a double coset in Gγ,η(Af )\G(Af )/K ′f satisfying
η(gf )−1(gηγ)gf ∈ hfKf and denote the corresponding set of fixed points F (H)I,γ,gf . By (2.18),
we get a surjective map

(GIγ,η(R)/Lγ,η)×RIγ,η × (Σ∆)I,J ′ ×Gγ,η(Af ) → F (H)I,γ,gf
(p, ka, y, bf ) 7→ (pkap1, y, bfgf ),

91

https://doi.org/10.1112/S0010437X11005641 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005641


U. Weselmann

where

(Σ∆)I,J ′ = {y ∈ Σ∆ such that supp(y) = I, η(y) · sJ ′ = y}
and p1 is the element introduced in (2.12). We remark that (p, ka, y, bf ) and (p′, kb, y′, b′f ) have
the same image in F (H)I,γ,gf if and only if there exist δ ∈ PI(Q), κ∞ ∈KI

∞, ζ∞ ∈ Z∞, a∞ ∈AI ,
κf ∈K ′f such that

pkap1 = δ · p′kbp1 · κ−1
∞ ζ−1
∞ a−1

∞ ,
y = a∞ · y′,

bfgf = δ · b′fgf · κf .
(27)

Observe that the second equation is equivalent to y = y′, since a∞ ∈AI and supp(y) =
supp(y′) = I.

As an equation in the coset space PI(R)/L̃, the first equation can be restated as follows:
pka = δ · p′kb. Since ηγ(L̃) = L̃ and since we know from (2.18) that pka and p′kb are ηγ-invariant
in the coset space, we conclude that the following computation is valid in PI(R)/L̃:

pka = ηγ(pka) = ηγ(δ) · ηγ(p′kb) = ηγ(δ) · p′kb = ηγ(δ) · δ−1 · pka.

Similarly, we deduce from the third equation, thereby bearing in mind that η(gf )−1 · gηγ · gf =
hf · kf and η(gfκf )−1 · gηγ · gf = hf · k̃f with kf , k̃f ∈Kf , so that ηγ(gf ) = gf · k−1

f h−1
f · gηγ and

ηγ(gfκf ) = gfκf k̃−1
f h−1

f · gηγ:

bf · ηγ(gf ) = ηγ(bfgf ) = ηγ(δ · b′f · gf · κf )
= ηγ(δ) · b′f · ηγ(gfκf )

and therefore

bfgfk
−1
f h−1

f gηγ = ηγ(δ) · b′f · gfκf k̃−1
f h−1

f · gηγ,

i.e.

bfgf = ηγ(δ) · b′f · gfκf · k̃−1
f · kf = ηγ(δ) · δ−1 · bfgf · k̃−1

f kf .

Thus, the element ηγ(δ) · δ−1 transforms the pair (pka, bfgf ) into itself as an element of
(PI(R)/L̃)×G(Af )/Kf . By Lemma 1.27, we deduce from this:

c1(δ) := ηγ(δ) · δ−1 ∈ ζ ⊂ ZG(Q).

The element δ above is only unique up to elements of ζ. Since we have ηγ(ε) = η(ε) for ε ∈ ζ,
we conclude c1(δε) = c1(δ) · η(ε) · ε−1. Furthermore, N (c1(δ)) = ηn−1(c1(δ)) · · · η(c1(δ)) · c1(δ) =
ηn−1
γ (c1(δ)) · · · ηγ(c1(δ)) · c1(δ) = ηnγ (δ) · δ−1. But, we have

ηnγ (δ) = (gηγ)−1 · η(gηγ)−1 · · · ηn−1(gηγ)−1 · ηn(δ) · ηn−1(gηγ) · · · (gηγ)

= N (gηγ)−1 · δ · N (gηγ).

This means

N (c1(δ)) =N (gηγ)−1 · δ · N (gηγ) · δ−1. (28)

2.23 Now, if we assume conversely ηγ(δ) · δ−1 ∈ ζ, it can easily be seen that (pkap1, y, bfgf ) ∈
F (H)I,γ,gf implies (δ · pkap1, y, δ · bfkf ) ∈ F (H)I,γ,gf .

The condition (28) implies that N (c1(δ)) lies in the derived group G(1) of G. But, the
intersection G(1) ∩ ZG is finite. If we assume that Kf and therefore also ζ are sufficiently small,
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the following assumption is fulfilled:

ζ ∩G(1)(Q) = {1}. (Assζ,der)

The assumption implies N (c1(δ)) = 1. If we identify 1-cocycles for the finite cyclic group 〈η〉
with their values at η, this means that c1(δ) represents a class in H1(〈η〉, ζ).

We make the further assumption

H1(〈η〉, ζ) = 1. (29)

This is satisfied for example if η = id or if ζ = {1}. If (29) is valid, we can assume without loss
of generality that ηγ(δ) = δ. Thus, δ ∈GIγ,η(Q). The third equation of (27) now implies

κf = g−1
f · ((b

′
f )−1 · δ−1 · bf ) · gf ∈Kf ∩ g−1

f Gγ,η(Af )gf .

By conjugation we get

gfκfg−1
f ∈Gγ,η(Af ) ∩ gfKfg

−1
f .

2.24 Summary
Under the assumption H1(〈η〉, ζ) = 1, the following map α is an isomorphism:

α :XI
γ,η(gf )×RIγ,η × (Σ∆)I,J ′ → F (H)I,γ,gf

((p, bf ), ka, y) 7→ (pkap1, y, bfgf ),

where XI
γ,η(gf ) =GIγ,η(Q)\(GIγ,η(R)/L̃γ,η ×Gγ,η(Af )/(Gγ,η(Af ) ∩ gfK ′fg

−1
f )).

If the group H1(〈η〉, ζ) is not trivial, it is still finite and the map α is still surjective. By the
considerations above, α is a finite covering, and the degree dIζ,γ of the covering is

dIζ,γ = #{x ∈H1(〈η〉, ζ) | x= ηγ(δ) · δ−1 with δ ∈ PI(Q)}.

The set of fixed points F (H) is stratified by the strata F (H)I for those I ⊂∆ which satisfy
η(I) = I. Each F (H)I is a union of F (H)I,γ over those η-conjugacy classes of elements γ in
G(Q)/ζ for which N (gηγ) is conjugate in PI(R) to an element of N2(h∞) ·KI

∞Z∞AI .
Each F (H)I,γ itself is the union of F (H)I,γ,gf , where gf runs over a set of representatives for

those double cosets in Gγ,η(Af )\G(Af )/K ′f which satisfy η(gf )−1(gηγ)gf ∈ hfKf .

3. The Lefschetz fixed point formula

A general fixed point formula for manifolds
3.1 Consider a pair of differentiable maps f, g :X → Y between compact oriented differentiable
manifolds X and Y , such that g is locally a diffeomorphism. Let a local systemM on Y be given
and also a morphism

ϕ : f∗M→ g!M.

Denote by Γf , Γg ⊂X × Y the graphs, and consider the decomposition

Γf ∩ Γg ' F (f, g) := {x ∈X | f(x) = g(x)}=
⋃
j∈J

Fj

of the set of fixed points F (f, g) into connected components. We assume that the intersection of
Γf and Γg is transversal in the following sense:

– each Fj is a differentiable submanifold of X; and
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– for each x ∈ Fj , we have the following relation between the tangent spaces in the point
(x, y) ∈X × Y :

T(x,y)Γf ∩ T(x,y)Γg = T(x,y)(Γf ∩ Γg).

The global trace of the correspondence (f, g, ϕ) is defined to be

tr(g∗f∗) =
∑
i>0

(−1)i tri(g∗f∗),

where

tri(g∗f∗) = tr(H i(Y,M)
f∗−−−→H i(X, f∗M)

ϕ−−→H i(X, g∗M)
g∗−−→H i(X,M)).

For x ∈ Fj , we have an identification of the stalks (f∗M)x ' (g!M)x, so that ϕx can be considered
as an endomorphism of (f∗M)x 'Mf(x) and thus has a trace. Since M is a local system, this
trace is constant on each connected component Fj and is denoted by tr(ϕ|Fj). We denote by

χ(Fj) =
∑
i>0

(−1)i · dimQ(H i(Fj ,Q))

the Euler–Poincaré characteristic of Fj . Let N(Fj) denote the normal bundle of Fj
inside X, i.e. Nx(Fj) = TxX/TxFj for x ∈ Fj . By the transversality assumption, we have
det(id− f∗g∗|NxFj) 6= 0 for all x ∈ Fj . Since this real number depends continuously on x, we
get a well-defined sign

εj = sign(det(id− f∗g∗|N(Fj))) for each j ∈ J.

Remark 3.2. The transversality assumptions imply that each fixed point component Fj has an
open neighborhood Uj which meets no other fixed point component Fk. This implies that J is a
finite set by the compactness of X. Therefore, all sums occurring in the following are finite sums
and we have no problems with convergence.

We can state the Lefschetz fixed point formula.

Theorem 3.3. With the above notation and assumptions, we have

tr(g∗f∗) =
∑
j∈J

tr(ϕ|Fj) · χ(Fj) · εj .

Proof. The fixed point theorem is well known if the Fj are isolated points. If Fj is a manifold
of positive dimension, one reduces to this case by considering a vector field ξj on Fj , which has
isolated and non-degenerate zeros {xi}, and extends ξj to a vector field ξj with support in an
open tubular neighborhood Uj of Fj , such that U j meets no other Uk.

If one modifies f =: f0 to the homotopic ft = f0 ◦ exp(tξj) for a small enough t > 0, one does
not change tr(g∗f∗), but F (ft, g) ∩ Uj consists of a set of isolated fixed points {xi}. Recall that
χ(Fj) equals the number of xi counted with an appropriate sign. We leave it as an exercise to
the reader that the right-hand side of the theorem does not change, too. 2

The general setting
3.4 The local systems M
Let M be a (G(Q)/ζ) o 〈η〉-module. This gives rise to a local coefficient system M on X(Kf )
for each open compact Kf . We can obtain M as the quotient M=G(Q)\M ×X ×G(Af )/Kf ,
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where we use the G(Q)-action on M and on X, together with the canonical projection to
X(Kf ) =G(Q)\X ×G(Af )/Kf . Furthermore, we consider the following sheaf on X(Kf ):

M(U) =
{
φ : π−1(U)→M

∣∣∣∣ φ locally constant; φ(γx) = γφ(x)
for all γ ∈G(Q), x ∈X ×G(Af )/Kf

}
for U ⊂X(Kf ) open, where π :X ×G(Af )/Kf →X(Kf ) denotes the canonical projection. If
the action of G(Q) on X ×G(Af )/Kf is free of fixed points, then the sheafM can be considered
as the sheaf of local sections of the map from the space M to X(Kf ).

3.5 For J ⊂∆, we denote the inverse image of {0, 1}J × {1}∆\J inside XBS(Kf ) by XJ
BS(Kf ),

and we denote the inclusion maps by iJ :Xsp(Kf ) ↪→XJ
BS(Kf ) and ĩJ :XJ

BS(Kf ) ↪→XBS(Kf ),
where the space called Xsp(Kf ) in § 1.40 is X∅BS(Kf ) in the new notation.

For a sheaf M as above, we denote its restriction to the subspace Xsp(Kf ) by Msp. We
introduce the sheaf i∗J !M := ĩ∆−J! i∆−J∗ Msp on XBS(Kf ).

If π :X(Kf )�X(Kf )/S∆ 'XBS(Kf ) denotes the canonical projection, then the sheaf π∗M
on XBS(Kf ) is a sheaf with an action of S∆. If multiplication by two is an automorphism ofM,
then we may decompose π∗M into eigenspaces (eigensubsheaves) of the reflection group S∆.

The sign group S∆ = {−1,+1}∆ may be identified with its dual group in such a way that
sJ ∈ S∆ may be identified with the character S∆ 3 (rα)α∈∆ 7→

∏
α∈J rα.

Lemma 3.6. The eigensubsheaf of π∗M with respect to the character sJ of S∆ is isomorphic to

the sheaf i∗J !Msp.

Proof. It is clear that the restriction of π∗M to Xsp(Kf ) is isomorphic to the tensor product of
Msp with the group ring Z[S∆] such that S∆ acts on the group ring. The eigensubsheaf of π∗M
with respect to the character sJ is the subsheaf on which the reflection sα acts by −1 for α ∈ J
and by +1 for α /∈ J . Then it becomes clear that the eigensubsheaf continues as a direct image
for the embedding i∆−J , while it has to be continued by 0 for the embedding ĩ∆−J . 2

From the introduction, we recall the notation χ−1 for the character s∆ : (rα)α∈∆ 7→
∏
α∈∆ rα.

Proposition 3.7. The Lefschetz number on the cohomology with compact support satisfies

tr((h∞ × hf ) ◦ η, H∗c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))

= 2−#∆ ·
∑

sJ′∈S∆

χ−1(sJ ′) · tr(H(sJ ′), H∗(X(Kf ),M)).

Proof. We have an isomorphism which is equivariant with respect to the action of (h∞ × hf ) ◦ η:

H∗c (G(Q)\G(A)/K∞Z∞ ·Kf ,M) = H∗c (Xsp(Kf ),Msp)

∼= H∗(XBS(Kf ), i∆! Msp),

where we used the fact that the cohomology with compact support may be computed as
the cohomology of the sheaf i∆! Msp on the Borel–Serre compactification XBS(Kf ). Observing
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X∆
BS(Kf ) =XBS(Kf ), so that i∗∆!Msp = i∆! Msp, and the preceding lemma, we thus get

tr((h∞ × hf ) ◦ η, H∗c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))

= tr((h∞ × hf ) ◦ η, H∗(XBS(Kf ), i∗∆!Msp))

= tr((h∞ × hf ) ◦ η, H∗(XBS(Kf ), (π∗M)χ−1))

= 2−#∆ ·
∑

sJ′∈S∆

χ−1(sJ ′) · tr((h∞ × hf ) ◦ η × sJ ′ , H∗(XBS(Kf ), π∗M)),

where sJ ′ only acts on the sheaf π∗M in the last line so that it commutes with the action of
(h∞ × hf ) ◦ η. Here we used the fact that the trace of an operator on an S∆ eigenspace may be
computed as the composition of the operator acting on the whole space with a projector onto
this eigenspace, which is 2−#∆ ·

∑
sJ′∈S∆ χ−1(sJ ′) · sJ ′ in our case. Raising the action to the

space X(Kf ) now gives

2−#∆ ·
∑

sJ′∈S∆

χ−1(sJ ′) · tr((h∞ × hf × sJ ′) ◦ η, H∗(X(Kf ),M)),

where sJ ′ now acts on the space in the last line. The definition of H(sJ ′) in § 2.8 now implies
the claim. 2

Euler characteristics
3.8 We continue with the considerations of § 2. The Euler characteristic with compact support
satisfies

χc(F (H)I,γ) =
∑

gf∈GIγ,η(Af )\G(Af )/K′f
η(gf )−1·gηγ·gf∈hfKf

χc(F (H)I,γ,gf )

=
#RIγ,η · cI,J ′

dIζ,γ
·

∑
gf as above

χc(XI
γ,η(gf )),

where XI
γ,η(gf ) =GIγ,η(Q)\(GIγ,η(R)/L̃Iγ,η ×GIγ,η(Af )/(GIγ,η(Af ) ∩ gfK ′fg

−1
f )) and cI,J ′ =

#(Σ∆)I,J ′ = #{y ∈ {−1, 1}I × {0}∆−I |η(y)sJ ′ = y}.
Let dgf be a Haar measure on G(Af ) and denote by db= db∞ · dbf a Tamagawa measure

on the group G̃=GIγ,η. Let h̃ denote the characteristic function of hfKf multiplied with
(voldgf (K ′f ))−1. From the definition of a quotient measure, we get immediately

χc(F (H)I,γ) =
#Rγ,η · cI,J ′

dIζ,γ

·
∫
Gγ,η(Af )\G(Af )

χc(XI
γ,η(gf )) · voldbf (Gγ,η(Af ) ∩ gfK ′fg−1

f )

· h̃(η(gf )−1(gηγ)gf ) dbf\dgf . (30)

3.9 The Gauss–Bonnet formula
We furthermore put K̃f =GIγ,η(Af ) ∩ gfK ′fg

−1
f , K̃∞ = L̃Iγ,η. Now we are in the situation where

G̃=GIγ,η is a linear algebraic group, K̃f ⊂ G̃(Af ) is open, compact and sufficiently small and the
connected component of K̃∞ ⊂ G̃(R) is the product of some maximal connected and compact

96

https://doi.org/10.1112/S0010437X11005641 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005641


A twisted topological trace formula for Hecke operators

subgroup with a connected subgroup Z̃∞ of the R-split center ZR-split

G̃
such that Z̃∞ contains

the connected component of the R-split and Q-anisotropic torus
⋂
χ ker χ ∩ ZR-split

G̃
, where

χ ∈X∗(ZG̃) runs over all Q-rational characters of ZG̃.

We furthermore put K̃ = K̃∞ · K̃f .
We make the assumption that

G̃ is a connected group if it is reductive, (Assconn)

D(G̃) = 0 if G̃ is not reductive or does not have a maximal torus, which
is compact modulo the center of G̃(R),

D(G̃) =
#W (G̃/C, T/C)
#NG̃(R)(T )/T

if G̃ is reductive and T ⊂ K̃∞ · ZG̃(R) is a maximal torus,
which is compact modulo ZG̃(R).

If D(G̃) 6= 0, then the adjoint group G̃ad has a maximal torus, which is compact, and we can
denote by G the inner form of G̃/R which is compact modulo the center of G̃. We do not care
about the definition of G if D(G̃) = 0.

The Haar measure db∞ on G̃(R) determines uniquely a Haar measure on G(R), which will
be denoted by db∞ also. The isomorphism between G̃×R C and G×R C determines canonical
isomorphisms over R between the centers ZG̃ of G̃ and ZG of G and also between the torus

quotients G̃/G̃(1) and G/G(1). Each rational character χ ∈X∗(G̃) : G̃→ G̃/G̃(1)→Gm may thus
be viewed as a character from G→G/G

(1)→Gm and we may define G′ to be the intersection
of the kernels of these characters. Using some basis χ1, . . . , χr of X∗(G̃), the Haar measure db∞
may be written as the product of some Haar measure db′∞ on G

′(R) and the euclidean measure∏r
i=1 d

∗xi on (R∗)r, the image of G(R) under (χ1, . . . , χr). Also, we may view ζ̃ = ZG̃(Q) ∩ K̃
as a subgroup of G′(R).

We denote by τ(G̃) the Tamagawa number of G̃/Q and by

q(G̃) = dim(G̃(1)(R)/(L̃Iγ,η ∩ G̃(1)(R)))

the dimension of the symmetric space associated to the derived group of G̃. Furthermore, we
consider the dimension

∆(G̃, K̃∞) = dim(G̃(R)/K̃∞)− q(G̃) = dim(ZR-split

G̃
)− dim Z̃∞.

Now we may state the following extension of Harder’s Gauss–Bonnet formula [Har71] to reductive
groups.

Proposition 3.10. If G̃ satisfies (Assconn), then

χc(G̃(Q)\G̃(A)/K̃) · voldbf (K̃f ) = (−1)∆(G̃,K̃∞)+ 1
2
q(G̃) · D(G̃) · τ(G̃)

voldb′∞(G′(R)/ζ̃)
.

Proof. This is well known if G̃ is semisimple (compare Rohlfs [Roh90, 3.3]: his statement agrees
with ours in the case that the torus quotient is anisotropic over R. In the case that the central
unit group ζ̃ has positive rank, the statement of Rohlfs simply reads 0 = 0, since his symmetric
space is a torus bundle, while our identity may be non-trivial due to the fact that K̃∞ contains
the connected component of the center of G(R)).

If the unipotent radical of G̃ is not trivial, then the Euler characteristic of the symmetric
space vanishes, since it is a (topological) torus bundle, and the formula is clear from the
definition of D(G̃).
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If G̃ is a torus, then we have q(G̃) = 0, D(G̃) = 1, G= G̃ and the symmetric space
G̃(Q)\G̃(A)/K̃ is a disjoint union over the index set G̃(Q)\G̃(A)/G̃(R)◦K̃f of affine spaces of
the form (R∗>0)∆(G̃,K̃∞). The formula is thus equivalent to

#(G̃(Q)\G̃(A)/G̃(R)◦K̃f ) · voldbf (K̃f ) · voldb′∞(G̃′(R)/ζ̃) = τ(G̃).

But, if t1, . . . , tr ∈ G̃(A) denotes a set of representatives for the double coset space
(G̃(Q)\G̃(A)/G̃(R)◦K̃f ), then we have an isomorphism⋃r

i=1(G̃′(R)/ζ̃) −→ (G̃(Q)\G̃(A)/K̃f )′

(g∞)i 7−→ g∞ · ti.

The claim for tori is now clear from the definitions of measures.

So, it remains to prove the formula for a general connected reductive group G̃. We reduce
the claim to the semisimple and the torus case using an exact sequence

1→ G̃(1)→ G̃
ν−−→ C→ 1,

where the derived group G̃(1) is semisimple and C is a torus. We have q(G̃) = q(G̃(1)), D(G̃) =
D(G̃(1)) and ∆(G̃, K̃∞) = ∆(C, ν(K̃∞)). The role of K̃ for the torus C will be played by ν(K̃).
We may replace without loss of generality Z̃∞ by the connected component of Z̃R-split

∞ , since this
operation multiplies both sides of the formula with (−1)∆(G̃,K̃∞). Then ν induces a surjection to
a finite set

G̃(Q)\G̃(A)/K̃ ν−−→ ν(G̃(A))/ν(G̃(Q))ν(K̃).

The fibre over the class of some ν(t) ∈ ν(G̃(A)) is obviously the image of the map

εt : G̃(1)(Q)\G̃(1)(A)/K̃(1)
t → G̃(Q)\G̃(A)/K̃

εt : g 7→ gt,

with K̃
(1)
t = G̃(1)(A) ∩ tK̃t−1. But, εt is in general not injective: from g1t= γ · g2t · k with

g1, g2 ∈ G̃(1), γ ∈ G̃(Q) and k ∈ K̃, we conclude ν(γ−1) = ν(k), i.e. ν(γ) ∈ ζ̃1 = ν(G̃(Q)) ∩ ν(K̃),
but to modify γ to an element in G̃(1)(Q) it would be necessary to have ν(γ) ∈ ν(ζ̃). (Recall that
G̃(Q) ∩ K̃ = ζ̃, since Kf is assumed to be sufficiently small.) In fact, it is easy to see that εt is a
covering with covering group ζ̃1/ν(ζ̃). Therefore,

χc(G̃(Q)\G̃(A)/K̃) =
∑

t∈ν(G̃(A))/ν(G̃(Q))ν(K̃)

χc(G̃(1)(Q)\G̃(1)(A)/K̃(1)
t )

#(ζ̃1/ν(ζ̃))
.

Now we may assume that the Tamagawa measure dc on the torus C is the quotient of the
Tamagawa measures db on G̃ and of db1 on G̃(1). From the semisimple case and the definition of
a quotient measure, we get

χc(G̃(Q)\G̃(A)/K̃) · voldbf (K̃f )

=
∑

t∈ν(G̃(A))/ν(G̃(Q))ν(K̃)

voldbf (K̃f )

voldb1f ((K̃(1)
t )f )

· (−1)
1
2
q(G̃(1)) ·D(G̃(1)) · τ(G̃(1))

voldb1∞(G(1)(R)) ·#(ζ̃1/ν(ζ̃))

= #(ν(G̃(A))/ν(G̃(Q))ν(K̃)) · voldcf (ν(K̃f )) · (−1)
1
2
q(G̃) ·D(G̃) · τ(G̃(1))

voldb1∞(G(1)(R)) ·#(ζ̃1/ν(ζ̃))
.
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In the following commutative diagram, the columns are exact and the map µK is surjective.

1

��

1

��
ν(K̃)/ν(K̃) ∩ ν(G̃(Q))

µK //

��

ν(K̃)/ν(K̃) ∩ C(Q)

��
ν(G̃(A))/ν(G̃(Q))

µ //

��

C(A)/C(Q)

��
ν(G̃(A))/ν(G̃(Q))ν(K̃)

µsp //

��

C(A)/C(Q)ν(K̃)

��
1 1

Using the notion of an index ind(µ) := # coker(µ)/# ker(µ), we get

ind(µsp) = ind(µ) ·# ker(µK),

where ker(µK) = (ν(K̃) ∩ C(Q))/(ν(K̃) ∩ ν(G̃(Q))) = ζ2/ζ̃1 with ζ2 = C(Q) ∩ ν(K̃). From the
torus case, we conclude

#(ν(G̃(A))/ν(G̃(Q))ν(K̃)) · voldcf (ν(K̃f ))

=
#C(A)/C(Q)ν(K̃)

ind(µsp)
· voldcf (ν(K̃f )) =

τ(C)
ind(µsp) · voldc′∞(C ′(R)/ζ2)

.

Now, using the Tamagawa number relation [San81, 10.4]

τ(G̃(1)) · τ(C) = τ(G̃) · ind(µ),

we may summarize

χc(G̃(Q)\G̃(A)/K̃) · voldbf (K̃f )

= (−1)
1
2
q(G̃) · D(G̃) · τ(G̃)

voldb1∞(G(1)(R)) ·#(ζ2/ν(ζ̃)) · voldc′∞(C ′(R)/ζ2)

and the claim is implied by the relation

voldb′∞(G′(R)/ζ̃) = voldb1∞(G(1)(R)) ·#(ζ2/ν(ζ̃)) · voldc′∞(C ′(R)/ζ2). 2

3.11 If we introduce the (η-)twisted orbital integral

Oη(γ, h̃) =
∫
GIγ,η(Af )\G(Af )

h̃(η(gf )−1(gηγ)gf ) dbf\dgf ,

we can thus rewrite the equation (30):

χc(F (H)I,γ) =
#RIγ,η · cI,J ′

dIζ,γ
·Oη(γ, h̃) · (−1)∆(G̃,Lγ,η)+ 1

2
q(G̃) · D(G̃) · τ(G̃)

voldb∞(G′(R)/ζ)
. (31)
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Local analysis

3.12 We recall the map

H : (p, y, gf ) 7→ (η1(p)pη · h∞, η(y) · sJ ′ , g−1
η η(gf )hf ).

Let x0 = (p0, y0, gf ) be a point in F (H)I,γ , i.e. there exist k∞ ∈KI
∞, z∞ ∈ Z∞, a ∈AI and k ∈Kf

such that:

(1) g−1
η η(p0)gηpηh∞ = γp0k

−1
∞ z−1
∞ a−1;

(2) η(y0)sJ ′ = a−1y0;

(3) g−1
η η(gf )hf = γgfk

−1
f .

We want to analyze the effect of H in a neighborhood of x0:

H(pp0, y0 + y, gf ) = (η1(p)η1(p0)pηh∞, η(y0 + y) · sJ ′ , g−1
η η(gf )hf )

= (η1(p)γp0 · k−1
∞ z−1
∞ a−1, a−1 · y0 + η(y) · sJ ′ , γ · gf · k−1

f )
∼ (ηγ(p) · p0, y0 + a · η(y) · sJ ′ , gf ).

As in § 1.20, we denote by 0PI the intersection of the kernels of all χ2, where χ ranges over all
characters χ : PI → PI/ZG→Gm. Then there is a unique decomposition PI(R) = 0PI(R) oAI .
We can write each p ∈ PI(R) in the form

p= p0 · p0a(p)p−1
0 where p0 ∈ 0PI(R), a(p) ∈AI .

(Apply the above decomposition to p−1
0 pp0 and observe that 0PI is a normal subgroup of PI .)

Now we can write

H(pp0, y0 + y, gf )∼ (ηγ(p)0 · p0, a(ηγ(p))−1 · (y0 + a · η(y) · sJ ′), gf ).

We remark that

(PI(R)/KI
∞Z∞ × R∆−I × {±1}I)/AI ' 0PI(R)/KI

∞Z∞ × R∆−I × {±1}I .

Since supp(x0) = I, we can assume y0 ∈ {0}∆−I × {±1}I . Then our equation reads

H(pp0, y0 + y, gf )∼ (ηγ(p)0 · p0, y0 + a · a(ηγ(p))−1 · η(y) · sJ ′ , gf ).

We identify the tangent space of X(K ′f ) at x0 with Ad(p0) Lie(0PI(R)/KI
∞Z∞)× R∆−I . The

tangent space of X(Kf ) at κ(x0) =H(x0) can be identified with the same vector space, such
that the differential of the canonical projection κ :X(K ′f )→X(Kf ) becomes the identity. Here
we use the notation Lie(G/H) = Lie(G)/Lie(H), if H ⊂G is a Lie subgroup.

Then the differential of the map H in the point x0 = (p0, y0, gf ), which is the differential of
the map (p, y) 7→ H(pp0, y0 + y, gf ) in (p, y) = (1, 0), is:

– the differential of the map p 7→ ηγ(p)0 in the neutral element, considered as an
endomorphism of Ad(p0) Lie(0PI(R)/KI

∞Z∞),

times:

– the linear map l : R∆−I → R∆−I , y 7→ a · η(y) · sJ ′ .

Observe that the differential of the map p 7→ a(ηγ(p))−1 at p= 1 does not come into the picture,
since it has to be multiplied with η(0) = 0 by the product formula.
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3.13 The map
∏
α∈∆−I α induces an isomorphism between AI equipped with the automorphism

η2 and the product (R∗>0)∆−I equipped with the automorphism η. The logarithm map log∆−I

induces an η-equivariant isomorphism (R∗>0)∆−I ' R∆−I .

We conclude H1(〈η2〉, AI)'H1(〈η〉, (R∗>0)∆−I)'H1(〈η〉, R∆−I) = 0, since η is of finite
order. This means that every a ∈AI satisfying N2(a) = 1 is of the form a= b · η2(b)−1.

If we replace p0 by p′0 = p0 · b, where b ∈AI , we get

g−1
η · η(p′0) · gηpηh∞ = g−1

η · η(p0) · gηpη · η2(b)h∞ = γp0k
−1
∞ z−1
∞ a−1 · η2(b)

= γp′0k
−1
∞ z−1
∞ (a′)−1 where a′ = a · b · η2(b)−1.

Thus, the class of a modulo coboundaries is unique.

3.14 We decompose ∆− I into orbits under η and assume without loss of generality that
{1, . . . , m} ⊂∆− I is such an orbit; more precisely, we may assume

η(αi) = αi+1 i= 1, . . . , m− 1, η(αm) = α1.

We write

ai = αi(a) for i= 1, . . . , m, . . . ,
sJ ′ = (ε1, . . . , εm, . . .), where εi =±1.

Then Rm = Rm × {0} ⊂ R∆−I is an η- and S∆-stable factor of R∆−I , on which the map l is
described as follows:

l : (y1, . . . , ym) 7→ (a1ymε1, a2y1ε2, . . . , amym−1εm).

The characteristic polynomial is det((T · id− l)|Rm) = Tm − a1 · · · am · ε1 · · · εm. We remark that
αi(N2(a)) = a1 · a2 · · · am for i= 1, . . . , m.

3.15 The case a1 · · · am = 1 and ε1 · · · εm = 1

If a1 · · · am = 1, we can modify p0 such that we get a1 = · · ·= am = 1. But then we get from
the definitions that F (H)I,γ is a component of the boundary of F (H)I∪{1,...,m},γ if additionally
ε1 · · · εm = 1: the vector

v = (ε1, ε1ε2, . . . , ε1 · · · εm−1, 1) ∈ Rm

is an eigenvector of l with eigenvalue 1, such that the algebraic multiplicity of this eigenvalue is 1.
Via the embeddings Rm ⊂ R∆−I ⊂ Tx0X, the vector v can be viewed as a tangent vector of the set
of fixed points F (H)I∪{1,...,m},γ . More precisely, if we consider the map α= αI :XI

γ,η(gf )×Rγ,η ×
(Σ∆)I,J ′ → F (H)I,γ,gf from § 2.24, then F (H)I,γ,gf lies in the boundary of F (H)I∪{1,...,m},γ,gf and

the latter is the image of XI∪{1,...,m}
γ,η (gf )×Rγ,η × (Σ∆)I∪{1,...,m},J ′ under αI∪{1,...,m}. One gets

the index set (Σ∆)I∪{1,...,m},J ′ from (Σ∆)I,J ′ by replacing the part (0, . . . , 0) ∈ Rm by the vectors
±v.

The action of l on Rm/〈v〉 now gives a positive contribution to the expression
det(id− dH|Norm(F (H)γ)), where Norm(F (H)γ) is the normal bundle of F (H)γ : one can easily
see that the determinant in the part belonging to Rm/〈v〉 in the normal bundle is m> 0 using
the formula (Tm − 1) = (T − 1) · (Tm−1 + · · ·+ T + 1).
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3.16 The case a1 · · · am = 1 and ε1 · · · εm =−1

If a1 · · · am = 1 and ε1 · · · εm =−1, the number 1 is not an eigenvalue of the linear
map l and det((id− l)|Rm) = 2 is also a positive contribution to the expression
sign(det(id− dH|Norm(F (H)γ))).

We conclude ∑
ε1,...,εm

ε1 · · · εm · sign(det(id− dH)|Norm(F (H)γ))) = 0, (32)

if a1 · · · am = 1.

3.17 In the case a1 · · · am 6= 1

The number 1 is not an eigenvalue of the linear map l for all choices of εi, so that
sign(det(id− l)|Rm) is a factor of the expression sign(det(id− dH)|Norm(F (H)γ))). We compute∑

ε1,...,εm

ε1 · · · εm sign(det(id− l)|Rm) =
∑

ε1,...,εm

ε1 · · · εm sign(1− a1 · · · am · ε1 · · · εm)

=

{
0 if a1 · · · am < 1,
−2m if a1 · · · am > 1.

Lemma 3.18. Assume
∏
j∈J aj > 1 for all η-orbits J in ∆− I. Then the eigenvalues of the

differential of the map p 7→ ηγ(p)0 have absolute value 61.

Proof. For α ∈∆− I, there exists a positive integer εI,α such that the restriction of εI,α · α to
AI has a continuation to a rational character from PI/ZG to Gm. Let χI,α be the square of this
character. Thus, we have

χI,α(a) = α(a)2εI,α for all a ∈AI .

If we apply χI,α to equation (1N ) in § 2.10, we get

χI,α(N (gηγ)) = α(N2(a))2εI,α ,

since N (gηpη), N2(h∞) and N2(z∞k∞) ∈Km
∞ ∩ PI(R) are all elements of ker(χI,α).

The differential of the map pp0 7→ ηγ(p)p0, from the space P 0
I (R)/KI

∞Z∞ to itself, is the same
as that of the analogous endomorphism on PI(R)/LI∞. The nth (iterated) power of this map is
pp0 7→ ηnγ (p)p0 =N (gηγ)−1 · p · N (gηγ) · p0. The claim about the eigenvalues of the differential
of the original map is equivalent to the corresponding claim about the nth composed map. But,
now we have

Tp0(PI(R)/LI∞)' Lie(MI(R))/Lie(LI∞)× Lie(UI(R)).

Now the differential of the conjugation map p 7→ N (gηγ)−1 · p · N (gηγ) has eigenvalues of
absolute value 1 on the first factor, since N (gηγ) ∈ LI∞ =KI

∞Z∞AI , where Z∞AI centralizes
the group MI(R) and KI

∞ is compact. The effect of the map on Lie(UI(R)) on the other hand is
described by the inverses of the roots followed by a conjugation with something compact. Since
the values of the roots are >1 by assumption, the proof is complete. 2
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Proposition 3.19. We may summarize the contribution of the I-component:

2−#∆ ·
∑

s∈{±1}∆
sign(det(id−H(s))|Norm(F (H)I,γ)) · cI,J ′ · χ−1(s)

=

{
0 if χI,α(N (gηγ))6 1 for some α ∈∆− I,
(−1)#((∆−I)/η) otherwise.

Proof. From (32) and (33), the vanishing in the first case is clear. If we have χI,α(N (gηγ))> 1
for all α ∈∆− I, then the eigenvalues αj of the map p 7→ ηγ(p)0 have absolute value 61 by
Lemma 3.18. Since the non-real ones of them appear in pairs of complex conjugates, we conclude
that

∏
j,αj 6=1(1− αj) is strictly positive. We furthermore may compute∑

ε∈{±1}I
cI,J ′ ·

∏
i∈I

εi =
∑

ε∈{±1}I

∏
i∈I

εi ·#{y ∈ {±1}I × {0}∆−I | η(y) · sJ ′ = y}

=
∑

y∈{±1}I
χ−1(y · η(y)−1) = 2#I ,

since χ−1(y · η(y)−1) = χ−1(y) · χ−1(η(y)) = χ−1(y)2 = 1. Now we get the claim from this formula
together with (33): the powers of 2 cancel against 2−#∆ and from each η-orbit in ∆− I we get
one minus sign. 2

First version of the trace formula
3.20 The assumptions on Z∞, Zf , ζ

Recall that we fixed an open compact subgroup Zf ⊂ ZG(Af ) satisfying

η(Zf ) = Zf . (AssZf )

This implies η(ζ) = ζ. We will consider only Kf satisfying

Kf ∩ ZG(Af ) = Zf .

The group Z∞ ⊂ ZG(R) satisfies
η(Z∞) = Z∞, (AssZ)

since it is invariantly defined to be the connected component of the group of R-valued points of
the R-split part of the center of G. Then the group

ζ = ZG(Q) ∩ (K∞ · Z∞ ·A∆ × Zf )

is η-invariant and has to satisfy

(gfKfg
−1
f · g∞K∞Z∞A∆g

−1
∞ ) ∩G(Q) = ζ for all gf ∈G(Af ), g∞ ∈G(R). (AssKf )

Finally, Zf and therefore also ζ are sufficiently small, in the sense that the following assumption
is fulfilled:

ζ ∩G(1)(Q) = {1}. (Assζ,der)
Recall from § 2.17 the definition O∞η (γ, h∞) = #Rγ,η of a substitute of an orbital integral at the
infinite place. Finally, we recall the assumption on the twisted centralizers:

GIγ,η is a connected group if it is reductive. (Assconn)

Theorem 3.21. Let hf be a Schwartz–Bruhat function on G(Af ) which is right invariant under
Kf , let M be a G(Q) o 〈η〉-module and let h∞ ∈Km

∞ ∩M0(R). If all assumptions in § 3.20 are
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fulfilled, then we have

tr((h∞ × hf ) ◦ η, H∗c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))

=
∑
I⊂∆
Iη=I

(−1)#((∆−I)/η) ·
∑

γ∈(PI(Q))η
N (γ)∼LI∞

χI,α(N (γ))>1
for all α∈∆−I

(−1)∆(G̃,Lγ,η)+ 1
2
q(G̃) ·

O∞η (I, γ, h∞)
dIζ,γ

·Oη(γ, hf ) · tr(γ ◦ η|M) ·
D(GIγ,η) · τ(GIγ,η)

voldb′∞((GIγ,η)′/ζ)
.

Remarks. The inner sum is formally over all η-conjugacy classes in PI(Q) which satisfy the two
listed conditions, but the factor D(GIγ,η) encodes the further conditions that GIγ,η is reductive
and contains a maximal torus which is compact modulo the center at the archimedean prime.
For the definition of O∞η (I, γ, h∞), we refer to § 2.17.

Proof. First, we use Proposition 3.7 and then we apply the general fixed point formula for
compact manifolds (Theorem 3.3) to each correspondence H(sJ ′). Then we use the additivity of
the Euler characteristic with compact supports with respect to stratifications into locally closed
manifolds. We get

tr((h∞ × hf ) ◦ η, H∗c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))

= 2−#∆ ·
∑
s∈S∆

χ−1(s) ·
∑
γ

sign(det(id−H(s))|Norm(F (H)γ)) · χc(F (H)I,γ) · tr(γ ◦ η|M).

Now we use Proposition 3.19 and (31) to get the claim. 2

4. Stabilization and Galois cohomology

Abelianized Galois cohomology
4.1 Let K be a perfect field. Recall the definition of abelianized Galois cohomology of Borovoi
and Kottwitz [Bor98]: if G/K is a reductive group, let G(1) =Gder be its derived group and Gsc

the simply connected cover of Gder. We denote by Z ⊂G the center, by T ⊂G some torus
containing Z (in the applications, T will be a maximal torus) and by Zsc = ρ−1(Z) and
Tsc = ρ−1(T ) their inverse images in Gsc under the composite map ρ :Gsc�Gder ↪→G. One
defines H1

ab(K, G) to be the Galois hypercohomology of the complex 1→ Zsc→ Z→ 1, where
Zsc sits in degree −1 and Z in degree 0. Since this complex is quasi-isomorphic to the complex
1→ Tsc→ T → 1, we can as well define

H1
ab(K, G) = H1(K, 1→ Tsc→ T → 1).

There exists a canonical map ab1 :H1(K, G)→H1
ab(K, G): if (ψσ) ∈ Z1(K, G) denotes a cocycle,

we may write ψσ = ρ(ψ′σ) · ξσ for ψ′σ ∈Gsc(K̄) and a cochain ξσ ∈ Z(K̄). Then λσ,τ := ψ′σ · σψ′τ ·
(ψ′στ )−1 ∈ Zsc(K̄) and the pair ((λσ,τ ), (ξσ)) ∈ C2(K, Zsc)× C1(K, Z) defines a cocycle in the
double complex which computes the hypercohomology H1(K, 1→ Zsc→ Z→ 1). Then ab1 of
the class of (ψσ) is the class of this pair.

We denote by X∗ the following complex of abelian groups with action of Gal(K̄/K) living in
degrees −1 and 0:

X∗ : 0→X∗(Tsc)→X∗(T )→ 0.
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Then we have H1
ab(K, G) = H1(K, X∗ ⊗K

∗). We recall the definition of the algebraic
fundamental group from [Bor98]:

π1(G) = H0(X∗) =X∗(T )/ρ∗X∗(Tsc).

4.2 Now let G be defined over Q. Following [Bor98], the vanishing theorem of Kneser
(H1(Qp, Gsc) = 1) and the Hasse principle for semisimple simply connected algebraic groups
(Kneser, Harder and Chernousov) generalize to the statement that the following diagram is
cartesian.

H1(Q, G) ab1
//

��

H1
ab(Q, G)

��
H1(R, G) ab1

// H1
ab(R, G)

(In the case G=Gsc, the groups H1
ab(K, G) are trivial, and the diagram being cartesian just

means that the left-hand arrow is a bijection.)
The short exact sequence 1→Q∗→ A∗Q→ A∗Q̄/Q

∗→ 1 gives rise to an exact sequence,

H1(Q, X∗ ⊗Q∗) //

∼
��

H1(Q, X∗ ⊗ A∗Q) //

∼
��

H1(Q, X∗ ⊗ A∗Q/Q
∗)

∼
��

H1
ab(Q, G) // ⊕

v H1(Qv, X∗ ⊗Q∗v) // Ĥ−1(Q, π1(G))

where we have used the Tate–Nakayama isomorphism in the right-hand column. Observe
Ĥ−1(Q, π1(G)) = (π1(G)Gal(Q/Q))tors. The local Tate–Nakayama map gives us an isomorphism

H1
ab(R, G)' Ĥ−1(R, π1(G))' (π1(G)Gal(C/R))tors.

4.3 The group of connected components of a real algebraic group
For G/R, we consider the homomorphism ab0 :G(R)→ Ĥ0(R, X∗ ⊗ C∗), which maps
g = ρ(s) · z ∈G(R) with s ∈Gsc(C) and z ∈ ZG(C) to the class of the 0-hypercocycle
(s · s̄−1, z) ∈ Z0(R, Zsc(C)→ ZG(C)). Here (a, b) ∈ Zsc(C)× ZG(C) is a 0-hypercocycle if and
only if ρ(a) = b̄ · b−1 and a · ā= 1. The hypercoboundaries are of the form (c̄ · c−1, ρ(c) · dd̄)
for c ∈ Zsc(C), d ∈ ZG(C). We define the torus Z◦G to be the connected component of ZG as an
algebraic group.

Lemma 4.4. (a) The kernel of ab0 is the group ρ(Gsc(R)) · {d0d̄0 | d0 ∈ Z◦G(C)}.

(b) The map ab0 induces an injection π0(G(R)) ↪→ Ĥ0(R, X∗ ⊗ C∗).

Proof. (a) If ab0(g) = 1 with g = ρ(s) · z, then s · c ∈Gsc(R) and g = ρ(s · c) · dd̄ with c ∈ Zsc(C)
and d ∈ ZG(C). But, since we can write d= ρ(δ) · d0 with δ ∈ Zsc(C) and d0 in the torus Z◦G(C),
we get the representation g = ρ(scδδ̄) · d0d̄0 with scδδ̄ ∈Gsc(R). On the other hand, it is easy
that each element of the form g = ρ(s) · dd̄ with s ∈Gsc(R) and d ∈ Z◦G(C) lies in the kernel of
ab0.

(b) Since Gsc(R) and Z◦G(C) are connected as Lie groups, the same holds for their continuous
images ρ(Gsc(R)) and {d0d̄0 | d0 ∈ Z◦G(C)}. Thus, the kernel of ab0 is connected. On the other
hand, the kernel of ab0 is an open subgroup of G(R), since its Lie algebra coincides with the Lie
algebra of G(R). This implies the claim. 2
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Stabilization

Definition 4.5. We say that a pair (G, η), where G/Q is a reductive group and η ∈Aut(G) is
of finite order, has trivial Galois cohomology if all maps H1(F, Gγ,η)→H1(F, G) are trivial for
F = Q and for all F = Qv, v being an arbitrary valuation of Q.

Remark 4.6. The groups G= GLn, SLn, Sp2g,GSp2g have trivial H1 over every field F . The
pair (PGL2n+1, η), where η is of the form A 7→ J · tA−1 · J−1, also has trivial Galois cohomology,
since every stabilizer Gγ,η has a unique lift to the group SL2n+1 (compare the proof of [BWW02,
Proposition 6.5]), so that H1(F, Gγ,η)→H1(F, G) factorizes over the trivial set H1(F, SL2n+1).

Remark 4.7. If (G, η) has trivial Galois cohomology (which we will assume in the following), then
it is well known that the conjugacy classes inside the η-stable conjugacy class of some γ ∈G(F )
are parameterized by the elements in H1(F, Gγ,η). In the following, we will not distinguish
between classes in H1(F, Gγ,η) and representatives of conjugacy classes corresponding to them.
This applies in the following definition, where we furthermore use the Kottwitz sign ev(G) ∈ {±1}
for an algebraic group G/Qv if v is a place of Q, as defined in [Kot83].

4.8 We introduce the local stable orbital integral

SOη(γ0, hp) =
∑

γp∈H1(Qp,Gγ0,η
)

ep(Gγp,η) ·Oη(γp, hp)

and its analog in the finite adelic setting:

SOη(γ0, hf ) =
∏
p finite

SOη(γ0, hp) if

hf =
∏
p finite

hp.

We extend this definition by linearity to all Schwartz–Bruhat functions on G(Af ).

Theorem 4.9. Assume that the pair (G, η) has only trivial Galois cohomology. For I ⊂∆ and
γ0 ∈ PI(Q), assume G̃=GIγ0,η is a connected reductive group, let G̃qs be the quasi-split inner

form of G̃ and define ∆(γ0, η) = ∆(G̃, Lγ0,η) + 1
2q(G̃qs). Then we have

tr((h∞ × hf ) ◦ η, H∗c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))

=
∑
I⊂∆
Iη=I

(−1)#((∆−I)/η) ·
∑

γ0∈(PI(Q))η-st

N (γ0)∼LI∞
χI,α(N (γ0))>1
for all α∈∆−I

α∞(γ0, h∞) · SOη(γ0, hf ) · tr(γ0 ◦ η|M),

with

α∞(γ0, h∞) =
O∞η (I, γ0, h∞)

dIζ,γ
· (−1)∆(γ0,η) · #H1(R, T )

voldb∞((GIγ0,η)
′/ζ)

.

Here γ0 runs over the stable η-conjugacy classes inside PI(Q) satisfying the two listed conditions.

Proof. We start with a twisted conjugacy class γ0 in G(Q). Then all elements stably conjugate
to γ are parameterized by the kernel of the map H1(Q, G̃)→H1(Q, G), where G̃=GIγ0,η. Since
(G, η) has trivial Galois cohomology, this kernel equals H1(Q, G̃). Let us consider the following
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diagram, where the right-hand column is exact and the left-hand square is cartesian.

0

��
X(Q, G̃)

��
H1(Q, G̃) ab1

//

��

H1
ab(Q, G̃)

��

H1
ab(Q, G̃)

loc
��

H1(R, T )
iT // H1(R, G̃)

ab1
R // H1

ab(R, G̃) //

∼
��

⊕
v H1

ab(Qv, G̃)

��

(π1(G̃)Gal(C/R))tors
iR // (π1(G̃)Gal(Q/Q))tors

We remark that iR is surjective if G̃=GIγ,η and γ is an I-elliptic element. Furthermore, if γ is
I-elliptic, then we have the equality of the Q-rank with the R-rank of the torus G̃/G̃der. Recall
that the Kottwitz signs ev(G̃) satisfy

ep(G̃) = (−1)rankQp (G̃)−rankQp (G̃qs) for p finite

e∞(G̃) = (−1)
1
2
q(G̃der)− 1

2
q((G̃qs)der)∏

v

ev(G̃) = 1.

Here q(G̃der) denotes the dimension of the symmetric space associated to the derived group G̃der.
Thus, we have

(−1)
1
2
q(G̃der) = (−1)

1
2
q((G̃qs)der) ·

∏
p finite

ep(G̃). (34)

The Tamagawa numbers satisfy [San81]

τ(G̃) =
#(π1(G̃)Gal(Q/Q))tors

#X(Q, G̃)
· τ(G̃sc). (35)

Recall that τ(G̃sc) = 1 by the main result of [Kot88].
Finally, note that if D(G̃) does not vanish, it equals the order of the kernel of the map

H1(R, T )→H1(R, G̃). More precisely: if G̃β denotes the inner form of G̃ obtained by twisting
G̃/R with β ∈H1(R, G̃), then D(G̃β) equals the cardinality of the inverse image of β in H1(R, T )
(compare [She79]).

The process of stabilization now works as follows: the sum over all (η-twisted) conjugacy
classes in the stable class of γ0, which is a sum over γ ∈H1(Q, G̃), may be replaced by a
sum over those pairs (α, β) ∈H1

ab(Q, G̃)×H1(R, G̃) which have the same image in H1
ab(R, G̃).

This may be replaced by a sum over pairs (α, δ) ∈H1
ab(Q, G̃)×H1(R, T ) having the same

image in H1
ab(R, G̃) if we remove the factor D(G̃) from the trace formula. If we introduce an

additional factor #X(Q, G) in the formula, we may replace the sum over (α, δ) by a sum over
those (δ, ε) ∈H1(R, T )×

⊕
v H1

ab(Qv, G̃) for which the image of ε in (π1(G̃)Gal(Q/Q))tors vanishes
and for which the image of δ in H1

ab(R, G̃) is the archimedean component ε∞. But, since the
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maps iT , ab1
R and iR are surjective, we may simply replace the sum over (δ, ε) by a sum over

ω ∈
⊕

p finite H1
ab(Qp, G̃) after introducing an extra factor # ker(H1(R, T )� (π1(G̃)Gal(Q/Q))tors).

But now the product of this last factor with #X(Q, G) equals #H1(R, T ) · τ(G̃)−1 by (35). Now
observe that H1

ab(Qp, G̃)'H1(Qp, G̃)' ker(H1(Qp, G̃)→H1(Qp, G)) describes the local twisted
conjugacy classes in the local stable twisted conjugacy class of γ0. Putting everything together,
especially (34), we get the claim. 2

5. Comparison of fixed point formulas

Twisted stable endoscopy
5.1 Split groups with automorphism
Let G/R be a connected reductive split group scheme. We fix some ‘splitting’, i.e. a triple
(B, T, {Xα}α∈∆), where T denotes a maximal split torus inside a rational Borel B, ∆ = ∆G =
∆(G, B, T )⊂ Φ(G, T )⊂X∗(T ) the set of simple roots inside the system of roots and the Xα for
the simple roots α ∈∆ are a system (nailing) of isomorphisms between the additive group scheme
Ga and the unipotent root subgroups Bα. If R is a field, we may think of the Xα as generators of
the root spaces gα in the Lie algebra. Here X∗(T ) = Hom(T,Gm) denotes the character module
of T , while X∗(T ) = Hom(Gm, T ) will denote the cocharacter module of T . Let η ∈Aut(G) be
an automorphism of G which fixes the splitting, i.e. stabilizes B and T and permutes the Xα.
We assume η to be of finite order l. We denote by

G̃=Go 〈η〉
the (non-connected) semidirect product of G with η. η acts on the cocharacter module via
X∗(T ) 3 α∨ 7→ η ◦ α∨ and on the character module via X∗(T ) 3 α 7→ α ◦ η−1.

5.2 The dual group
Let Ĝ= Ĝ(C) be the dual group ofG. By definition, Ĝ has a triple (B̂, T̂ , {X̂α̂}) such that we have
identifications X∗(T̂ ) =X∗(T ), X∗(T̂ ) =X∗(T ) which identifies the (simple) roots α̂ ∈X∗(T̂ )
with the (simple) coroots α∨ ∈X∗(T ) and the (simple) coroots α̂∨ ∈X∗(T̂ ) with the (simple)
roots α ∈X∗(T ). There exists a unique automorphism η̂ of Ĝ which stabilizes (B̂, T̂ , {X̂α̂}) and
induces on (X∗(T̂ ), X∗(T̂ )) the same automorphism as η on (X∗(T ), X∗(T )).

5.3 The η-invariant subgroup in Ĝ
Let Ĥ = (Ĝη̂)◦ be the connected component of the subgroup of η̂-fixed elements in Ĝ. It is a
reductive split group with triple (B̂H , T̂H , {X̂β̂}β∈∆Ĥ

), where B̂H = B̂η̂, T̂H = T̂ η̂ and the X̂β̂

are of the form X̂β̂ = Sη̂X̂α̂ as elements of the Lie algebra ĝ, where the map Sη̂ : ĝ→ ĝ will be
explained soon.

We have the inclusion of cocharacter modules X∗(T̂H) =X∗(T̂ )η̂ ⊂X∗(T̂ ) and a projection
for the character module

Pη :X∗(T̂ )� (X∗(T̂ )η̂)free =X∗(T̂H),

where (X∗(T̂ )η̂)free denotes the maximal free quotient of the coinvariant module X∗(T̂ )η̂. For a
Z[η]-module X, we define a map

Sη :X →Xη, x 7→
ordx(η)−1∑

i=0

ηi(x),

where ordx(η) = min{i > 0 | ηi(x) = x} is the length of the orbit 〈η〉(x).
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For the roots Φ of a given root datum (X∗, X∗, Φ, Φ∨) we have to introduce a modified map
S′η by

S′η(α) = c(α) · Sη(α) where c(α) =
2

〈α∨, Sη(α)〉
.

The map S′η is defined on the coroots Φ∨ by exchanging the roles of α and α∨ in this formula. For
all simple root systems with automorphisms which are not of type A2n, we have 〈α∨, ηi(α)〉= 0
for i= 1, . . . , ordα(η)− 1, which implies c(α) = 1, i.e. S′η(α) = Sη(α). We furthermore introduce
the subset of short-middle roots and the dual concept of long-middle coroots:

Φ(Ĝ, T̂ )sm = {α ∈ Φ(Ĝ, T̂ ) | 1
2 · Pη(α) /∈ Pη(Φ(Ĝ, T̂ ))},

Φ(G, T )lm = Φ∨(Ĝ, T̂ )lm = {α∨ | α ∈ Φ(Ĝ, T̂ )sm}.

Proposition 5.4. With the above notation, we have

Φ(Ĥ, T̂H) = Pη(Φ(Ĝ, T̂ )sm) for the roots, (36)
Φ∨(Ĥ, T̂H) = S′η(Φ

∨(Ĝ, T̂ )lm) for the coroots, (37)

∆∨
Ĥ

= ∆∨(Ĥ, B̂H , T̂H) = S′η(∆
∨
Ĝ

) for the simple coroots,

∆Ĥ = ∆(Ĥ, B̂H , T̂H) = Pη(∆Ĝ) for the simple roots.

Proof. This may be deduced from [Ste68, 8.1]. 2

Definition 5.5 (Stable η-endoscopic group). In the above situation, a connected reductive
split group scheme H/R will be called a stable η-endoscopic group for (G, η) respectively
for G̃=Go 〈η〉 if its dual group is together with the splitting isomorphic to the above
(Ĥ, B̂H , T̂H , {Xβ}β∈∆Ĥ

).

Remarks. Since H is unique up to isomorphism (up to unique isomorphism if we consider H
together with a splitting), we can call H the stable η-endoscopic group for (G, η). For a maximal
split torus TH ⊂H, we have

X∗(TH) = (X∗(T )η)free for the cocharacter module,
X∗(TH) = X∗(T )η for the character module.

(38)

5.6 To get examples, we use the following notation:
diag(a1, . . . , an) ∈GLn denotes the diagonal matrix (δi,j · ai)ij ; and
antidiag(a1, . . . , an) ∈GLn the antidiagonal matrix (δi,n+1−j · ai)ij with a1 in the upper right

corner. We introduce the following matrix:

J = Jn = (δi,n+1−j(−1)i−1)16i,j6n = antidiag(1,−1, . . . , (−1)n−1) ∈GLn(R)

and its modification J ′2n = antidiag(1,−1, 1, . . . , (−1)n−1, (−1)n−1, . . . , 1,−1, 1). Since tJn =
(−1)n−1 · Jn and J ′2n is symmetric, we can define the

standard symplectic group Sp2n = Sp(J2n),
standard split odd orthogonal group SO2n+1 = SO(J2n+1),

standard split even orthogonal group SO2n = SO(J ′2n).

We consider the groups GLn, SLn, PGLn, Sp2n, SOn with the splittings consisting of the diagonal
torus, the Borel subgroup consisting of upper triangular matrices and the standard nailing. We

109

https://doi.org/10.1112/S0010437X11005641 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005641


U. Weselmann

remark that the following map defines an involution of GLn, SLn and PGLn:

η = ηn : g 7→ Jn · tg−1 · J−1
n .

Example 5.7 (A2n↔ Cn). The group Sp2n is a stable endoscopic group for the pair PGL2n+1, η.

G= PGL2n+1, η = η2n+1 has dual Ĝ= SL2n+1(C), η̂ = η2n+1,⋃
H = Sp2n has dual Ĥ = SO2n+1(C).

Example 5.8 (A2n−1↔Bn). The group G= GL2n ×Gm has the automorphism

η : (g, a) 7→ (η2n(g), det(g) · a),

which is an involution since det(η2n(g)) = det g−1. The dual η̂ ∈Aut(Ĝ) satisfies

η̂(g, b) = (η2n(g) · b, b),

so that we get

G= GL2n ×Gm, η has dual Ĝ= GL2n(C)× C×, η̂,⋃
H = GSpin2n+1 has dual Ĥ = GSp2n(C).

Recall that GSpin2n+1 can be realized as the quotient (Gm × Spin2n+1)/µ2, where µ2 ' {±1} is
embedded diagonally, so that we get an exact sequence

1→ Spin2n+1→GSpin2n+1
µ−−→Gm→ 1,

where the ‘multiplier’ map µ is induced by the projection to the Gm factor followed by squaring.
Thus, the derived group of GSpin2n+1 is Spin2n+1, i.e. a connected, split and simply connected
group.

Example 5.9 (A2n−1↔Bn modified). In Example 5.8, the subtorus Z0 = {(z · Id2n, z
−n) | z ∈

Gm} ⊂ Z is η-stable, in fact η acts by inverting elements of Gm ' Z0. Therefore, the η-action
descends to the quotient group G′ =G/Z0. We may identify

G′ ' GL2n/µn,

(A, b) mod R 7→ A · n
√
b.

The induced η-action reads A mod µn 7→ η2n(A) · n
√

det(A).
We remark that η acts as identity on the center of G′, which is Gm/µn 'Gm. The group of

η-invariants in the center is therefore a connected group.
The dual group Ĝ′ is the following η-stable subgroup of Ĝ:

Ĝ′ = {(A, b) ∈ Ĝ | det(A) = bn}.

Since Ĝη̂ ⊂ Ĝ′, we may consider H = GSpin2n+1 as a stable endoscopic group for (G′, η′).

Comparison of characters
5.10 Matching of finite-dimensional representations
Let k be a field of characteristic 0. Let M =Mχ be the finite-dimensional representation of
G of highest weight χ ∈X∗(T )η. We also denote by Mχ the extension of this representation
to G̃=Go 〈η〉, such that η acts as identity on one (every) highest weight vector vχ. Let
MH =MH,χ be the corresponding representation of H, where we now consider χ as a weight
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in X∗(TH) =X∗(T )η. In this situation, we say that the G̃-module M matches with the H-module
MH .

We can as well consider MH,χ as an element in the Grothendieck group Gro(H , alg) of
finite-dimensional algebraic representations of H and M =Mχ as an element of the quotient
group Gro(G , η) = Gro(G̃ , alg)/IndG̃

GGro(G , alg). The correspondence MH,χ 7→Mχ induces an
isomorphism between these groups (recall that the order of η is a prime). This isomorphism
enables us to introduce the notion of matching on the level of Grothendieck groups.

5.11 Recall that Φ(H, TH) = Φ∨(Ĥ, T̂H) = S′η(Φ
∨(Ĝ, T̂ )lm) = S′η(Φ(G, T )lm) by (37) of Propo-

sition 5.4. We may define Φ(G, T )sm by the same formula as above using the projection Pη :
X∗(T )� (X∗(T )η̂)free. In the case of an irreducible root system, each αl ∈ Φ(G, T )− Φ(G, T )sm

(which exists only for type A2n and η of order two) is of the form αl = α0 + η(α0) for some
α0 ∈ Φ(G, T )− Φ(G, T )lm and vice versa. We have c(αl) = 2 and the η-orbit of α0 is uniquely
determined by αl. Compare [Bal01, 2.5] for details.

Lemma 5.12. Suppose that the root system Φ(G, T ) is irreducible. If α ∈ Φ(G, T )sm,
i.e. 1

2Pη(α) /∈ Pη(Φ(G, T )), then there exists a set of root vectors {Xγ ∈ gγ\{0} | γ ∈ ηZ(α)} such
that η acts by permutation on these root vectors.

If α is such that 1
2Pη(α) ∈ Pη(Φ(G, T )), then η(α) = α, η has order two and η acts as −1

on gα.

Proof. This is essentially [Bal01, Lemma 2.9]. 2

Proposition 5.13. Let the finite-dimensional irreducible representation M of G̃ match with
the representation MH of the stable endoscopic group H. Let γ ∈G(k) be η-semisimple and τ(γ)
be a matching element in H(k). Then we have

tr(η ◦ γ, M) = tr(τ(γ), MH).

Proof. The proof is similar to a proof of the Weyl character formula (compare [Hum72, 24.3]).
In fact, one can get the result by comparing a Weyl character formula for non-connected groups
as in [Wen01] with the formula for the endoscopic group.

We may assume that k is an algebraically closed field and therefore that γ ∈ T (k) and
τ(γ) ∈ TH(k). We will work in the Grothendieck group Gro(b−) of finitely generated b−-modules,
where b− = n− + t is the Borel subalgebra containing the negative roots in the decomposition
g = Lie(G) = n+ ⊕ t⊕ n− and t = Lie(T ). For λ ∈X∗(T ), we denote by Zλ the Verma module

Zλ = U(g)⊗U(b+) kλ = IndGB λ' U(b−)⊗U(t) kλ.

Then we can write

M =Mλ =
∑

w∈W (G,T )

signG(w) · Zw(λ+δG)−δG ,

where δG = 1
2

∑
α∈Φ(G,T )+ α is half the sum of the positive roots. Since signG(η(w)) = signG(w),

we may collect the Verma modules on the right-hand side indexed by Weyl-group elements w in
the same η-orbit to get G̃-modules on the right-hand side. Here η acts as intertwining operator
from Zw(λ+δG)−δG to Zη(w)(λ+δG)−δG in such a way that η acts by permutation on the set of
some highest weight vectors mw(λ+δG)−δG . Then the above identity becomes an identity in the
Grothendieck group of G̃-modules. The computation of tr(η ◦ γ, M) reduces to the computation
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of the formal traces tr(η ◦ γ, Zw(λ+δG)−δG) for w ∈W (G, T )η, since the trace of η ◦ γ on a direct
sum of Zw(λ+δG)−δG is obviously zero if w is not η-invariant.

To compute the formal trace, we can view Zλ ' U(n−) as a symmetric algebra over n−. We
may take a basis (Xα)α∈Φ− of n− as in Lemma 5.12 and view Zλ as a polynomial algebra in this
basis. Then the action of η ◦ γ respects the set of one-dimensional monomial subspaces of Zλ and
only those monomials contribute to the trace, which contain all Xα in an η-orbit with the same
exponent. If we have no α with 1

2Pη(α) ∈ Pη(Φ(G, T )), then the formal trace may be written up
to the factor λ(γ) in the form∏

α0∈Φ(G,T )−/η

(
1−

∏
α∈ηZ(α0)

α(γ)
)−1

=
∏

α0∈Φ(G,T )−/η

(1− (Sη(α0))(γ))−1

=
∏

α′∈Φ(H,TH)−

(1− α′(τ(γ)))−1. (39)

This coincides with the formal trace of τ(γ) acting on a Verma module for the endoscopic group
H. If we have some αl with 1

2Pη(αl) ∈ Pη(Φ(G, T )), then we have to replace Φ(G, T )− in the
above formula by (Φ(G, T )sm)− and multiply with additional factors of the form (since η acts
by −1 on Xαl , we get alternating signs in the geometric sum)

(1 + αl(γ))−1 = 1− αl(γ) + αl(γ)2 − · · · .

But each such αl is of the form α0 + η(α0) = Sη(α0) and thus this factor may be multiplied with
the corresponding factor (1− Sη(α0)(γ))−1 to give the factor

(1− αl(γ)2)−1 = (1− S′η(αl)(γ))−1,

since S′η(αl) = 2Sη(αl) in this case. Now (37) of Proposition 5.4 tells us that we again arrive at
the right-hand side of (39).

From the above considerations, we deduce moreover that δG = δH as elements in X∗(TH) =
X∗(T )η, so that w(λ+ δG)− δG may be identified with the corresponding element w(λ+ δH)−
δH in X∗(TH) for w ∈W (G, T )η =W (H, TH). Reversing the computation for the group H, we
immediately get the claim. 2

Lemma 5.14. In the notation of Proposition 5.13, let n be the unipotent radical of a standard
parabolic subalgebra p⊂ g = Lie(G) and let nH be the unipotent radical of the corresponding
subalgebra pH ⊂ h = Lie(H). Let L respectively LH denote the corresponding Levi groups. Then,
for every w ∈W (H) =W (G)η, we have that

(−1)lH(w) ·H lH(w)(nH , MH,χ)w(χ+δ)−δ ∈ Gro(LH )

matches with

(−1)lG(w) ·H lG(w)(n, Mχ)w(χ+δ)−δ ∈ Gro(L, η).

Proof. Recall that Hν(n, Mχ)χ denotes the subspace of Hν(n, Mχ) which transforms under
the action of L as the irreducible representation of highest weight χ. Recall from [Kos61,
Theorem 5.14] that the space H lG(w)(n, Mχ)w(χ+δ)−δ is an irreducible L-module if w is a Kostant
representative for the coset space W (G)/W (L). The theorem of Kostant furthermore tells us that
the highest weight vector in H lG(w)(n, Mχ)w(χ+δ)−δ is the cohomology class having e′−Φw

⊗mwχ

as a representing cocycle, where mwχ ∈Mχ is some weight vector for the extremal weight wχ
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and {e′−Φ} for Φ⊂ Φ(n) denotes the basis of Λ·n′ dual to the basis {eΦ} of Λ·n, where

eΦ = eφ1 ∧ · · · ∧ eφν if Φ = {φ1, . . . , φν}

and the eφ ∈ n are generators of the root spaces. From this description, it is clear that the
lemma is correct up to sign. At first, recall from the existence of Steinberg representatives
[Bal01, Lemma 2.7] that there exists an η-invariant representative ω ∈G(k) of w. We can
takemwχ = ω(mχ) for some highest weight vector mχ. Since η acts trivially on mχ by the
definition of Mχ as an G̃-module, we deduce that η acts as identity on mwχ.

Therefore, it remains to prove that η acts as (−1)lG(w)−lH(w) on e′−Φw
: recall that Φw =

w(Φ(G, T )−) ∩ Φ(G, T )+ and lG(w) = #Φw. We compare the contributions of the η-orbits of
roots α to lG(w)− lH(w). Let λ be the length of the η-orbit of α.

For α ∈ Φ(G, T )sm ∩ Φ(G, T )lm, the contributions are λ to lG(w) = #Φw and 1 to lH(w) =
#Φ(H, TH)w. By Lemma 5.12, we can take basis elements eφ for φ in the η-orbit of α, which are
permuted by η. Now η acts by (−1)λ−1 on the exterior product of these vectors, which gives the
correct contribution.

If α is such that 2Pη(α) ∈ Pη(Φ(G, T )), then there exists another root α′ such that 2Pη(α) =
Pη(α′). In fact, α′ = α+ η(α) and η(α′) = α′, so that α′ ∈ Φw if α ∈ Φw. But the converse
implication also holds: if α /∈ Φw, then α lies in at least one of the halfsystems w(Φ(G, T )+)
and Φ(G, T )−. But, since η stabilizes the decomposition in positive and negative roots and
furthermore fixes w, we get that η(α) also lies in this halfsystem. Since the halfsystems are
closed under addition of roots, we deduce that α′ lies in one of them, i.e. α′ /∈ Φw. Thus, we may
compute the contribution of the η-orbit of α together with the contribution of α′. We conclude
that we have a contribution λ+ 1 to lG(w) = #Φw. Only S′η(α

′) contributes a 1 to lH(w), since
α /∈ Φ(G, T )lm. By the same argument as above, η acts by (−1)λ−1 on the exterior product of
the eφ for φ in the η-orbit of α, but as −1 on eα′ (again by Lemma 5.12), which gives the correct
contribution (−1)λ to e′−Φw

. This finishes the proof. 2

Lifts

5.15 Let G1 =H/F be the stable endoscopic group of the pair (G, η), where G/OF is a reductive
connected split group over the ring of integers OF of a number field F and η is an automorphism
of finite order fixing some splitting of G. In the following definitions, we denote by F either some
local non-archimedean field Fp or the ring of finite adeles Af .

While it does not matter in the following which Haar measures we take on the initial groups G
and G1 (we just have to multiply hf respectively hf,1 by a scalar), we have to be careful in using
Haar measures on the (η-)centralizers of matching semisimple elements γ0 and γ1 when we define
the matching of Schwartz–Bruhat functions in the following. If F is a local non-archimedean field,
we normalize the Haar measures such that they give the measure 1 to the integral points of the
connected component of the centralizer.

If F = Af , we take the Haar measures as finite parts of some Tamagawa measures db=
db∞ × dbf respectively db1 = db1,∞ × db1,f which are normalized in such a way that the following
identity holds:

|α∞(γ0, 1)|= |α∞(γ1, 1)|. (40)

Recall from Theorem 4.9 that the definition of α∞(γ, 1) involves the infinity component of the
Haar measure of the (η-)centralizer of γ.
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Warning. We do not assume that the product of the normalized local Haar measures at the finite
places gives the Haar measure on the finite adeles. Therefore, the results in the next subsection
will need some careful analysis of the local factors |α∞(γ0, 1)| (compare [Wei08]) before they can
be used to get exact multiplicity statements in the lifting of representations.

Definition 5.16. The Schwartz–Bruhat functions hf ∈ C∞c (G(F )) and hf,1 ∈ C∞c (G1(F )) are
matching if they have matching stable orbital integrals, i.e. if

SOη(γ, hf ) = SO(γ1, hf,1)

for all matching semisimple elements γ ∈G(F ) and γ1 ∈G1(F ).

Recall that a distribution on G(F ) is called η-stable if it lies in the closure of the space of
stable orbital integral distributions hf 7→ SOη(γ, hf ).

Definition 5.17. The admissible representation π ∈ Rep(G(F ) o η) is a lift of π1 ∈
Rep(G1(R)) if tr(hf · η|π) = tr(hf,1|π1) for all matching hf ∈ C∞c (G(F )) and hf,1 ∈ C∞c (G1(F ))
and if furthermore the characters χπ : hf 7→ tr(hf · η|π) and χπ1 : hf,1 7→ tr(hf,1|π1) are (η-)stable
distributions.

Some virtual admissible representation Π ∈ Gro(G(F ) o η) is the lift of Π1 ∈ Gro(G1 (F ))
if we can write them in the form Π = π − π′ and Π1 = π1 − π′1 such that the admissible
representations π, π′ ∈ Rep(G(F ) o η) are the respective lifts of π1, π

′
1 ∈ Rep(G1(F )).

5.18 Now we assume that we are in one of the following situations:

(G, η, G1) = (PGL2n+1, η, Sp2n),
(G, η, G1) = (GL2n ×GL1, η,GSpin2n+1).

In an earlier paper [BWW02], we have shown that the twisted fundamental lemma for these
situations can be reduced to a statement (‘BC-conjecture’) comparing stable orbital integrals on
the groups Sp2n and SO2n+1, a phenomenon which has been worked out by Waldspurger in more
generality [Wal08]. This statement has been proven by Ngô [Ngo10, Théorème 2] in the case of
positive characteristic, but the work of Waldspurger [Wal06, Wal08] allows us to reduce the case
of p-adic fields to this fundamental result of Ngô. We remark that the cases n= 1 and n= 2
have been obtained earlier using explicit calculations of p-adic orbital integrals [Fli96, Fli99]
and [BWW02, 7.10]. We thus have the following theorem.

Theorem 5.19. In the case that F is a local field with sufficiently large residue characteristic
and (G, η, G1) is as in § 5.18, the characteristic functions of G(OF ) and G1(OF ) match.

Remark 5.20. In the case that F is a local field, it is well known that for each hf there exists
some matching hf,1 and vice versa. This is elementary for functions having support in the set of
(η-)regular elements and may be deduced in the above situations from [Wal97] (for the case n= 2,
compare [Hal94]) and [Wal08] for all Schwartz–Bruhat functions. We conclude from this local
matching property and the fundamental lemma that in the above situations the corresponding
statement holds in the case F = Af for sufficiently many functions to get weak lifting statements.
Details will be explained elsewhere.

Theorem 5.21. In the case that F is a local field with residue characteristic not two and
(G, η, G1) is as in § 5.18, then two elements of the Hecke algebra f ∈ S(G(F )//G(OF )) and
f1 ∈ S(G1(F )//G1(OF )) match if f maps to f1 under the Satake isomorphism.
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Proof. If the group ZηG is connected, this statement is reduced to the special case (5.19) in [Wei06],
which is an extension of the results of [Hal95] to the twisted case. In the case G= GL2n ×Gn,
we may reduce to the situation (G′, η, G1) = (GL2n/µn, η

′,GSpin2n+1) of Example 5.9, where
the η-invariants of the center form a connected group.

If t ∈ T (F ) maps to t1 ∈ T1(F ) under the norm map, we have to show that the characteristic
functions f of G(OF )tG(OF ) and f1 of G1(OF )t1G1(OF ) match. This is equivalent to the same
statement for G′ and the characteristic function f ′ of G′(OF ) · t′ ·G′(OF ), since we have the
following identity between the stable orbital integrals: Ost

γ (f, G) =Ost
γ modR(f ′, G′); compare

[BWW02, Lemma 5.8].

Lifting of cohomology
5.22 In the next theorem, G will be defined over a totally real number field F .

As maximal connected and compact subgroups of G(R), we choose the following: K∞ =∏
v|∞ K∞,v ⊂G(R) =

∏
v|∞ G(R), where K∞,v = SOn(R) for G= GLn,GLn ×GL1 and in the

case that n is odd also for G= PGLn, K∞,v = Un(R) for G= GSp2n and for G= Sp2n.

Theorem 5.23. Let F be a totally real number field. Assume that (G/F, η, G1/F ) is as in
§ 5.18. For the groups G= ResF/Q G and G1 = ResF/Q G1, we have that, if the G-module M

matches with the G1-module M1,

H∗c (G(Q)\G(A)/K∞Z∞,M) ∈ Gro(G(Af ) o η) = Gro(G(Af ,F ) o η)

is the lift of

H∗c (G1(Q)\G1(A)/K∞,1Z∞,M1) ∈ Gro(G1 (Af )) = Gro(G1 (Af ,F )).

Proof. Let hf and hf,1 be matching Schwartz–Bruhat functions. We choose open compact
subgroups Kf respectively Kf,1 of G(Af,F ) respectively G1(Af,F ) such that hf is right invariant
under Kf and hf,1 right invariant under Kf,1. Since we may make Kf smaller, we can
furthermore assume that (AssKf ) and (Assζ,der) are satisfied. Replacing Kf by Kf ∩ η(Kf ),
we may furthermore assume that Kf is η-invariant, so that Zf =Kf ∩G(Af ) satisfies (AssZf ).

We remark furthermore that (Assconn) is fulfilled in the cases under consideration: this is
clear for the endoscopic groups, since Sp2n and the derived group of GSpin2n+1 are simply
connected, which implies that the centralizer of a semisimple element is connected. Furthermore,
it is well known that the connected component of the centralizer of a non-semisimple element is
not reductive.

On the other hand, it follows from the computations in [BWW02] (compare Lemma 2.9 and
Step 3 in the proof of Theorem 5.11) that the η-centralizer of an element in GL2n ×GL1 is a
product of a symplectic group, a special orthogonal group, some centralizer inside a symplectic
group and Gm. This implies that the centralizers GIγ,η are connected. The case of PGL2n+1

reduces to the η-centralizers in SL2n+1 (proof of Proposition 4.5 loc. cit.) and can be handled by
the same argument.

Then we have to prove

tr(η ◦ hf |H∗c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))
= tr(hf,1|H∗c (G1(Q)\G1(A)/K∞,1Z∞ ·Kf,1,M1)).

Since the assumptions of the trace formula in § 3.20 and the assumptions for the stabilization in
§ 4 are satisfied, we may replace the traces by the right-hand sides of Theorem 4.9.
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First of all, we note that the (stabilized) trace formula implies that the two virtual characters
which are defined by the two sides of this equation are stable respectively η-stable distributions,
so that the lifting claim makes sense.

We remark that the set ∆1 of simple roots of G1 can be identified with the set of η-orbits
in the set of simple roots of ∆, i.e. we have a projection π : ∆�∆/η '∆1, so that we have a
bijection between the set of η-invariant subsets I ⊂∆ with the set of subsets I1 ⊂∆1 given by
I 7→ π(I) and I1 7→ π−1(I1). Since this bijection satisfies (−1)#((∆−I)/η) = (−1)#(∆1−I1 , we are
reduced to prove ∑

γ0∈(PI(Q))η-st

N (γ0)∼LI∞
χI,α(N (γ0))>1
for all α∈∆−I

α∞(γ0, 1) · SOη(γ0, hf ) · tr(γ0 ◦ η|M)

=
∑

γ1∈(PI1 (Q))st

γ1∼L
I1
∞,1

χI1,α1
(γ1)>1

for all α1∈∆1−I1

α∞(γ1, 1) · SO(γ1, hf,1) · tr(γ1|M1).

We observe that MI1 is the stable endoscopic group of (MI , η). We remark that an element γ0 ∈
PI(Q), such that N (γ0) has a conjugate in LI∞, is η-semisimple, since LI∞ contains no unipotent
elements. Thus, its η-conjugacy class meets the Levi group MI(Q), so that we are reduced to
consider elements γ0 ∈MI(Q). The definition of stable endoscopy implies that we have a bijection
between η-semisimple η-conjugacy classes in MI(Q̄) and semisimple conjugacy classes in the
corresponding MI1(Q̄) such that this induces the projection T (Q) 7→ T (Q)η ' T1(Q) on the dia-
gonal tori. From [BWW02, Corollary 6.4, Proposition 7.5(b) and Corollary 7.6], we deduce that
‘matching’ defines a bijection between those (η-)stable (η-)conjugacy classes which have rational
representatives γ0 ∈MI(Q) respectively γ1 ∈MI1(Q). With this notation, it remains to prove

(a) χI,α(N (γ0))> 1 for all α ∈∆− I if and only if χI1,α1(γ1))> 1 for all α1 ∈∆1 − I1;

(b) N (γ0)∼ LI∞⇔ γ1 ∼ LI1∞,1;

(c) α∞(γ0, 1) = α∞(γ1, 1),

since we already know SOη(γ0, hf ) = SO(γ1, hf,1) by assumption and tr(γ0 ◦ η|M) = tr(γ1|M1)
by Proposition 5.13. 2

5.24 To prove (a), we may replace γ0 by an η-conjugate γ′0 ∈ T (Q̄) and γ1 by a conjugate γ′1,
such that γ′0 maps to γ′1 under the canonical projection T (Q̄)� T1(Q̄). The element N (γ0) is
then a conjugate of N (γ′0). But under the identification X∗(T1) =X∗(T )η we can take χI1,α1 to
be a positive rational multiple of χI,α ◦ (id + η). The claim is now an immediate consequence of
this.

5.25 To prove (b), we use γ′0 and γ′1 as in the proof of (a). Then γ1 may be conjugated
into LI1∞,1 if and only if τ(α(γ′1)) has absolute value 1 for all embeddings τ : Q ↪→ C and all
roots α1 ∈ I1 and if γ1 satisfies a certain condition, which characterizes LI1∞,1 inside LI1,m∞,1 . This
condition is ρ(µ(γ1))> 0 for all ρ : F ↪→ R in the case G1 = GSpin2n+1 and is the empty condition
for G1 = Sp2n. Similarly, N (γ0) may be conjugated into LI∞ if and only if τ(α(N (γ′0))) has
absolute value 1 for all τ : Q ↪→ C and if in the case G= GL2n ×GL1 we have ρ(a2 · detA)> 0
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for all ρ : F ↪→ R, where γ0 = (A, a). But, since α ◦ N = α ◦ (id + η) is either a root or twice
a root in I1 and since the sign conditions correspond to each other under the identification
X∗(T1) =X∗(T )η, (compare [BWW02, 1.15]), the claim (b) is now clear.

5.26 The statement of (c) is up to sign just the assumption in normalizing the Haar measures
on the centralizers made in (40) above. It remains to check that ∆(γ0, η) = ∆(γ1, id) (at least
modulo 2).

To prove that q(G̃Iγ0,η) = q(G̃I1γ1,id
) for the quasi-split forms, we remark that we may deduce

from [BWW02] that the centralizers of γ0 and γ1 have factorizations in factors which are either
isogenous for the two groups or are of the shape that some SO2g+1 for one group corresponds to
some Sp2g for the other group. Since these two groups have no outer automorphism, we have to
take their split forms and then get

q(Sp2g) =
g2 + g

2
and q(SO2g+1) =

dim(SO2g+1)− dim(SOg+1 × SOg)
2

=
g2 + g

2
.

The remaining summand ∆(G̃, K̃∞) is just the difference between the dimension of the maximal
real split torus ZR-split

G̃
in the center of G̃ and the dimension of its intersection with the center

of the original group. By the result already cited from [BWW02], the centers of the two
centralizers are isogenous, so the dimensions of their real split tori coincide. The dimensions
of the intersections with the original centers also agree (they are 0 in the situation G= PGL2n+1

and G1 = Sp2n and are the degree of the totally real ground field, for G= GL2n ×Gm and
G1 = GSpin2n+1). The equality of the signs is proven.

Corollary 5.27. Under the assumptions of Theorem 5.23, we have that

H∗(G(Q)\G(A)/K∞Z∞,M) ∈ Gro(G(Af ) o η) = Gro(G(Af ,F ) o η)

is the lift of

H∗(G1(Q)\G1(A)/K∞,1Z∞,M1) ∈ Gro(G1 (Af )) = Gro(G1 (Af ,F )).

Proof. This may be deduced from the previous theorem by Poincaré duality: we have

H i(G(Q)\G(A)/K∞Z∞,M)

'Hom(Hq(Ḡ)−i
c (G(Q)\G(A)/K∞Z∞, M̌), Hq(Ḡ)

c (G(Q)\G(A)/K∞Z∞, C)),

and a similar relation holds for the group G1. It is clear that the cohomology with compact
support in the highest dimension lifts from the group G1 to (G, η).

Example 5.28. Let us consider the special case where G= GL4/Q×GL1/Q and G1 = GSp4/Q
and M and M1 are the constant sheaves. Furthermore, let hf respectively hf,1 be the
characteristic functions of the maximal compact subgroups Kf = GL4(Ẑ)× Ẑ∗ and Kf,1 =
GSp4(Ẑ). In this case, the statement reduces to an identity, which can be shown to be true
by other methods: we have isomorphisms

X :=G(Q)\G(A)/K∞Z∞ ·Kf ' SL4(Z)\SL4(R)/SO4(R)

and
X1 :=G1(Q)\G1(A)/K∞,1Z∞,1 ·Kf,1 ' Sp4(Z)\Sp4(R)/U2(R)

and the formula states that

tr(η ◦ hf |H∗(X, C)) = tr(hf,1|H∗(X1, C)).
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But, the right-hand side is just the Euler characteristic ofX1, which is known to be homeomorphic
to P3(C)− P1(C), i.e. the Betti numbers are bi(X1) = 1 for i= 0, 2 and bi(X1) = 0 otherwise.
Thus, the right-hand side equals 2. The left-hand side is the Lefschetz number of the involution η
acting on X. It is known [LS78, Theorem 2] that H i(X, C) is one dimensional for i= 0, 3 and is
zero for all other values of i. The fact that the left-hand side also equals 2 is thus equivalent to
the assertion that η acts by −1 on H3(X, C). Since the antidiagonal matrix J4 lies in K∞ ×Kf ,
the involution η on X may be written in the form: η0 :A 7→ tA−1.

By Poincaré duality (which holds for coefficient domains in characteristic 0, since X is a
quotient of a manifold by a finite group), we get isomorphisms H i(X, C)'H9−i(X̄, ∂X̄, C),
where X̄ denotes the Voronoi compactification of X and ∂X̄ = X̄ −X the complement
(compare [LS78]). Now H9(X̄, ∂X̄, C) is generated by the relative fundamental class c of
X, and η0 acts on it by −1, since the action on the tangent space sl4(R)/so4(R), which
may be identified with the space of real symmetric matrices, is minus the identity and since
dim(X) = 9 is odd. A generator of H6(X̄, ∂X, C), which is called σ6

4 in the notation of [LS78,
3.2], is easily seen to be the image of the relative fundamental class of the locally symmetric
space S = SL3(Z)\GL3(R)+/SO3(R) under the embedding of spaces, which is induced from the
embedding of groups ι :A 7→ diag(A, det(A)−1). One checks immediately that η0 acts by −1 on
the six-dimensional tangent space, so that H6(X̄, ∂X, C) is η0-invariant. Since Poincaré duality
is induced by cap product with c, we deduce that η0 acts by −1 on H3(X, C). 2
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181–279.

God62/63 R. Godement, Domaines fondamentaux des groupes arithmétiques, Sémin. Bourbaki
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