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Seven new champion linear codes

Gavin Brown and Alexander M. Kasprzyk

Abstract

We exhibit seven linear codes exceeding the current best known minimum distance d for their
dimension k and block length n. Each code is defined over F8, and their invariants [n, k, d] are
given by [49, 13, 27], [49, 14, 26], [49, 16, 24], [49, 17, 23], [49, 19, 21], [49, 25, 16] and [49, 26, 15].
Our method includes an exhaustive search of all monomial evaluation codes generated by points
in the [0, 5] × [0, 5] lattice square.

1. Introduction

The basic invariants of a linear code C over the finite field Fq are its dimension k and its block
length n. The code is the image in Fn

q of a k × n matrix M over Fq. The minimum distance
d of C is the smallest Hamming weight of any nonzero linear combination of the rows of M .
These invariants are conventionally recorded as a triple [n, k, d]. One usually seeks codes with
minimum distance d as large as possible for a given block length n and dimension k. There are
theoretical upper bounds for the minimum distance, although in many cases the largest known
example falls short of these bounds. Grassl [9] catalogues the best known linear codes in this
sense, and we refer to any code with larger minimum distance as a champion code. (The profile
[36, 19, 12] over F7 discovered in [6] is not currently recorded in [9], but we will not regard any
code matching these invariants as a champion.)

In this paper we find seven new champion codes defined over F8 by considering the class of
generalised toric codes introduced by Little [11] (see § 2).

Theorem 1.1. There are precisely five [n, k, d] profiles of champion generalised toric codes
over F8 generated by collections of points in a [0, 5]× [0, 5] square. There are (at least) another
two champion codes arising from a [0, 6]× [0, 6] square. These profiles are listed in Table 1.

The codes we consider correspond to subsets of lattice points in the [0, m]× [0, m] square for
small values of m. In principle, our approach is to enumerate all such sets of points, construct
the corresponding code over various small fields and then compute its invariants. In § 3 we
describe an algorithm to enumerate all such sets of points up to affine equivalence. To prove
the theorem, we implement and run this algorithm to completion for m= 5, and a partial
search when m= 6. Since our algorithm is exhaustive, we can say more, as follows.

Theorem 1.2. There are no champion generalised toric codes over Fq when q 6 7.

It is worth noting that the new Bound A of [8] does not improve the existing theoretical
upper bounds for minimum distance in the range of the champion codes we discover, so we
cannot say that the codes of Theorem 1.1 are the best possible amongst all linear codes.
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2. Generalised toric codes

Recall from [10] that a toric code C, over a sufficiently large field Fq, is determined by a convex
lattice polygon P ⊂ Z2 ⊗Q as follows. Suppose that P lies in a [0, m]× [0, m] square, where
q >m+ 2. Then C is given by the image of a k × n matrix M whose rows are generated by
evaluating each lattice point (a, b) ∈ P ∩ Z2 (regarded as a monomial xayb) at each vector of
the torus (F∗q)2. The dimension of C is the number of rows k = |P ∩ Z2| of M and the block
length is the number of columns n= (q − 1)2.

A generalised toric code is constructed in the same way as a toric code but with the possibility
of omitting one or more of the lattice points of P ; equivalently, one may remove rows from the
generating matrix M . Conceptually this allows one to delete any particularly short vectors in
C that arise as rows of M . Although of course this does not necessarily increase the minimum
distance, they have recently also been proving fruitful in the search for champions [1, 7, 11, 13].
Little introduced the study of generalised toric codes, and found a champion [49, 12, 28] code
over F8 coming from a particular subset of points of a polygon in a [0, 5]× [0, 5] square [11]; this
is illustrated in Figure 2(a). Systematic attempts to produce examples of champion generalised
toric codes have been performed over F4 and F5 [1], and over F7, F8 and F9 [7].

Small polygons

In [6] we assembled a comprehensive database of lattice polygons that are contained, up to
lattice automorphism and translation, in a [0, m]× [0, m] square, for m6 7. This database can
be interrogated online via the Graded Ring Database [4], or from within the computational
algebra software Magma [2]. In [6] we checked the toric code corresponding to each such
polygon, over all prime-powered fields Fq for m+ 2 6 q 6 9, and found a single new champion
code, defined over F7 with invariants [36, 19, 12]. In this paper we consider all generalised toric
codes associated with polygons that lie in a [0, m]× [0, m] square, for m6 5 and m+ 2 6 q 6 9.
We also present partial results when m= 6; in this case the number of possible generalised toric
codes is too large to be searched systematically using current techniques. The invariants listed
in Table 1 are those of the champion codes we found with this search.

Table 1. The [n, k, d] invariants of new champion generalised toric codes over F8. In each case a
single example is given, contained in the smallest possible [0, m] × [0, m] square, and illustrated in

Figure 1.

n k d Min m Example points

49 13 27 4 (0, 2), (0, 3), (0, 4), (1, 0), (1, 2), (2, 1), (2, 2), (2, 4), (3, 0),
(3, 2), (4, 1), (4, 3), (4, 4)

49 14 26 5 (0, 1) (0, 4), (1, 3), (2, 3), (2, 4), (3, 1), (3, 3), (3, 5), (4, 0), (4, 2),
(4, 4), (4, 5), (5, 2), (5, 5)

49 16 24 5 (0, 1), (0, 2), (0, 4), (0, 5), (1, 1), (1, 4), (1, 5), (2, 0), (2, 1),
(2, 4), (3, 2), (3, 3), (3, 5), (4, 2), (5, 0), (5, 5)

49 17 23 5 (0, 1), (0, 3), (0, 5), (1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (2, 4),
(3, 0), (3, 1), (3, 4), (3, 5), (4, 0), (4, 2), (5, 1), (5, 5)

49 19 21 5 (0, 0), (0, 2), (0, 4), (0, 5), (1, 0), (1, 1), (1, 5), (2, 1), (2, 2),
(2, 5), (3, 1), (3, 3), (3, 4), (4, 0), (4, 5), (5, 0), (5, 2), (5, 4), (5, 5)

49 25 16 6 (0, 4), (0, 5), (0, 6), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1),
(2, 2), (2, 3), (2, 5), (2, 6), (3, 0), (3, 2), (3, 4), (3, 6), (4, 2),
(4, 3), (4, 4), (4, 5), (5, 1), (5, 5), (6, 2), (6, 3)

49 26 15 6 (0, 2), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2),
(2, 3), (2, 5), (3, 0), (3, 1), (3, 3), (3, 5), (3, 6), (4, 3), (4, 4),
(5, 0), (5, 2), (5, 3), (5, 4), (5, 5), (6, 1), (6, 2), (6, 4)
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Figure 1. Example point configurations for the new champion generalised codes over F8 listed in
Table 1.

(a) (b)

Figure 2. (a) The [49, 12, 28] code over F8 described by Little; (b) One of 448 non-equivalent ways
of generating a [49, 12, 28] code over F8 from points in a [0, 4] × [0, 4] square.

Figure 3. The possible choices of points in a [0, 4] × [0, 4] square giving a [49, 13, 27] code over F8.

Multiplicity of champions

Champion profiles such as [49, 13, 27] over F8 are often achieved in many non-equivalent ways:
this case, for example, is realised by four different sets of points in a [0, 4]× [0, 4] square, distinct
up to lattice automorphism and translation; see Figure 3. Little’s champion [49, 12, 28] code is
more striking still: we have 448 non-equivalent generalised codes in a [0, 4]× [0, 4] square that
yield these invariants. An example is illustrated in Figure 2(b).

Toric codes often achieve best known minimum distance

We extracted the [n, k, d] profiles of all generalised toric codes that matched, or exceeded, the
largest minimum distances available in Grassl’s catalogue over Fq for q 6 7. All such codes are
contained in a [0, 5]× [0, 5] square, and so our results are complete. The bounds attained are
recorded in the Appendix; generalised toric codes achieve (or exceed) the current best known
minimum distance in 28 of the 57 cases.
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3. The algorithm

The proof of Theorems 1.1 and 1.2 is by a systematic computer search. The hurdle to overcome
is the sheer number of codes and the complexity of computing their minimum distances (often
these calculations would take millions of years if the code achieved its apparent minimum
distance). We describe an algorithm that carries out the enumeration of subsets of lattice
points of a lattice square up to affine equivalence. We have implemented this in Magma exactly
as described here, making use of the convex polytopes package [3]. Our code is available to
download from [5].

Let S ⊂ Z2 be a collection of points contained in a [0, m]× [0, m] square generating the
generalised toric code CS over Fq. For any lattice translation S′ = S − u of the points S,
or more generally for any affine linear transformation s 7→ (s− u)M of S, where u ∈ Z2 and
M ∈GL2(Z), the toric codes CS and CS′ are monomially equivalent [12, Theorem 4]. Therefore
it is enough to consider points S up to lattice translation and change of basis. Consider now
the lattice polygon P := conv(S)⊂ Z2 ⊗Q. Up to equivalence, P can be assumed to be one of
the polygons constructed in [6]. This motivates our approach: for each polygon P contained
in a [0, m]× [0, m] square we will generate, up to equivalence, all possible subsets S of points
P ∩ Z2 such that S contains the vertices vert(P ) of P . Insisting that vert(P )⊆ S is a natural
restriction; if this were not so, Q := conv(S) is a lattice polygon distinct from P in the same
[0, m]× [0, m] square, and, up to equivalence, that polygon will be considered separately.

Step 1: Compute the affine automorphism group of P

The first step is to compute the affine automorphism group G := AffAut(P ) of the polygon
P , where any element g ∈G can be written as a combination of elements of GL2(Z) and
translations. Embed P at height 1 in the lattice Z3 = Z2 × Z; for example, simply append a
coordinate 1 to each vertex of P . We refer to this embedded image of P also as P . Form the
cone σ with vertex the origin generated by the points of the embedded image of P . Let Aut(σ)
be the linear automorphism group of σ. The action of this group on σ restricts to a faithful
action on P , realising the full group of affine lattice automorphisms of P .

Step 2: Extend the action to subsets of points of P

Clearly v ·G⊆ vert(P ) for any v ∈ vert(P ). Let P := P ∩ Z2 \ vert(P ) be the set of non-vertex
lattice points in P . We fix an order of the points of P = {v1, . . . , vk}, where k := |P|; G acts
on P via permutation. Choose a largest orbit O1 of this action on P. Without loss of generality
we assume that O1 permutes the first k1 6 k elements.

Step 3: Enumerate subsets of a largest orbit up to the action

From now onwards we regard G as acting on {0, 1}k, where an element s ∈ {0, 1}k corresponds
to a choice of points S ⊆ P ∩ Z2 via the obvious map

s= (b1, . . . , bk) 7→ S = vert(P ) ∪ {vi ∈ P | 1 6 i6 k, bi = 1}.

Let S1 be the set of all sequences in {0, 1}k1 , up to this action. Enumerating S1 for small
polygons is straightforward: in particular, S1 contains a unique sequence of zeros and also a
unique sequence containing a single 1. Larger numbers h> 2 of nonzero coefficients depend on
the h-transitivity of the action: the number is determined by the orbit–stabiliser theorem, but
even without applying that the numbers are small enough simply to run through all possibilities
rejecting those already seen (up to the action). We only compute the results for at most bk1/2c
nonzero coefficients, since the remaining possibilities are obtained via symmetry by exchanging
0 and 1.
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Figure 4. The twelve equivalence classes of points S in the [0, 2] × [0, 2] square B such that
vert(B) ⊆ S.

Step 4: Extend subsets to all of P

For each s ∈ S1 we extend s to an element of {0, 1}k as follows. LetGs := {g ∈G | s · g = s}6G,
and let Ps := {vi ∈ P | k1 < i6 k}. By induction we can construct the set of possible {0, 1}k−k1 -
sequences Ss, up to the action of Gs. Let s t s′ denote the concatenation of s ∈ {0, 1}k1 with
an element s′ ∈ {0, 1}k−k1 , so that s t s′ ∈ {0, 1}k. Then

S = {s t s′ | s ∈ S1, s
′ ∈ Ss}

corresponds to the set of all points in P ∩ Z2 \ vert(P ), up to the action of G.

Example 3.1. Consider the polygon B equal to the [0, 2]× [0, 2] square. This contains 32

points, and hence there exist 232
subsets of points in B. If one insists that vert(B)⊆ S for any

subset S of points, then this is reduced to 232−4 = 32 possibilities. Considering subsets S only
up to equivalence, we obtain the twelve equivalence classes illustrated in Figure 4.

At this point, we have a list of all possible subsets of points of P up to affine automorphisms
(and including its vertices). It remains to identify any champion generalised toric codes.

Step 5: Run a trial minimum distance algorithm to exclude most cases

Fix a prime power q and an integer 0<m< q − 1. Given a set of points S ⊂ [0, m]× [0, m],
compute the generalised toric code C = CS(Fq). (In our case, S is one of the subsets of points
of a polygon enumerated in Step 4.) Let M =MC be the generator matrix of C. Compute the
Hamming length of the shortest nonzero vector that is a linear combination over Fq of up to
four rows of M ; this is q4 − 1 vectors, which is manageable for the small values of q we consider.
If this length is strictly greater than the best known minimum distance for codes of dimension
|S| and block length q − 1, then keep the pair S, q for consideration at the next step; otherwise
discard the pair S, q, since the corresponding code cannot be a new champion.

Step 6: Compute the minimum distance of successful trial candidates

In principle this is now the hard part. We employ Magma’s MinimumDistance function; at
heart, it must simply check the Hamming weight of all words in the code, and so can easily
be expected to take too long for our purposes. In practice when m6 5, for the hundreds of
thousands of codes that pass our four-line trial in Step 5, we can always calculate the minimum
distance within a few hours, and there are several hundred cases realising champion invariants.
So for m6 5 there are no numerical profiles [n, d, k] other than the five listed in Table 1 that
admit champion generalised codes.

Remark 1. To get an idea of the effect of symmetries, Table 2 lists the number of subsets of
points 2(m+1)2−4 of the [0, m]× [0, m] square (excluding the vertices, since we handled vertices
of polygons separately) and the number of such subsets up to equivalence. Of course there are
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Table 2. A comparison of the number of subsets of points in a [0, m] × [0, m] square, and the
number of subsets up to equivalence.

m 1 2 3 4

# subsets of points 1 32 4096 2097152
# up to symmetries 1 12 570 265488

eight symmetries of the square, and 8× 265 488 = 2 123 904; the full group of symmetries of P
has been exploited.

It is conceivable that there are other ‘hidden’ symmetries that preserve the invariants of the
toric code, even if they do not preserve the lattice subset, and the multiplicity of champions
may be hinting at this.

Acknowledgements. Our thanks to Tom Coates for several helpful ideas, to John Cannon for
providing Magma for use on the Imperial College mathematics cluster, and to Andy Thomas
for technical assistance. The second author is supported by EPSRC grant EP/I008128/1.

Appendix. Generalised toric codes over Fq, q 6 7

The largest minimum distance dt achieved by a generalised toric code with given block length n
and dimension k over the field Fq are documented in the following table. For comparison, we also
give the current best minimum distance dg amongst all linear codes as given by Grassl [9]. The
penultimate column records whether dt > dg, and the final column gives an example collection
of points realising these invariants. The only example for which a generalised toric code is
required is [36, 7, 23] over F7.

q n k dt dg Best Example points

3 4 3 2 2 y (0, 1), (1, 0), (1, 1)
3 4 4 1 1 y (0, 0), (0, 1), (1, 0), (1, 1)

4 9 3 6 6 y (0, 1), (1, 0), (1, 1)
4 9 4 4 5 n (0, 0), (0, 1), (1, 0), (1, 1)
4 9 5 3 4 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0)
4 9 6 3 3 y (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1)
4 9 7 2 2 y (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)
4 9 8 2 2 y (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)
4 9 9 1 1 y (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

5 16 3 12 12 y (0, 1), (1, 0), (1, 1)
5 16 4 10 11 n (0, 1), (1, 1), (1, 2), (2, 0)
5 16 5 8 9 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0)
5 16 6 8 8 y (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1)
5 16 7 7 7 y (0, 3), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 2)
5 16 8 6 7 n (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)
5 16 9 6 6 y (0, 3), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 1), (3, 2)
5 16 10 4 5 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1),

(3, 2)
5 16 11 4 4 y (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1),

(3, 2), (3, 3)
5 16 12 4 4 y (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3),

(3, 0), (3, 1), (3, 2)
5 16 13 3 3 y (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2),

(2, 3), (3, 0), (3, 1), (3, 2)

continued on next page
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continued from previous page

q n k dt dg Best Example points

5 16 14 2 2 y (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2),
(2, 3), (3, 0), (3, 1), (3, 2), (3, 3)

5 16 15 2 2 y (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1),
(2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)

5 16 16 1 1 y (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)

7 36 3 30 30 y (0, 1), (1, 0), (1, 1)
7 36 4 27 28 n (0, 1), (1, 1), (1, 2), (2, 0)
7 36 5 24 27 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0)
7 36 6 24 25 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1)
7 36 7 23 24 n (0, 3), (1, 2), (1, 3), (2, 0), (2, 2), (3, 1), (3, 2)
7 36 8 20 22 n (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)
7 36 9 20 21 n (0, 3), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 1), (3, 2)
7 36 10 18 20 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1),

(3, 2)
7 36 11 18 19 n (0, 4), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2),

(3, 3), (4, 3)
7 36 12 17 18 n (0, 4), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2),

(3, 3), (4, 2), (4, 3)
7 36 13 15 17 n (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2),

(2, 3), (3, 0), (3, 1), (3, 2)
7 36 14 15 16 n (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1),

(3, 2), (3, 3), (4, 0), (4, 1), (4, 2)
7 36 15 14 15 n (0, 4), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0),

(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)
7 36 16 12 14 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1),

(3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)
7 36 17 12 13 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3),

(2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
7 36 18 12 13 n (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3),

(2, 4), (3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3)
7 36 19 12 11 y (0, 4), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3),

(3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1),
(5, 2)

7 36 20 10 11 n (0, 3), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2),
(3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0),
(5, 1), (5, 2)

7 36 21 10 10 y (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (4, 0),
(4, 1), (4, 2), (5, 0)

7 36 22 9 10 n (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4),
(2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2),
(4, 3), (5, 0), (5, 1), (5, 2)

7 36 23 8 9 n (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3),
(4, 4), (5, 1), (5, 2), (5, 3), (5, 4)

7 36 24 8 8 y (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3),
(2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1),
(4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (5, 2)

7 36 25 6 7 n (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1),
(2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),
(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 4)

7 36 26 6 7 n (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4),
(3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 4)

continued on next page
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continued from previous page

q n k dt dg Best Example points

7 36 27 6 6 y (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),
(2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),
(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (5, 2), (5, 3)

7 36 28 6 6 y (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1),
(2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4),
(3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (5, 2),
(5, 3)

7 36 29 5 6 n (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1),
(2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4),
(3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1),
(5, 2), (5, 3)

7 36 30 4 5 n (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4),
(1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1),
(3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
(5, 2), (5, 3), (5, 4)

7 36 31 4 4 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4),
(1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2),
(3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
(5, 0), (5, 1), (5, 2), (5, 3)

7 36 32 3 4 n (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4),
(1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1),
(3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4),
(4, 5), (5, 1), (5, 2), (5, 3), (5, 4)

7 36 33 3 3 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4),
(1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1),
(3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4),
(4, 5), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4)

7 36 34 2 2 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (1, 3),
(1, 4), (1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3),
(4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)

7 36 35 2 2 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (1, 3),
(1, 4), (1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3),
(4, 4), (4, 5), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)

7 36 36 1 1 y (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2),
(1, 3), (1, 4), (1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),
(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2),
(4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)
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