ON ANTI-COMMUTATIVE ALGEBRAS WITH AN INVARIANT FORM

ARTHUR A. SAGLE

1. Introduction. In this paper we consider anti-commutative algebras with an invariant form, that is, an algebra A over a field F such that

$$
\begin{equation*}
x y=-y x \quad \text { for all } x, y \text { in } A \tag{1}
\end{equation*}
$$

and A possesses a symmetric bilinear form $f(x, y)$ such that

$$
\begin{equation*}
f(x y, z)=f(x, y z) \quad \text { for all } x, y, z \text { in } A . \tag{2}
\end{equation*}
$$

Lie and Malcev algebras $(2,3)$ are examples of such algebras and we shall consider generalizations of these algebras obtained by introducing commutation, $x \circ y=x y-y x$, as a new multiplicative operation in the non-commutative Jordan algebras of (1). Thus if \mathfrak{H} is such a Jordan algebra we form the anti-commutative algebra \mathfrak{H}^{-}which is the same vector space \mathfrak{A} but with commutation $x \circ y$ as multiplication. If \mathfrak{C} is the centre of \mathfrak{X}^{-}, that is, \mathfrak{C} is the set of elements x in \mathfrak{A}^{-}such that $x \circ y=0$ for all $y \in \mathfrak{H}^{-}$, then we consider $\mathfrak{Y}^{0}=\mathfrak{X}^{-} / \mathfrak{C}$ and use this algebra to construct more simple Jordan and anti-commutative algebras. Finally these results are used to prove the following theorem.

Theorem. If A is a finite-dimensional anti-commutative algebra with an invariant form $f(x, y)$ over a field F of characteristic not 2, then there exists a non-commutative Jordan algebra \mathfrak{B} with identity element 1 such that $\mathfrak{B}-1 / \mathrm{F}$ is isomorphic to A. Furthermore if $f(x, y)$ is non-degenerate and the mapping $x \rightarrow R_{x}$, where R_{x} is right multiplication by x, is injective, then \mathfrak{B} is simple.
2. Basic properties. We shall assume that all algebras discussed are finite dimensional and for any algebra A we let

$$
(x, y, z)=x y \cdot z-x \cdot y z \quad \text { for any } x, y, z \in A
$$

The Jordan algebras of (1) are constructed as follows. Let A be an anticommutative algebra with an invariant form $f(\alpha, \beta)$ and let $\mathfrak{A}(A, f, s, t)$ denote the set of matrices

$$
\left(\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right)
$$

where $\alpha, \beta \in A$ and $a, b \in F$. For these matrices define equality, addition,
Received November 1, 1962. This research was supported in part by the U. S. Army Research Office (Durham).
and multiplication by elements in F in the obvious manner. Next define multiplication of two such matrices by

$$
\left(\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right)\left(\begin{array}{ll}
c & \gamma \\
\delta & d
\end{array}\right)=\left(\begin{array}{ll}
a c+f(\alpha, \delta) & a \gamma+d \alpha+t \beta \delta \\
c \beta+b \delta+s \alpha \gamma & b d+f(\beta, \gamma)
\end{array}\right),
$$

where $f(\alpha, \beta)$ denotes the invariant form on A and $s, t \in F$. Thus

$$
\mathfrak{A} \equiv \mathfrak{A}(A, f, s, t)
$$

becomes an algebra with the following properties (1): (i) \mathfrak{H} is a flexible quadratic algebra with identity element 1 , that is, for all $x, y \in \mathfrak{Y},(x, y, x)=0$ and $x^{2}-(a+b) x+[a b-f(\alpha, \beta)] 1=0$ for all

$$
x=\left(\begin{array}{cc}
a & \alpha \\
\beta & b
\end{array}\right) \in \mathfrak{N}
$$

Thus $\left(x^{2}, y, x\right)=0$ and so \mathfrak{A} is a non-commutative Jordan algebra. (ii) \mathfrak{A} is simple if and only if $f(\alpha, \beta)$ is non-degenerate on A, where $f(\alpha, \beta)$ being nondegenerate on A means that $f(\alpha, \beta)=0$ for all $\beta \in A$ implies $\alpha=0$.

Next introduce commutation $x \circ y$ as a new multiplication in \mathfrak{A} and form the anti-commutative algebra \mathfrak{H}^{-}which is the same vector space as \mathfrak{U}, but if

$$
x=\left(\begin{array}{cc}
a & \alpha \\
\beta & b
\end{array}\right), \quad y=\left(\begin{array}{ll}
c & \gamma \\
\delta & d
\end{array}\right) \in \mathfrak{A}^{-},
$$

we now have the multiplication in \mathfrak{A}^{-}given by

$$
x \circ y=\left(\begin{array}{cc}
f(\alpha, \delta)-f(\gamma, \beta) & (d-c) \alpha+(a-b) \gamma+2 t \beta \delta \tag{3}\\
(b-a) \delta+(c-d) \beta+2 s \alpha \gamma & f(\gamma, \beta)-f(\alpha, \delta)
\end{array}\right) .
$$

Now the identity matrix 1 is such that for every $x \in \mathfrak{X}^{-}, 1 \circ x=0$ and it is easy to see from (3) that scalar multiples of 1 are the only such elements. Thus $1 F$ is the centre \mathbb{C} of \mathfrak{H}^{-}and we form the quotient algebra $\mathfrak{X}^{0}=\mathfrak{X}-/ \mathfrak{C}$. If F is of characteristic not 2 , then every $\bar{x}=x+\mathfrak{C}$ of \mathfrak{Z}^{0} has the form

$$
\begin{aligned}
\bar{x}=\left(\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right)+\mathfrak{C} & =\left(\begin{array}{cc}
(a-b) / 2 & \alpha \\
\beta & -(a-b) / 2
\end{array}\right)+\mathfrak{C} \\
& =\left(\begin{array}{cc}
x_{0} & \alpha \\
\beta & -x_{0}
\end{array}\right)+\mathfrak{C}
\end{aligned}
$$

for $x_{0} \equiv(a-b) / 2 \in F$. Identify x with \bar{x} in \mathfrak{Y}^{0} and note that the multiplication in \mathfrak{Y}^{0} is now given by

$$
x \circ y=\left(\begin{array}{cc}
f(\alpha, \delta)-f(\gamma, \beta) & -2 y_{0} \alpha+2 x_{0} \gamma+2 t \beta \delta \tag{4}\\
-2 x_{0} \delta+2 y_{0} \beta+2 s \alpha \gamma & f(\gamma, \beta)-f(\alpha, \delta)
\end{array}\right),
$$

where

$$
y=\left(\begin{array}{cc}
y_{0} & \gamma \\
\delta & -y_{0}
\end{array}\right) \quad \text { and } \quad x=\left(\begin{array}{cc}
x_{0} & \alpha \\
\beta & -x_{0}
\end{array}\right)
$$

are now in \mathfrak{H}^{0}. We assume for the remainder of the paper that the characteristic of F is not 2 .

Next we construct a basis for \mathfrak{Y}^{0} and the corresponding multiplication table. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of A over F and set

$$
E=\left(\begin{array}{rr}
1 & 0 \tag{5}\\
0 & -1
\end{array}\right), \quad E_{i}=\left(\begin{array}{rr}
0 & e_{i} \\
0 & 0
\end{array}\right), \quad E_{i}^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
e_{i} & 0
\end{array}\right),
$$

$i=1, \ldots, n$. Clearly these elements form a basis for \mathfrak{H}^{0} and we have the following relations:

$$
\begin{align*}
& E \circ E_{i}=2 E_{i}, \quad E \circ E_{i}^{\prime}=-2 E_{i}^{\prime}, \\
& E_{i} \circ E_{j}=2 s\left(\begin{array}{cc}
0 & 0 \\
e_{i} e_{j} & 0
\end{array}\right), \quad E_{i}^{\prime} \circ E_{j}^{\prime}=2 t\left(\begin{array}{cc}
0 & e_{i} e_{j} \\
0 & 0
\end{array}\right), \tag{6}\\
& E_{i} \circ E_{j}^{\prime}=f\left(e_{i}, e_{j}\right) E .
\end{align*}
$$

We now prove the following theorem.
Theorem 1. \mathfrak{H}^{0} is simple if and only if $f(\alpha, \beta)$ is non-degenerate on A.
Proof. Assume that $f(\alpha, \beta)$ is non-degenerate on A and \mathfrak{B} is a non-zero ideal containing the non-zero element $b=b_{0} E+\sum b_{i} E_{i}+\sum b_{i}{ }^{\prime} E_{i}{ }^{\prime}$. Then, using (6),

$$
\begin{aligned}
E \circ b & =\sum b_{i} E \circ E_{i}+\sum b_{i}^{\prime} E \circ E_{i}^{\prime} \\
& =2 \sum b_{i} E_{i}-2 \sum b_{i} E_{i}^{\prime} \in \mathfrak{B},
\end{aligned}
$$

and, therefore,

$$
E \circ(E \circ b)=4 \sum b_{i} E_{i}+4 \sum b_{i}^{\prime} E_{i}^{\prime} \in \mathfrak{B}
$$

Thus $4 b-E \circ(E \circ b)=4 b_{0} E \in \mathfrak{B}$ and if $b_{0} \neq 0, E \in \mathfrak{B}$, and from (6), $\mathfrak{B}=\mathfrak{Y}^{0}$. We shall now show that \mathfrak{B} always contains an element with the coefficient of E not equal to zero. Suppose $b=\sum b_{i} E_{i}+\sum b_{i}{ }^{\prime} E_{i}{ }^{\prime} \in \mathfrak{B}$ and assume some $b_{k} \neq 0$. Let $E_{j}{ }^{\prime}$ be as in (5); then from (6)

$$
b \circ E_{j}^{\prime}=\left(\sum_{i} b_{i} f\left(e_{i}, e_{j}\right)\right) E+\sum_{i} 2 t b_{i}^{\prime}\left(\begin{array}{cc}
0 & e_{i} e_{j} \\
0 & 0
\end{array}\right)
$$

is in \mathfrak{B}. Now there exists an $E_{j}{ }^{\prime}$ such that $\sum_{i} b_{i} f\left(e_{i}, e_{j}\right) \neq 0$. Otherwise we would have, for all $j=1, \ldots, n$,

$$
0=\sum_{i} b_{i} f\left(e_{i}, e_{j}\right)=f\left(\sum_{i} b_{i} e_{i}, e_{j}\right)=f\left(\gamma, e_{j}\right)
$$

Since $\gamma=\sum_{i} b_{i} e_{i} \neq 0$, this equation implies that $f(\alpha, \beta)$ is degenerate, a contradiction.

Conversely suppose \mathfrak{H}^{0} is simple and let $N=\{\alpha \in A: f(\alpha, \beta)=0$ for all $\beta \in A\}$. Since $f(\alpha, \beta)$ is an invariant form, N is an ideal of A and if we set

$$
\mathfrak{B}=\left\{\left(\begin{array}{cc}
0 & \alpha \\
\beta & 0
\end{array}\right): \alpha, \beta \in N\right\}
$$

 we must have $\mathfrak{B}=0$, and therefore $N=0$, which means that $f(\alpha, \beta)$ is nondegenerate in A.

If $f(\alpha, \beta)$ is a non-degenerate invariant form so that a dual basis $\left\{e_{i}, \ldots, e_{n}\right\}$ can be chosen for A satisfying $f\left(e_{i}, e_{j}\right)=\delta_{i j}$ (Kronecker delta), then we obtain a rather natural multiplication table for $\mathfrak{H}{ }^{0}$. First since $f\left(e_{i}, e_{j}\right)=\delta_{i}$, $E_{i} \circ E_{j}{ }^{\prime}=\delta_{i j} E$. To find the remaining relations we shall determine a multiplication table for A relative to $\left\{e_{1}, \ldots, e_{n}\right\}$. Let $e_{i} e_{j}=\sum_{k} a(i, j, k) e_{k}$, where $a(i, j, k) \in F$, then

$$
f\left(e_{i} e_{j}, e_{k}\right)=\sum_{m} a(i, j, m) f\left(e_{m}, e_{k}\right)=a(i, j, k)
$$

This formula implies that $a(i, j, k)$ is a skew-symmetric function for $i, j, k=1, \ldots, n$. Conversely, if A is an n-dimensional vector space with basis $\left\{e_{1}, \ldots, e_{n}\right\}$ and $a(i, j, k)$ is a skew-symmetric function for $i, j, k=1, \ldots, n$, then $e_{i} e_{j}=\sum_{k} a(i, j, k) e_{k}$ makes A into an anti-commutative algebra when this multiplication is extended to all of A. Furthermore, if $\alpha=\sum a_{i} e_{i}$, $\beta=\sum b_{i} e_{i}$, and $f(\alpha, \beta)=\sum_{i=1}^{n} a_{i} b_{i}$, then $f(\alpha, \beta)$ is a non-degenerate invariant form. For it clearly suffices to show that $f\left(e_{i} e_{j}, e_{k}\right)=f\left(e_{i}, e_{j} e_{k}\right)$ and we have

$$
f\left(e_{i} e_{j}, e_{k}\right)=\sum_{m} a(i, j, m) f\left(e_{m}, e_{k}\right)=a(i, j, k)=a(j, k, i)=f\left(e_{i}, e_{j} e_{k}\right) .
$$

Thus the multiplication table of A, and therefore \mathfrak{H}^{0}, is completely determined by the invariant form $f(\alpha, \beta)$ or equivalently the corresponding skewsymmetric function $a(i, j, k)$.
3. Invariant forms for \mathfrak{A}^{0}. Since \mathfrak{Y}^{0} is constructed from an anti-commutative algebra with an invariant form, it is natural to ask if \mathfrak{H}^{0} has an invariant form. We shall show that if $f(\alpha, \beta)=$ trace $R_{\alpha} R_{\beta}$ is an invariant form for A, then $F(x, y)=\operatorname{trace} R_{x}{ }^{0} R_{y}{ }^{0}$ is an invariant form for \mathfrak{A}^{0}, where $R_{x}{ }^{0}$ is defined by $z R_{x}{ }^{0}=z \circ x$.

First we note that if $g(x, y)$ is a symmetric bilinear form for any anticommutative algebra A, then $g(x, y)$ is an invariant form if and only if $g(x, x y)=0$ for all $x, y \in A$. For if $g(x, y)$ is invariant, then $g(x, x y)=$ $g\left(x^{2}, y\right)=0$ and for the converse linearize the identity $g(x, x y)=0$.

Next we determine a matrix for $R_{x}{ }^{0}$ on \mathfrak{A}^{0}. Let A have the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ and let

$$
x=\left(\begin{array}{cc}
x_{0} & \alpha \\
\beta & -x_{0}
\end{array}\right) \in \mathfrak{Y}^{0},
$$

where $\alpha=\sum a_{i} e_{i}, \beta=\sum b_{i} e_{i}$, and $e_{k} \alpha=\sum_{i} p_{k i} e_{i}, e_{k} \beta=\sum_{i} q_{k i} e_{i}$ for $k=1, \ldots, n$. Then from (4) and (5),

$$
E R_{x}^{0}=\left(\begin{array}{cc}
0 & 2 \alpha \\
-2 \beta & 0
\end{array}\right)=2 \sum a_{i} E_{i}-2 \sum b_{i} E_{i}^{\prime}
$$

$$
\begin{aligned}
E_{i} R_{x}^{0} & =\left(\begin{array}{cc}
f\left(e_{i}, \beta\right) & -2 x_{0} e_{i} \\
2 s e_{i} \alpha & -f\left(e_{i}, \beta\right)
\end{array}\right) \\
& =f\left(e_{i}, \beta\right) E-2 x_{0} E_{i}+2 s \sum_{j} p_{i j} E_{j}^{\prime}, \\
E_{i}{ }^{\prime} R_{x}{ }^{0} & =\left(\begin{array}{rr}
-f\left(e_{i}, \alpha\right) & 2 t e_{i} \beta \\
2 x_{0} e_{i} & f\left(e_{i}, \alpha\right)
\end{array}\right) \\
& =-f\left(e_{i}, \alpha\right) E+2 t \sum_{j} q_{i j} E_{j}+2 x_{0} E_{i}^{\prime} .
\end{aligned}
$$

Thus $R_{x}{ }^{0}$ has the matrix

$$
\begin{aligned}
M(x) & =\left[\begin{array}{ccc}
0 & 2 a_{1} \cdots 2 a_{n} & -2 b_{1} \cdots-2 b_{n} \\
f\left(e_{1}, \beta\right) & -2 x_{0} 0 \cdots 0 & 2 s p_{11} \cdots 2 s p_{1 n} \\
\vdots & \vdots & \vdots \\
f\left(e_{n}, \beta\right) & 00 \cdots-2 x_{0} & 2 s p_{n 1} \cdots 2 s p_{n n} \\
-f\left(e_{1}, \alpha\right) & 2 t q_{11} \cdots 2 t q_{1 n} & 2 x_{0} 0 \cdots 0 \\
\vdots & \vdots & \vdots \\
-f\left(e_{n}, \alpha\right) & 2 t q_{n 1} \cdots 2 t q_{n n} & 00 \cdots 02 x_{0}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 2 a_{1} \cdots 2 a_{n} & -2 b_{1} \cdots-2 b_{n} \\
f\left(e_{1}, \beta\right) & -2 x_{0} I & 2 s \bar{R}_{\alpha} \\
\vdots & \\
f\left(e_{n}, \beta\right) & & 2 x_{0} I
\end{array}\right]
\end{aligned}
$$

where I is the $n \times n$ identity matrix and \bar{R}_{π} denotes the matrix for right multiplication by π in A relative to the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of A. Now if

$$
y=\left(\begin{array}{cc}
y_{0} & \gamma \\
\delta & -y_{0}
\end{array}\right) \in \mathfrak{A}^{0}
$$

where $\gamma=\sum c_{i} e_{i}$ and $\delta=\sum d_{i} e_{i}$, then $R_{y}{ }^{0}$ has the matrix

$$
M(y)=\left[\begin{array}{ccc}
0 & 2 c_{1} \cdots 2 c_{n} & -2 d_{1} \cdots-2 d_{n} \\
f\left(e_{1}, \delta\right) & & \\
\vdots & -2 y_{0} I & 2 s \bar{R}_{\gamma} \\
f\left(e_{n}, \delta\right) & & \\
-f\left(e_{1}, \gamma\right) & & \\
\vdots & 2 t \bar{R}_{\delta} & 2 y_{0} I \\
-f\left(e_{n}, \gamma\right) & &
\end{array}\right]
$$

Next $R_{x}{ }^{0} R_{y}{ }^{0}$ has as its matrix the product

$$
M(x) M(y)=\left[\begin{array}{ccc}
a_{11} & & * \\
& A_{22} & \\
* & & A_{33}
\end{array}\right]
$$

where

$$
\begin{aligned}
a_{11} & =2(f(\alpha, \delta)+f(\beta, \gamma)), \\
A_{22} & =2\left[f\left(e_{i}, \beta\right) c_{j}\right]+4 x_{0} y_{0} I+4 s t \bar{R}_{\alpha} \bar{R}_{\delta}, \\
A_{33} & =2\left[f\left(e_{i}, \alpha\right) d_{j}\right]+4 x_{0} y_{0} I+4 s t \bar{R}_{\beta} \bar{R}_{\gamma},
\end{aligned}
$$

where $\left[f\left(e_{i}, \beta\right) c_{j}\right]$ and $\left[f\left(e_{i}, \alpha\right) d_{j}\right]$ are $n \times n$ matrices with the (i, j)-element as indicated. Therefore

$$
\begin{aligned}
F(x, y)= & \operatorname{trace} R_{x}{ }^{0} R_{y}{ }^{0} \\
= & 2\left(f(\alpha, \delta)+(f(\beta, \gamma))+2 \sum_{i} f\left(e_{i}, \beta\right) c_{i}+4 n x_{0} y_{0}+4 s t \operatorname{trace} \bar{R}_{\alpha} \bar{R}_{\delta}\right. \\
& +2 \sum_{i} f\left(e_{i}, \alpha\right) d_{i}+4 n x_{0} y_{0}+4 s t \operatorname{trace} \bar{R}_{\beta} \bar{R}_{\gamma} \\
= & 4\left[f(\alpha, \delta)+f(\beta, \gamma)+\operatorname{strace}\left(R_{\alpha} R_{\delta}+R_{\beta} R_{\gamma}\right)+2 n x_{0} y_{0}\right] .
\end{aligned}
$$

Now assume that the invariant form $f(\alpha, \beta)$ is given by $f(\alpha, \beta)=\mu$ trace $R_{\alpha} R_{\beta}$, where μ is some element in F; then

$$
\begin{equation*}
F(x, y)=4\left[(\mu+s t) \operatorname{trace}\left(R_{\alpha} R_{\delta}+R_{\beta} R_{\gamma}\right)+2 n x_{0} y_{0}\right] . \tag{7}
\end{equation*}
$$

If μ satisfies $\mu+s t-n \mu=0$, we shall show that for all $x, y \in \mathfrak{A}^{0}$,

$$
F(x, x \circ y)=0,
$$

and therefore $F(x, y)$ is an invariant form on \mathfrak{Y}^{0}. If $R(\pi)$ also denotes R_{π}, using (4) and (7) we have

$$
\begin{align*}
F(x, x \circ y)= & 4\left[(\mu+s t) \operatorname{trace} R_{\alpha} R\left(-2 x_{0} \delta+2 y_{0} \beta+2 s \alpha \gamma\right)\right. \tag{8}\\
& +(\mu+s t) \operatorname{trace} R_{\beta} R\left(-2 y_{0} \alpha+2 x_{0} \gamma+2 t \beta \delta\right) \\
& \left.\quad+2 n x_{0}\left(\mu \operatorname{trace} R_{\alpha} R_{\delta}-\mu \operatorname{trace} R_{\gamma} R_{\beta}\right)\right] \\
= & 4\left[\left(-2 x_{0}(\mu+s t)+2 n \mu x_{0}\right) \operatorname{trace} R_{\alpha} R_{\delta}\right. \\
& +\left(2 y_{0}(\mu+s t)-2 y_{0}(\mu+s t)\right) \operatorname{trace} R_{\alpha} R_{\beta} \\
& +2 s(\mu+s t) \operatorname{trace} R_{\alpha} R_{\alpha \gamma}+2 t(\mu+s t) \operatorname{trace} R_{\beta} R_{\beta \delta} \\
& \left.+\left(2 x_{0}(\mu+s t)-2 n \mu x_{0}\right) \operatorname{trace} R_{\gamma} R_{\beta}\right]
\end{align*}
$$

also using $\mu+s t-n \mu=0$ and that $f(\alpha, \beta)=\mu$ trace $R_{\alpha} R_{\beta}$ is invariant.
Next suppose the anti-commutative algebra A has an invariant form $g(\alpha, \beta)=\lambda \operatorname{trace} R_{\alpha} R_{\beta}, \lambda \neq 0$, where λ need not satisfy $\lambda+s t-n \lambda=0$; then the bilinear form

$$
f(\alpha, \beta)=\mu / \lambda g(\alpha, \beta)=\mu \operatorname{trace} R_{\alpha} R_{\beta}
$$

is also an invariant form for A which is non-degenerate if and only if $g(\alpha, \beta)$ is non-degenerate. So from the start of the construction we can assume that
if $f(\alpha, \beta)=\mu$ trace $R_{\alpha} R_{\beta}$, then $\mu+s t-n \mu=0$, and call such a bilinear form normalized. This proves part of the following theorem.

Theorem 2. If $f(\alpha, \beta)=\mu$ trace $R_{\alpha} R_{\beta}$ is a normalized invariant form on A, then $F(x, y)=$ trace $R_{x}{ }^{0} R_{y}{ }^{0}$ is an invariant form on $\mathfrak{H}{ }^{0}$. Conversely if $F(x, y)=\operatorname{trace} R_{x}{ }^{0} R_{y}{ }^{0}$ is an invariant form on \mathfrak{Y}^{0} and $f(\alpha, \beta)=\mu \operatorname{trace} R_{\alpha} R_{\beta}$ (not necessarily normalized) satisfies $(\mu+s t)(s+t) \neq 0$, then $f(\alpha, \beta)$ is an invariant form on A. Furthermore, when $\mu+s t \neq 0, F(x, y)$ is non-degenerate if and only if $f(\alpha, \beta)$ is non-degenerate.

Proof. First we show that trace $R_{\alpha} R_{\alpha \beta}=0$ for all $\alpha, \beta \in A$ and therefore $f(\alpha, \beta)$ is an invariant form. Since $F(x, y)$ is assumed invariant, $F(x, x \circ y)=0$ and from (8) with $x_{0}=0, \alpha=\beta$, and $\gamma=\delta$ we obtain

$$
(\mu+s t)(s+t) \text { trace } R_{\alpha} R_{\alpha \gamma}=0
$$

which implies that $f(\alpha, \beta)$ is an invariant form. Next let

$$
y=\left(\begin{array}{cc}
y_{0} & \gamma \\
\delta & -y_{0}
\end{array}\right) \in \mathfrak{H}^{0}
$$

be such that for all

$$
\begin{gathered}
x=\left(\begin{array}{cc}
x_{0} & \alpha \\
\beta & -x_{0}
\end{array}\right) \in \mathfrak{H}^{0}, \\
0=F(x, y)=4\left[(\mu+s t) \operatorname{trace}\left(R_{\alpha} R_{\delta}+R_{\beta} R_{\gamma}\right)+2 n x_{0} y_{0}\right] .
\end{gathered}
$$

Choose $x_{0}=0, \beta=0$; then $f(\alpha, \delta)=0$ for all $\alpha \in A$ and since $f(\alpha, \beta)$ is assumed non-degenerate, $\delta=0$. Similarly, $x_{0}=0$ implies that $\gamma=0$ and we finally have $0=8 n x_{0} y_{0}$ and with $x_{0}=1, y_{0}=0$, so that $y=0$ and therefore $F(x, y)$ is non-degenerate on \mathfrak{H}^{0}. Conversely, suppose $F(x, y)$ is non-degenerate on \mathfrak{A}^{0} and assume that for some $\delta \in A, f(\alpha, \delta)=\mu$ trace $R_{\alpha} R_{\delta}=0$ for all $\alpha \in A$. Let

$$
y=\left(\begin{array}{ll}
0 & \delta \\
\delta & 0
\end{array}\right) \in \mathfrak{H}^{0}
$$

then for all other $x \in \mathfrak{A}^{0}, F(x, y)=0$ and therefore $y=0$, which implies that $f(\alpha, \beta)$ is non-degenerate.

Theorem 2 can be used to obtain a family of simple non-commutative Jordan algebras and a corresponding family of simple anti-commutative algebras based on a given anti-commutative algebra A : From the algebra A construct $\mathfrak{A}_{1}=\mathfrak{A}(A, f, s, t)$, where $f(\alpha, \beta)=\mu$ trace $R_{\alpha} R_{\beta}$ is a normalized non-degenerate invariant form for A. From \mathfrak{A}_{1} form $\mathfrak{H}_{1}{ }^{0}$ and construct $\mathfrak{H}_{2}=\mathfrak{U}\left(\mathfrak{A}_{1}{ }^{0}, F_{1}, s_{1}, t_{1}\right)$, where $F_{1}(x, y)=\mu_{1}$ trace $R_{x}{ }^{0} R_{y}{ }^{0}$ is a normalized non-degenerate invariant form on $\mathfrak{H}_{1}{ }^{0}$. From \mathfrak{A}_{2} form $\mathfrak{A}_{2}{ }^{0}$, construct $\mathfrak{H}_{3}=\mathfrak{A}\left(\mathfrak{A}_{2}{ }^{0}, F_{2}, s_{2}, t_{2}\right)$ and continue this process. Now if A is the three-dimensional Lie algebra with the outer product as multiplication, $f(\alpha, \beta)$ the ordinary inner product (which equals $-1 / 2$ trace $\left.R_{\alpha} R_{\beta}\right)$ and $s=1, t=-1$, then $\mathfrak{U}=\mathfrak{H}(A, f, 1,-1)$ is the split

Cayley-Dickson algebra and \mathfrak{Z}^{0} the corresponding Malcev algebra. Thus starting with the above Lie algebra as the base algebra A with s_{i} and t_{i} arbitrary, we obtain a family of non-commutative Jordan algebras $\left\{\mathfrak{H}_{i}\right\}$ which are natural generalizations of the Cayley-Dickson algebra (4), and the corresponding family of anti-commutative algebras $\left\{\mathfrak{A}_{i}{ }^{0}\right\}$ are generalizations of the seven-dimensional Malcev algebra.
4. Proof of the theorem in the introduction. Let A be an anticommutative algebra over a field F of characteristic not 2 with an invariant form $f(\alpha, \beta)$. Construct $\mathfrak{A}=\mathfrak{A}(A, f, 1 / 2,1 / 2)$ and let

$$
\mathfrak{B}=\left\{\left(\begin{array}{ll}
a & \alpha \\
\alpha & a
\end{array}\right): \alpha \in A, a \in F\right\} ;
$$

then \mathfrak{B} is a subalgebra of \mathfrak{A} with multiplication

$$
x y_{1}=\left(\begin{array}{cc}
a b+f(\alpha, \beta) & a \beta+b \alpha+\frac{1}{2} \alpha \beta \tag{9}\\
a \beta+b \alpha+\frac{1}{2} \alpha \beta & a b+f(\alpha, \beta)
\end{array}\right),
$$

where

$$
x=\left(\begin{array}{cc}
a & \alpha \\
\alpha & a
\end{array}\right), \quad y=\left(\begin{array}{cc}
b & \beta \\
\beta & b
\end{array}\right) \in \mathfrak{B} .
$$

Note that $\mathfrak{B}=1 F \oplus \tilde{\mathfrak{B}}$ as a vector space sum and form \mathfrak{B}^{-}and $\mathfrak{B}^{-} / 1 F$; then $\mathfrak{B}^{-} / 1 F$ is isomorphic to A. For let

$$
x=\left(\begin{array}{ll}
a & \alpha \\
\alpha & a
\end{array}\right)=\left(\begin{array}{ll}
0 & \alpha \\
\alpha & 0
\end{array}\right)+a 1 \in \mathfrak{B} ;
$$

then

$$
\bar{x}=\left(\begin{array}{cc}
0 & \alpha \\
\alpha & 0
\end{array}\right)+1 F \in \mathfrak{B}^{-} / 1 F
$$

and the mapping $\bar{x} \rightarrow \alpha$ can easily be shown to be an isomorphism of $\mathfrak{B}^{-} / 1 F$ onto A by noting that it is linear and

$$
\bar{x} \circ \bar{y}=\left(\begin{array}{cc}
0 & \alpha \beta \\
\alpha \beta & 0
\end{array}\right)+1 \bar{F} .
$$

Next suppose $f(\alpha, \beta)$ is non-degenerate and the mapping $\alpha \rightarrow R_{\alpha}$ is injective. Suppose \mathfrak{F} is an ideal of \mathfrak{B} containing the element

$$
x=\left(\begin{array}{ll}
a & \alpha \\
\alpha & a
\end{array}\right)
$$

then for

$$
y=\left(\begin{array}{cc}
-a & \alpha \\
\alpha & -a
\end{array}\right) \in \mathfrak{B}
$$

we see from (9) that

$$
x y=\left(\begin{array}{cc}
f(\alpha, \alpha)-a^{2} & 0 \\
0 & f(\alpha, \alpha)-a^{2}
\end{array}\right) \in \mathfrak{J} .
$$

Thus if there exists an $x \in \mathcal{F}$ with $f(\alpha, \alpha) \neq a^{2}$, then the identity $1 \in \mathcal{F}$ and therefore $\mathfrak{J}=\mathfrak{B}$. So now assume that every $x \in \mathfrak{F}$ has the property $f(\alpha, \alpha)=a^{2}$. For any

$$
\begin{gathered}
y=\left(\begin{array}{ll}
b & \beta \\
\beta & b
\end{array}\right) \in \mathfrak{B} \\
\frac{1}{2}(x y+y x)=\left(\begin{array}{cc}
a b+f(\alpha, \beta) & a \beta+b \alpha \\
a \beta+b \alpha & a b+f(\alpha, \beta)
\end{array}\right) \in \mathfrak{J} .
\end{gathered}
$$

Therefore, using the assumption for \mathfrak{F}, we have $(a b+f(\alpha, \beta))^{2}=f(a \beta+b \alpha$, $a \beta+b \alpha$) and obtain

$$
f(\alpha, \beta)^{2}=a^{2} f(\beta, \beta) \quad \text { for all } \beta \in A
$$

A linearization of this identity yields

$$
\begin{equation*}
f(\alpha, \beta) f(\alpha, \gamma)=a^{2} f(\beta, \gamma) \quad \text { for all } \beta, \gamma \in A \tag{10}
\end{equation*}
$$

Thus if x is a non-zero element of \mathfrak{F} and $a=0$ we have from (10), $f(\alpha, \beta) f(\alpha, \gamma)=0$ for every $\beta, \gamma \in A$. Since $x \neq 0$ and $a=0, \alpha \neq 0$, therefore there exists $\beta \in A$ with $f(\alpha, \beta) \neq 0$ and from this $f(\alpha, \gamma)=0$ for all $\gamma \in A$. This implies $\alpha=0$, a contradiction; so we assume that $x \in \mathfrak{J}$ is such that $a \neq 0$.

Next suppose that $\delta \in A$ is such that $f(\alpha, \delta)=0$; then since $a \neq 0$, we see from (10) that $f(\beta, \delta)=0$ for all $\beta \in A$ and therefore $\delta=0$. However, for any $\gamma \in A, \delta=\alpha \gamma$ is such that $f(\alpha, \delta)=f(\alpha, \alpha \gamma)=0$ and therefore $0=\gamma \alpha=\gamma R_{\alpha}$ for every $\gamma \in A$. This implies that $R_{\alpha}=0$ and since $\alpha \rightarrow R_{\alpha}$ is injective, $\alpha=0$. Thus

$$
x=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \in \mathfrak{F}
$$

with $a \neq 0$ and so $\mathfrak{Y}=\mathfrak{B}$.
Finally we note that if A is any anti-commutative algebra, the bilinear form $f(\alpha, \beta) \equiv 0$ for every $\alpha, \beta \in A$ is an invariant form on A. Thus the first part of the proof shows that any anti-commutative algebra A is isomorphic to $\mathfrak{B}^{-} / 1 F$, where $\mathfrak{B}=1 F \oplus \widetilde{\mathfrak{B}}$ is the non-commutative Jordan algebra constructed above.

References

1. L. J. Paige, A note on noncommutative Jordan algebras, Portugal. Math., 16 (1957), 15-18.
2. A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426-458.
3. ——On simple Malcev algebras over fields of characteristic zero, Pacific J. Math. 12 (1962), 1057-1078.
4. R. D. Schafer, On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76 (1954), 435-446.

Syracuse University

