ON ANTI-COMMUTATIVE ALGEBRAS WITH AN INVARIANT FORM

ARTHUR A. SAGLE

1. Introduction. In this paper we consider anti-commutative algebras with an invariant form, that is, an algebra A over a field F such that

(1)
$$xy = -yx$$
 for all x, y in A

and A possesses a symmetric bilinear form f(x, y) such that

(2)
$$f(xy, z) = f(x, yz) \quad \text{for all } x, y, z \text{ in } A.$$

Lie and Malcev algebras (2, 3) are examples of such algebras and we shall consider generalizations of these algebras obtained by introducing commutation, $x \circ y = xy - yx$, as a new multiplicative operation in the non-commutative Jordan algebras of (1). Thus if \mathfrak{A} is such a Jordan algebra we form the anti-commutative algebra \mathfrak{A}^- which is the same vector space \mathfrak{A} but with commutation $x \circ y$ as multiplication. If \mathfrak{C} is the centre of \mathfrak{A}^- , that is, \mathfrak{C} is the set of elements x in \mathfrak{A}^- such that $x \circ y = 0$ for all $y \in \mathfrak{A}^-$, then we consider $\mathfrak{A}^0 = \mathfrak{A}^-/\mathfrak{C}$ and use this algebra to construct more simple Jordan and anti-commutative algebras. Finally these results are used to prove the following theorem.

THEOREM. If A is a finite-dimensional anti-commutative algebra with an invariant form f(x, y) over a field F of characteristic not 2, then there exists a non-commutative Jordan algebra \mathfrak{B} with identity element 1 such that $\mathfrak{B}^-/1F$ is isomorphic to A. Furthermore if f(x, y) is non-degenerate and the mapping $x \to R_x$, where R_x is right multiplication by x, is injective, then \mathfrak{B} is simple.

2. Basic properties. We shall assume that all algebras discussed are finite dimensional and for any algebra A we let

$$(x, y, z) = xy \cdot z - x \cdot yz$$
 for any $x, y, z \in A$.

The Jordan algebras of (1) are constructed as follows. Let A be an anticommutative algebra with an invariant form $f(\alpha, \beta)$ and let $\mathfrak{A}(A, f, s, t)$ denote the set of matrices

$$\begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix}$$

where $\alpha, \beta \in A$ and $a, b \in F$. For these matrices define equality, addition,

Received November 1, 1962. This research was supported in part by the U.S. Army Research Office (Durham).

and multiplication by elements in F in the obvious manner. Next define multiplication of two such matrices by

$$\begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix} \begin{pmatrix} c & \gamma \\ \delta & d \end{pmatrix} = \begin{pmatrix} ac + f(\alpha, \delta) & a\gamma + d\alpha + t\beta\delta \\ c\beta + b\delta + s\alpha\gamma & bd + f(\beta, \gamma) \end{pmatrix},$$

where $f(\alpha, \beta)$ denotes the invariant form on A and s, $t \in F$. Thus

$$\mathfrak{A} \equiv \mathfrak{A}(A, f, s, t)$$

becomes an algebra with the following properties (1): (i) \mathfrak{A} is a flexible quadratic algebra with identity element 1, that is, for all $x, y \in \mathfrak{A}$, (x, y, x) = 0and $x^{2} - (a + b)x + [ab - f(\alpha, \beta)]1 = 0$ for all

$$x = \begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix} \in \mathfrak{A}.$$

Thus $(x^2, y, x) = 0$ and so \mathfrak{A} is a non-commutative Jordan algebra. (ii) \mathfrak{A} is simple if and only if $f(\alpha, \beta)$ is non-degenerate on A, where $f(\alpha, \beta)$ being nondegenerate on A means that $f(\alpha, \beta) = 0$ for all $\beta \in A$ implies $\alpha = 0$.

Next introduce commutation $x \circ y$ as a new multiplication in \mathfrak{A} and form the anti-commutative algebra \mathfrak{A}^- which is the same vector space as \mathfrak{A} , but if

$$x = \begin{pmatrix} a & lpha \\ eta & b \end{pmatrix}$$
, $y = \begin{pmatrix} c & \gamma \\ \delta & d \end{pmatrix} \in \mathfrak{A}^{-}$,

we now have the multiplication in \mathfrak{A}^- given by

(3)
$$x \circ y = \begin{pmatrix} f(\alpha, \delta) - f(\gamma, \beta) & (d - c)\alpha + (a - b)\gamma + 2t\beta\delta \\ (b - a)\delta + (c - d)\beta + 2s\alpha\gamma & f(\gamma, \beta) - f(\alpha, \delta) \end{pmatrix}.$$

Now the identity matrix 1 is such that for every $x \in \mathfrak{A}^-$, $1 \circ x = 0$ and it is easy to see from (3) that scalar multiples of 1 are the only such elements. Thus 1F is the centre \mathfrak{G} of \mathfrak{A}^- and we form the quotient algebra $\mathfrak{A}^0 = \mathfrak{A}^-/\mathfrak{G}$. If F is of characteristic not 2, then every $\bar{x} = x + \mathbb{C}$ of \mathfrak{A}^0 has the form

$$\bar{x} = \begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix} + \mathfrak{S} = \begin{pmatrix} (a-b)/2 & \alpha \\ \beta & -(a-b)/2 \end{pmatrix} + \mathfrak{S}$$
$$= \begin{pmatrix} x_0 & \alpha \\ \beta & -x_0 \end{pmatrix} + \mathfrak{S}$$

for $x_0 \equiv (a - b)/2 \in F$. Identify x with \bar{x} in \mathfrak{A}^0 and note that the multiplication in \mathfrak{A}^{0} is now given by

(4)
$$x \circ y = \begin{pmatrix} f(\alpha, \delta) - f(\gamma, \beta) & -2y_0\alpha + 2x_0\gamma + 2t\beta\delta \\ -2x_0\delta + 2y_0\beta + 2s\alpha\gamma & f(\gamma, \beta) - f(\alpha, \delta) \end{pmatrix},$$

where
$$y = \begin{pmatrix} y_0 & \gamma \\ \delta & -y_0 \end{pmatrix}$$
 and $x = \begin{pmatrix} x_0 & \alpha \\ \beta & -x_0 \end{pmatrix}$

are now in \mathfrak{A}^0 . We assume for the remainder of the paper that the characteristic of F is not 2.

Next we construct a basis for \mathfrak{A}^0 and the corresponding multiplication table. Let $\{e_1, \ldots, e_n\}$ be a basis of A over F and set

(5)
$$E = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E_i = \begin{pmatrix} 0 & e_i \\ 0 & 0 \end{pmatrix}, \quad E_i' = \begin{pmatrix} 0 & 0 \\ e_i & 0 \end{pmatrix},$$

i = 1, ..., n. Clearly these elements form a basis for \mathfrak{A}^0 and we have the following relations:

(6)
$$E \circ E_{i} = 2E_{i}, \qquad E \circ E_{i}' = -2E_{i}', \\ E_{i} \circ E_{j} = 2s \begin{pmatrix} 0 & 0 \\ e_{i} & e_{j} & 0 \end{pmatrix}, \qquad E_{i}' \circ E_{j}' = 2t \begin{pmatrix} 0 & e_{i} & e_{j} \\ 0 & 0 \end{pmatrix}, \\ E_{i} \circ E_{j}' = f(e_{i}, e_{j})E.$$

We now prove the following theorem.

THEOREM 1. \mathfrak{A}^0 is simple if and only if $f(\alpha, \beta)$ is non-degenerate on A.

Proof. Assume that $f(\alpha, \beta)$ is non-degenerate on A and \mathfrak{B} is a non-zero ideal containing the non-zero element $b = b_0 E + \sum b_i E_i + \sum b_i' E_i'$. Then, using (6),

$$E \circ b = \sum b_i E \circ E_i + \sum b_i' E \circ E_i'$$
$$= 2 \sum b_i E_i - 2 \sum b_i' E_i' \in \mathfrak{B},$$

and, therefore,

$$E \circ (E \circ b) = 4 \sum b_i E_i + 4 \sum b_i' E_i' \in \mathfrak{B}.$$

Thus $4b - E \circ (E \circ b) = 4b_0 E \in \mathfrak{B}$ and if $b_0 \neq 0$, $E \in \mathfrak{B}$, and from (6), $\mathfrak{B} = \mathfrak{A}^0$. We shall now show that \mathfrak{B} always contains an element with the coefficient of E not equal to zero. Suppose $b = \sum b_i E_i + \sum b_i' E_i' \in \mathfrak{B}$ and assume some $b_k \neq 0$. Let E_j' be as in (5); then from (6)

$$b \circ E_{j}' = (\sum_{i} b_{i} f(e_{i}, e_{j}))E + \sum_{i} 2t b_{i}' \begin{pmatrix} 0 & e_{i} & e_{j} \\ 0 & 0 \end{pmatrix}$$

is in \mathfrak{B} . Now there exists an E_j' such that $\sum_i b_i f(e_i, e_j) \neq 0$. Otherwise we would have, for all $j = 1, \ldots, n$,

$$0 = \sum_{i} b_{i} f(e_{i}, e_{j}) = f(\sum_{i} b_{i} e_{i}, e_{j}) = f(\gamma, e_{j}).$$

Since $\gamma = \sum_{i} b_{i} e_{i} \neq 0$, this equation implies that $f(\alpha, \beta)$ is degenerate, a contradiction.

Conversely suppose \mathfrak{A}^0 is simple and let $N = \{\alpha \in A : f(\alpha, \beta) = 0 \text{ for all } \beta \in A\}$. Since $f(\alpha, \beta)$ is an invariant form, N is an ideal of A and if we set

$$\mathfrak{B} = \left\{ egin{pmatrix} 0 & lpha \ eta & 0 \end{pmatrix} : lpha, eta \in N
ight\}$$

372

and use (4) we see that \mathfrak{B} is an ideal of \mathfrak{A}^0 . But $E \notin \mathfrak{B}$ and since \mathfrak{A}^0 is simple, we must have $\mathfrak{B} = 0$, and therefore N = 0, which means that $f(\alpha, \beta)$ is non-degenerate in A.

If $f(\alpha, \beta)$ is a non-degenerate invariant form so that a dual basis $\{e_i, \ldots, e_n\}$ can be chosen for A satisfying $f(e_i, e_j) = \delta_{ij}$ (Kronecker delta), then we obtain a rather natural multiplication table for \mathfrak{A}^0 . First since $f(e_i, e_j) = \delta_{ij}$, $E_i \circ E_j' = \delta_{ij}E$. To find the remaining relations we shall determine a multiplication table for A relative to $\{e_1, \ldots, e_n\}$. Let $e_i e_j = \sum_k a(i, j, k)e_k$, where $a(i, j, k) \in F$, then

$$f(e_i e_j, e_k) = \sum_m a(i, j, m) f(e_m, e_k) = a(i, j, k).$$

This formula implies that a(i, j, k) is a skew-symmetric function for i, j, k = 1, ..., n. Conversely, if A is an n-dimensional vector space with basis $\{e_1, ..., e_n\}$ and a(i, j, k) is a skew-symmetric function for i, j, k = 1, ..., n, then $e_i e_j = \sum_k a(i, j, k)e_k$ makes A into an anti-commutative algebra when this multiplication is extended to all of A. Furthermore, if $\alpha = \sum a_i e_i$, $\beta = \sum b_i e_i$, and $f(\alpha, \beta) = \sum_{i=1}^n a_i b_i$, then $f(\alpha, \beta)$ is a non-degenerate invariant form. For it clearly suffices to show that $f(e_i e_j, e_k) = f(e_i, e_j e_k)$ and we have

$$f(e_i e_j, e_k) = \sum_m a(i, j, m) f(e_m, e_k) = a(i, j, k) = a(j, k, i) = f(e_i, e_j e_k).$$

Thus the multiplication table of A, and therefore \mathfrak{A}^0 , is completely determined by the invariant form $f(\alpha, \beta)$ or equivalently the corresponding skew-symmetric function a(i, j, k).

3. Invariant forms for \mathfrak{A}^{0} . Since \mathfrak{A}^{0} is constructed from an anti-commutative algebra with an invariant form, it is natural to ask if \mathfrak{A}^{0} has an invariant form. We shall show that if $f(\alpha, \beta) = \operatorname{trace} R_{\alpha}R_{\beta}$ is an invariant form for A, then $F(x, y) = \operatorname{trace} R_{x}^{0} R_{y}^{0}$ is an invariant form for \mathfrak{A}^{0} , where R_{x}^{0} is defined by $zR_{x}^{0} = z \circ x$.

First we note that if g(x, y) is a symmetric bilinear form for any anticommutative algebra A, then g(x, y) is an invariant form if and only if g(x, xy) = 0 for all $x, y \in A$. For if g(x, y) is invariant, then g(x, xy) = $g(x^2, y) = 0$ and for the converse linearize the identity g(x, xy) = 0.

Next we determine a matrix for R_x^0 on \mathfrak{A}^0 . Let A have the basis $\{e_1, \ldots, e_n\}$ and let

$$x=egin{pmatrix} x_0&lpha\ eta&-x_0\end{pmatrix}\in\mathfrak{A}^0,$$

where $\alpha = \sum a_i e_i$, $\beta = \sum b_i e_i$, and $e_k \alpha = \sum_i p_{ki} e_i$, $e_k \beta = \sum_i q_{ki} e_i$ for $k = 1, \ldots, n$. Then from (4) and (5),

$$ER_x^{0} = \begin{pmatrix} 0 & 2\alpha \\ -2\beta & 0 \end{pmatrix} = 2 \sum a_i E_i - 2 \sum b_i E_i',$$

$$E_{i}R_{x}^{0} = \begin{pmatrix} f(e_{i},\beta) & -2x_{0} & e_{i} \\ 2se_{i} & \alpha & -f(e_{i},\beta) \end{pmatrix}$$

$$= f(e_{i},\beta)E - 2x_{0}E_{i} + 2s \sum_{j} p_{ij}E_{j}',$$

$$E_{i}'R_{x}^{0} = \begin{pmatrix} -f(e_{i},\alpha) & 2te_{i} & \beta \\ 2x_{0} & e_{i} & f(e_{i},\alpha) \end{pmatrix}$$

$$= -f(e_{i},\alpha)E + 2t \sum_{j} q_{ij}E_{j} + 2x_{0}E_{i}'.$$

Thus R_x^0 has the matrix

$$M(x) = \begin{vmatrix} 0 & 2a_1 \cdots 2a_n & -2b_1 \cdots -2b_n \\ f(e_1, \beta) & -2x_0 & 0 \cdots 0 & 2sp_{11} \cdots 2sp_{1n} \\ \vdots & \vdots & \vdots \\ f(e_n, \beta) & 0 & 0 \cdots -2x_0 & 2sp_{n1} \cdots 2sp_{nn} \\ -f(e_1, \alpha) & 2tq_{11} \cdots 2tq_{1n} & 2x_0 & 0 \cdots 0 \\ \vdots & \vdots & \vdots \\ -f(e_n, \alpha) & 2tq_{n1} \cdots 2tq_{nn} & 0 & 0 \cdots 0 & 2x_0 \end{vmatrix}$$
$$= \begin{bmatrix} 0 & 2a_1 \cdots 2a_n & -2b_1 \cdots -2b_n \\ f(e_1, \beta) & & \\ \vdots & -2x_0I & 2s\bar{R}_{\alpha} \\ f(e_n, \beta) & \\ -f(e_1, \alpha) & & \\ \vdots & 2t\bar{R}_{\beta} & 2x_0I \\ -f(e_n, \alpha) & & \end{vmatrix}$$

where I is the $n \times n$ identity matrix and \bar{R}_{π} denotes the matrix for right multiplication by π in A relative to the basis $\{e_1, \ldots, e_n\}$ of A. Now if

$$y = \begin{pmatrix} y_0 & \gamma \\ \delta & -y_0 \end{pmatrix} \in \mathfrak{A}^0,$$

where $\gamma = \sum c_i e_i$ and $\delta = \sum d_i e_i$, then R_y^0 has the matrix

$$M(y) = \begin{bmatrix} 0 & 2c_1 \cdots 2c_n & -2d_1 \cdots -2d_n \\ f(e_1, \delta) & & \\ \vdots & -2y_0 I & 2s\bar{R}_{\gamma} \\ f(e_n, \delta) & & \\ -f(e_1, \gamma) & & \\ \vdots & 2t\bar{R}_{\delta} & 2y_0 I \\ -f(e_n, \gamma) & & \end{bmatrix} .$$

374

Next $R_x^0 R_y^0$ has as its matrix the product

$$M(x)M(y) = \begin{bmatrix} a_{11} & * \\ & A_{22} & \\ * & & A_{33} \end{bmatrix},$$

where

$$a_{11} = 2(f(\alpha, \delta) + f(\beta, \gamma)),$$

$$A_{22} = 2[f(e_i, \beta)c_j] + 4x_0y_0I + 4st\bar{R}_{\alpha}\bar{R}_{\delta},$$

$$A_{33} = 2[f(e_i, \alpha)d_j] + 4x_0y_0I + 4st\bar{R}_{\beta}\bar{R}_{\gamma}$$

where $[f(e_i, \beta)c_j]$ and $[f(e_i, \alpha)d_j]$ are $n \times n$ matrices with the (i, j)-element as indicated. Therefore

$$F(x, y) = \operatorname{trace} R_x^0 R_y^0$$

= $2(f(\alpha, \delta) + (f(\beta, \gamma)) + 2 \sum_i f(e_i, \beta) c_i + 4nx_0 y_0 + 4st \operatorname{trace} \bar{R}_{\alpha} \bar{R}_{\delta}$
+ $2 \sum_i f(e_i, \alpha) d_i + 4nx_0 y_0 + 4st \operatorname{trace} \bar{R}_{\beta} \bar{R}_{\gamma}$
= $4[f(\alpha, \delta) + f(\beta, \gamma) + st \operatorname{trace} (R_{\alpha} R_{\delta} + R_{\beta} R_{\gamma}) + 2nx_0 y_0].$

Now assume that the invariant form $f(\alpha, \beta)$ is given by $f(\alpha, \beta) = \mu$ trace $R_{\alpha}R_{\beta}$, where μ is some element in F; then

(7)
$$F(x, y) = 4[(\mu + st) \operatorname{trace}(R_{\alpha}R_{\delta} + R_{\beta}R_{\gamma}) + 2nx_{0}y_{0}]$$

If μ satisfies $\mu + st - n\mu = 0$, we shall show that for all $x, y \in \mathfrak{A}^{0}$,

$$F(x, x \circ y) = 0,$$

and therefore F(x, y) is an invariant form on \mathfrak{A}^0 . If $R(\pi)$ also denotes R_{π} , using (4) and (7) we have

(8)
$$F(x, x \circ y) = 4[(\mu + st) \operatorname{trace} R_{\alpha}R(-2x_{0}\delta + 2y_{0}\beta + 2s\alpha\gamma) + (\mu + st) \operatorname{trace} R_{\beta}R(-2y_{0}\alpha + 2x_{0}\gamma + 2t\beta\delta) + 2nx_{0}(\mu \operatorname{trace} R_{\alpha}R_{\delta} - \mu \operatorname{trace} R_{\gamma}R_{\beta})]$$
$$= 4[(-2x_{0}(\mu + st) + 2n\mu x_{0}) \operatorname{trace} R_{\alpha}R_{\delta} + (2y_{0}(\mu + st) - 2y_{0}(\mu + st)) \operatorname{trace} R_{\alpha}R_{\beta} + 2s(\mu + st) \operatorname{trace} R_{\alpha}R_{\alpha\gamma} + 2t(\mu + st) \operatorname{trace} R_{\beta}R_{\beta\delta} + (2x_{0}(\mu + st) - 2n\mu x_{0}) \operatorname{trace} R_{\gamma}R_{\beta}]$$
$$= 0$$

also using $\mu + st - n\mu = 0$ and that $f(\alpha, \beta) = \mu$ trace $R_{\alpha}R_{\beta}$ is invariant.

Next suppose the anti-commutative algebra A has an invariant form $g(\alpha, \beta) = \lambda$ trace $R_{\alpha}R_{\beta}$, $\lambda \neq 0$, where λ need not satisfy $\lambda + st - n\lambda = 0$; then the bilinear form

$$f(\alpha, \beta) = \mu / \lambda g(\alpha, \beta) = \mu$$
 trace $R_{\alpha} R_{\beta}$

is also an invariant form for A which is non-degenerate if and only if $g(\alpha, \beta)$ is non-degenerate. So from the start of the construction we can assume that

ARTHUR A. SAGLE

if $f(\alpha, \beta) = \mu$ trace $R_{\alpha}R_{\beta}$, then $\mu + st - n\mu = 0$, and call such a bilinear form *normalized*. This proves part of the following theorem.

THEOREM 2. If $f(\alpha, \beta) = \mu$ trace $R_{\alpha}R_{\beta}$ is a normalized invariant form on A, then $F(x, y) = \text{trace } R_x^0 R_y^0$ is an invariant form on \mathfrak{A}^0 . Conversely if $F(x, y) = \text{trace } R_x^0 R_y^0$ is an invariant form on \mathfrak{A}^0 and $f(\alpha, \beta) = \mu$ trace $R_{\alpha}R_{\beta}$ (not necessarily normalized) satisfies $(\mu + st)(s + t) \neq 0$, then $f(\alpha, \beta)$ is an invariant form on A. Furthermore, when $\mu + st \neq 0$, F(x, y) is non-degenerate if and only if $f(\alpha, \beta)$ is non-degenerate.

Proof. First we show that trace $R_{\alpha}R_{\alpha\beta} = 0$ for all $\alpha, \beta \in A$ and therefore $f(\alpha, \beta)$ is an invariant form. Since F(x, y) is assumed invariant, $F(x, x \circ y) = 0$ and from (8) with $x_0 = 0$, $\alpha = \beta$, and $\gamma = \delta$ we obtain

$$(\mu + st)(s + t)$$
 trace $R_{\alpha}R_{\alpha\gamma} = 0$,

which implies that $f(\alpha, \beta)$ is an invariant form. Next let

$$y = \begin{pmatrix} y_0 & \gamma \\ \delta & -y_0 \end{pmatrix} \in \mathfrak{A}^0$$

be such that for all

$$x = egin{pmatrix} x_0 & lpha \ eta & -x_0 \end{pmatrix} \in \mathfrak{A}^o,$$

 $0 = F(x, y) = 4[(\mu + st) \operatorname{trace}(R_{\alpha}R_{\delta} + R_{\beta}R_{\gamma}) + 2nx_{0}y_{0}].$

Choose $x_0 = 0$, $\beta = 0$; then $f(\alpha, \delta) = 0$ for all $\alpha \in A$ and since $f(\alpha, \beta)$ is assumed non-degenerate, $\delta = 0$. Similarly, $x_0 = 0$ implies that $\gamma = 0$ and we finally have $0 = 8nx_0y_0$ and with $x_0 = 1$, $y_0 = 0$, so that y = 0 and therefore F(x, y) is non-degenerate on \mathfrak{A}^0 . Conversely, suppose F(x, y) is non-degenerate on \mathfrak{A}^0 and assume that for some $\delta \in A$, $f(\alpha, \delta) = \mu$ trace $R_{\alpha}R_{\delta} = 0$ for all $\alpha \in A$. Let

$$y=egin{pmatrix} 0&\delta\\delta&0\end{pmatrix}\,\in\,\mathfrak{A}^{0};$$

then for all other $x \in \mathfrak{A}^0$, F(x, y) = 0 and therefore y = 0, which implies that $f(\alpha, \beta)$ is non-degenerate.

Theorem 2 can be used to obtain a family of simple non-commutative Jordan algebras and a corresponding family of simple anti-commutative algebras based on a given anti-commutative algebra A: From the algebra A construct $\mathfrak{A}_1 = \mathfrak{A}(A, f, s, t)$, where $f(\alpha, \beta) = \mu$ trace $R_{\alpha}R_{\beta}$ is a normalized non-degenerate invariant form for A. From \mathfrak{A}_1 form \mathfrak{A}_1^0 and construct $\mathfrak{A}_2 = \mathfrak{A}(\mathfrak{A}_1^0, F_1, s_1, t_1)$, where $F_1(x, y) = \mu_1$ trace $R_x^0 R_y^0$ is a normalized non-degenerate invariant form on \mathfrak{A}_1^0 . From \mathfrak{A}_2 form \mathfrak{A}_2^0 , construct $\mathfrak{A}_3 = \mathfrak{A}(\mathfrak{A}_2^0, F_2, s_2, t_2)$ and continue this process. Now if A is the three-dimensional Lie algebra with the outer product as multiplication, $f(\alpha, \beta)$ the ordinary inner product (which equals -1/2 trace $R_{\alpha}R_{\beta}$) and s = 1, t = -1, then $\mathfrak{A} = \mathfrak{A}(A, f, 1, -1)$ is the split Cayley-Dickson algebra and \mathfrak{A}^0 the corresponding Malcev algebra. Thus starting with the above Lie algebra as the base algebra A with s_i and t_i arbitrary, we obtain a family of non-commutative Jordan algebras $\{\mathfrak{A}_i\}$ which are natural generalizations of the Cayley-Dickson algebra **(4)**, and the corresponding family of anti-commutative algebras $\{\mathfrak{A}_i^0\}$ are generalizations of the seven-dimensional Malcev algebra.

4. Proof of the theorem in the introduction. Let A be an anticommutative algebra over a field F of characteristic not 2 with an invariant form $f(\alpha, \beta)$. Construct $\mathfrak{A} = \mathfrak{A}(A, f, 1/2, 1/2)$ and let

$$\mathfrak{B} = \left\{ egin{pmatrix} a & lpha \ lpha & a \end{pmatrix} : lpha \in A, a \in F
ight\};$$

then \mathfrak{B} is a subalgebra of \mathfrak{A} with multiplication

(9)
$$xy = \begin{pmatrix} ab + f(\alpha, \beta) & a\beta + b\alpha + \frac{1}{2}\alpha\beta \\ a\beta + b\alpha + \frac{1}{2}\alpha\beta & ab + f(\alpha, \beta) \end{pmatrix},$$

where

$$x = egin{pmatrix} a & lpha \ lpha & a \end{pmatrix}, \quad y = egin{pmatrix} b & eta \ eta & b \end{pmatrix} \in \mathfrak{B}.$$

Note that $\mathfrak{B} = 1F \oplus \tilde{\mathfrak{B}}$ as a vector space sum and form \mathfrak{B}^- and $\mathfrak{B}^-/1F$; then $\mathfrak{B}^-/1F$ is isomorphic to A. For let

$$x = \begin{pmatrix} a & \alpha \\ \alpha & a \end{pmatrix} = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix} + a1 \in \mathfrak{B};$$

then

$$\bar{x} = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix} + 1F \in \mathfrak{B}^{-}/1F$$

and the mapping $\bar{x} \to \alpha$ can easily be shown to be an isomorphism of $\mathfrak{B}^-/1F$ onto A by noting that it is linear and

$$\bar{x} \circ \bar{y} = \begin{pmatrix} 0 & \alpha \beta \\ \alpha \beta & 0 \end{pmatrix} + 1F.$$

Next suppose $f(\alpha, \beta)$ is non-degenerate and the mapping $\alpha \to R_{\alpha}$ is injective. Suppose \Im is an ideal of \mathfrak{B} containing the element

$$x = \begin{pmatrix} a & \alpha \\ \alpha & a \end{pmatrix};$$

then for

$$y = \begin{pmatrix} -a & \alpha \\ \alpha & -a \end{pmatrix} \in \mathfrak{B},$$

we see from (9) that

$$xy = \begin{pmatrix} f(lpha, lpha) - a^2 & 0 \\ 0 & f(lpha, lpha) - a^2 \end{pmatrix} \in \mathfrak{Z}.$$

Thus if there exists an $x \in \mathfrak{F}$ with $f(\alpha, \alpha) \neq a^2$, then the identity $1 \in \mathfrak{F}$ and therefore $\mathfrak{F} = \mathfrak{B}$. So now assume that every $x \in \mathfrak{F}$ has the property $f(\alpha, \alpha) = a^2$. For any

$$y = \begin{pmatrix} b & \beta \\ \beta & b \end{pmatrix} \in \mathfrak{B},$$

$$\frac{1}{2}(xy + yx) = \begin{pmatrix} ab + f(\alpha, \beta) & a\beta + b\alpha \\ a\beta + b\alpha & ab + f(\alpha, \beta) \end{pmatrix} \in \mathfrak{F}$$

Therefore, using the assumption for \Im , we have $(ab + f(\alpha, \beta))^2 = f(a\beta + b\alpha, a\beta + b\alpha)$ and obtain

$$f(\alpha, \beta)^2 = a^2 f(\beta, \beta)$$
 for all $\beta \in A$.

A linearization of this identity yields

(10)
$$f(\alpha, \beta)f(\alpha, \gamma) = a^2 f(\beta, \gamma)$$
 for all $\beta, \gamma \in A$.

Thus if x is a non-zero element of \Im and a = 0 we have from (10), $f(\alpha, \beta)f(\alpha, \gamma) = 0$ for every $\beta, \gamma \in A$. Since $x \neq 0$ and $a = 0, \alpha \neq 0$, therefore there exists $\beta \in A$ with $f(\alpha, \beta) \neq 0$ and from this $f(\alpha, \gamma) = 0$ for all $\gamma \in A$. This implies $\alpha = 0$, a contradiction; so we assume that $x \in \Im$ is such that $a \neq 0$.

Next suppose that $\delta \in A$ is such that $f(\alpha, \delta) = 0$; then since $a \neq 0$, we see from (10) that $f(\beta, \delta) = 0$ for all $\beta \in A$ and therefore $\delta = 0$. However, for any $\gamma \in A$, $\delta = \alpha \gamma$ is such that $f(\alpha, \delta) = f(\alpha, \alpha \gamma) = 0$ and therefore $0 = \gamma \alpha = \gamma R_{\alpha}$ for every $\gamma \in A$. This implies that $R_{\alpha} = 0$ and since $\alpha \to R_{\alpha}$ is injective, $\alpha = 0$. Thus

$$x = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \in \mathfrak{Z}$$

with $a \neq 0$ and so $\mathfrak{F} = \mathfrak{B}$.

Finally we note that if A is any anti-commutative algebra, the bilinear form $f(\alpha, \beta) \equiv 0$ for every $\alpha, \beta \in A$ is an invariant form on A. Thus the first part of the proof shows that any anti-commutative algebra A is isomorphic to $\mathfrak{B}^-/1F$, where $\mathfrak{B} = 1F \oplus \mathfrak{B}$ is the non-commutative Jordan algebra constructed above.

References

- L. J. Paige, A note on noncommutative Jordan algebras, Portugal. Math., 16 (1957), 15–18.
 A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426–458.
- 3. ——— On simple Malcev algebras over fields of characteristic zero, Pacific J. Math. 12 (1962), 1057–1078.
- 4. R. D. Schafer, On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76 (1954), 435-446.

Syracuse University

378