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Abstract

Grape seed extract (GSE), a rich source of polyphenols, is reported to possess antioxidant, anti-inflammatory and immunomodulatory

properties. The objective of the present study was to determine whether GSE could attenuate the heat stress-induced responses of jejunum

epithelial cells (JEC) in cattle. The JEC of a steer (Simmental £ Qinchuan) were exposed to heat stress for 2 h in the absence (0mg/ml) or

presence (10, 20, 40 and 80mg/ml) of GSE in the culture medium. When cultured at 408C, JEC supplemented with GSE exhibited increased

glutathione peroxidase activity (P¼0·04), viability (P¼0·004), and mRNA expression of epidermal growth factor (EGF; P¼0·03) and EGF

receptor (EGFR; P¼0·01). Under the same conditions, the cells exhibited decreased mRNA expression of IL-8 (P¼0·01) and TNF-a

(P¼0·03) and decreased protein concentrations of IL-1b (P¼0·02), Toll-like receptor 4 (TLR4; P¼0·04) and heat shock protein 70

(HSP70; P,0·001). When cultured at 438C, JEC supplemented with GSE exhibited increased catalase activity (P¼0·04), viability

(P,0·001), and mRNA expression of EGF (P,0·001) and EGFR (P,0·001) and decreased protein concentrations of IL-1b (P,0·001),

TLR4 (P¼0·03) and HSP70 (P,0·001), as well as mRNA expression of IL-8 (P,0·001), TLR4 (P¼0·002) and TNF-a (P,0·001).

Temperature£GSE concentration interactions were also observed for the concentrations of IL-1b (P,0·001), IL-8 (P,0·001), TNF-a

(P¼0·01) and HSP70 (P¼0·04) and viability (P,0·001) of JEC. The results of the present study indicate that GSE can attenuate the

responses of JEC induced by heat stress within a certain range of temperatures.
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High dry-bulb temperature and humidity, in combination with

a solar load and low air movement, can exceed stressor limits,

resulting in reduced animal productivity and impaired animal

well-being(1). Baumgard & Rhoads(2) have reported that heat

stress markedly alters post-absorptive carbohydrate, lipid

and protein metabolism independent of reduced feed intake

through coordinated changes in fuel supply and utilisation

by multiple tissues. Apart from its direct effects on nutrient

intake and metabolism, much of the detrimental effects of

heat stress on animal productivity may be indirectly mediated

by reduced antioxidant capacity, inappropriate hormone

secretions, and increased susceptibility to parasites and

disease occurrence(3–5).

In addition to functioning as the primary site of nutrient

absorption, the gastrointestinal tract is also an important com-

ponent of the immune system(6–8). The ambient temperature

clearly affects the physiological functions of the gastro-

intestinal tract. Heat-stressed mammals channelise blood to

the periphery of their body in an attempt to maximise radiant

heat dissipation, and this blood redistribution is accompanied

by vasoconstriction of the gastrointestinal tract(9). As a result,

reduced blood and nutrient flow results in hypoxia at the

intestinal epithelium, which ultimately compromises intestinal

integrity and function(10). Consequently, heat-induced intesti-

nal permeability is associated with the increased abundance

of blood markers of endotoxaemia, hypoxia and inflam-

mation, all of which may contribute to the multi-organ failure

syndrome(11). Damage to the mucosal epithelium of the small

intestine caused by heat stress(12) can directly affect intestinal

barrier function and nutrient absorption in the small intes-

tine(13,14), resulting in reduced growth performance.

Management strategies are required to alleviate heat stress.

Beede & Collier(15) have identified three management strat-

egies that minimise the effects of thermal stress: physical

modification of the living environment; breeding of animals

for heat tolerance; improvement of nutritional management.
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Limiting energy intake has been proven to effectively decrease

heat generation(16) and thereby decrease overall metabolic

heat load in animals subjected to high ambient temperatures.

In addition, dietary manipulation to enhance the antioxidant

capacity of the body has been proven to be an important

measure in the alleviation of heat stress. Certain trace minerals

(such as cofactors of antioxidant enzymes such as Se in gluta-

thione peroxidase (GSH-Px)) and several vitamins (such as

vitamins E and C) are integral components of the antioxidant

system(17) and have heat stress-lowering effects(18).

In recent years, there has been growing interest in the

use of grape seed extract (GSE) as a dietary antioxidant

supplement(19). The antioxidant capacity of GSE is due to the

presence of high proportions of phenolic compounds,

primarily monomeric catechin and epicatechin, gallic acid,

and oligomeric and polymeric procyanidins in grapes(20).

Previous studies have reported that GSE possesses strong

antioxidant capacity in vitro – 20- and 50-fold greater than

that of vitamins E and C, respectively(21–23) – in addition to

immunomodulatory functionality(24). The present study was

carried out to investigate the effects of GSE on the antioxidant

capacity and immune status of jejunum epithelial cells (JEC)

isolated from a steer subjected to heat stress treatment.

Materials and methods

The present experiment was conducted according to the

Animal Care and Use Guidelines of the Southwest University,

Chongqing, China.

Preparation of jejunum epithelial cells

The methods followed for JEC isolation were based on the pro-

cedures described by Sun et al.(25). Briefly, the jejunum epithelia

collected from a Simmental £ Qinchuan steer (about 500 kg

body weight) were washed with (1) rinsing solution 1 (5 £ 105

IU/l of penicillin G sodium and streptomycin sulphate) and

(2) rinsing solution 2 (250mg/ml of gentamicin and 12·5mg/ml

of amphotericin B). Subsequently, the sample was minced into

small pieces, placed in a 200 ml Erlenmeyer digestion flask

containing 50 ml of a digestion solution (0·25 % trypsin and

0·02 % EDTA) and incubated in a low orbital, hot-air incubator

at 378C for 30 min. The digestion solution containing pieces

of the tissue sample was mixed using a drip pipe for 3 min.

After incubation, this mixture was transferred to a 50 ml centri-

fuge tube containing Dulbecco’s modified Eagle’s medium

with 10 % fetal bovine serum (DMEM-FBS) and centrifuged at

600 g for 5 min at room temperature. The supernatant was

collected and used for Ig assay. The precipitate containing

JEC was washed four times with sterile Hanks’ balanced salt

solution with an antibiotic–antimycotic mixture (1 £ 105 IU/l

of penicillin G sodium, 1 £ 105 IU/l of streptomycin sulphate

and 0·25 mg/ml of amphotericin B as Fungizone).

Grape seed extract treatment and heat stress exposure

Based on the time difference in cell adhesion between the fibro-

blasts and JEC, the cells were cultured for 1·5 h in DMEM-FBS.

The cells were then transferred to a twenty-four-microwell

plate at a density of 1 £ 106 cells/plate in DMEM-FBS and cul-

tured for 24 h under standard conditions at 378C in a 5 % CO2-

humidified atmosphere. After 24 h of culturing, the plated

cells were washed with DMEM-FBS and cultured for an

additional 10 h in DMEM-FBS supplemented with GSE (Tarac

Technologies) at a final concentration of 0, 10, 20, 40 or

80mg/ml at 378C. According to the manufacturer’s product

description, the GSE contained 90·1 % (w/w) polyphenols,

5·0 % (þ)-catechin, 4·8 % (2)-epicatechin, 2·4 % (2)-epigallo-

catechin, 14·1 % dimeric proanthocyanidins, 11·6 % trimeric

proanthocyanidins, 7·8 % tetrameric proanthocyanidins and

40·0 % polymeric proanthocyanidins. The doses of GSE added

to the culture medium in the present study were determined

by referring to the doses used in the studies of Kaur et al.(26)

and Roy et al.(27). The cultured plates were carefully sealed

and placed in a water-jacketed incubator with humidified air

mixed with 5 % CO2. There were forty-eight replicates for

each level of GSE treatment, and a total of 240 replicates for five

GSE concentrations were cultured at a time.

Following GSE-supplemented culturing, the cells were sub-

jected to heat stress treatment. The forty-eight replicates of

each level of GSE treatment were further cultured at tempera-

tures of 378C (normal temperature for cell culture), 40, 43 and

468C for 2 h. Temperatures of 40, 43 and 468C were selected to

reflect temperatures potentially causing slight, harmful and

serious or lethal heat stress to cells, respectively. The entire

experiment consisted of five GSE concentrations crossed

with four temperatures, forming a 5 £ 4 factorial design with

twelve replicates for each treatment. All the replicates were

obtained on the same day.

After 2 h of incubation, four replicates in each treatment

were removed and Alamar Blue solution was added to deter-

mine cell viability as described below. Additionally, four repli-

cates were preserved at 2808C after treatment with the TRIzol

reagent (Invitrogen) for isolating RNA, and the remaining four

replicates were used for various assays described below.

Alamar Blue assay for cell viability

Cell viability was measured according to the procedures

described by Byth(28). Alamar Blue solution was added directly

into the plate to a final concentration of 10 %, and the plate

was further incubated at 378C for 3 h. After the incubation

period, fluorescence measurements were performed using

a fluorescence reader (ELISA module, Anthos microplate

spectrophotometer Zenyth 200; Anthos Labtec Instruments,

GmbH) with the excitation/emission wavelengths set at 570/

630 nm, the sensitivity gain at 50, and the temperature at

378C. Cell viability (%) was calculated by the equation derived

by Willard et al.(29).

Antioxidant enzyme activity assays

The superoxide dismutase (SOD), catalase (CAT) and GSH-Px

activities, as well as malondialdehyde concentration, of JEC

were determined using the appropriate assay kits (Jiancheng

Bioengineering Institute) according to the manufacturer’s
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instructions. The nitrite colouration method was used to deter-

mine SOD activity at an excitation wavelength of 550 nm by

measuring the absorbance. CAT activity was measured at an

excitation wavelength of 405 nm according to the method of

Góth(30) using an assay kit. GSH-Px activity was measured at

an excitation wavelength of 412 nm by quantifying the rate of

oxidation of reduced glutathione (GSH) to form oxidised GSH.

The thiobarbital method was used to determine cellular malon-

dialdehyde concentration at an excitation wavelength of 532 nm

by measuring the absorbance(31). The cellular protein concen-

tration was determined using the Coomassie Brilliant Blue

G250 reagent, with bovine serum albumin used as a standard.

Ig and cytokine assays

The concentrations of Ig were measured by solid-phase

indirect ELISA as described by Islam et al.(32). The cellular con-

centrations of TNF-a, IL-1b, IL-8 and Toll-like receptor 4

(TLR4) were determined using bovine-specific commercial

ELISA kits for TNF-a (E90133Bo; Uscn Life Science Inc.),

IL-1b (E90563Bo; Uscn Life Science Inc.), IL-8 (E90080Bo;

Uscn Life Science Inc.) and TLR4 (A90753Bo01; Uscn Life

Science Inc.), respectively.

Total RNA was isolated from the cultured cells according

to the manufacturer’s instructions. First-strand complementary

DNA was synthesised using the RevertAide First Strand cDNA

Synthesis Kit (K1622; Fermentas Inc.). To quantify the mRNA

of glyceraldehyde 3-phosphate dehydrogenase (GAPDH, a

housekeeping gene)(33), IL-1b, IL-8, TLR4, TNF-a, epidermal

growth factor (EGF) and EGF receptor (EGFR), real-time PCR

was carried out using the complementary DNA of JEC.

Primer sequences for each gene are listed in Table 1. The

specificity of the primers was tested with a BLAST analysis

against the genomic NCBI database. Real-time PCR was

carried out using the SYBR Green method and the ABI 7900

Sequence Detection System (Applied Biosystems). Analyses

were carried out in triplicate, and mean values were calcu-

lated. Data were collected and analysed using the ‘fit

point’ option of the LightCycler software (version 3.5; Idaho

Technology Inc.). A calibration curve was generated by the

amplification of serially diluted complementary DNA using

the fit point option of the LightCycler software for the target

genes and GAPDH gene as an internal reference. The

threshold fluorescence level was determined within the

geometric region of the semi-log view of the amplification

plot. The relative expression of the target gene was calculated

using the 22DDC t method(34).

Immunoblotting analysis

The cells were lysed on ice for 30 min in a radioimmunoprecipi-

tation assay buffer (150 mM-NaCl, 50 mM-Tris–HCl, pH 8·0, 1 %

Triton X-100, 1 % sodium deoxycholate and 0·1 % SDS)

containing a protease inhibitor cocktail (1:1000 dilution;

Sigma-Aldrich). Lysates were collected, passed through a 21G

needle and centrifuged (14 000 g for 15 min at 48C) to remove

particulate matter. Protein content in the lysate supernatants

was determined using DC Protein Assay reagents (Bio-Rad

Laboratories) and bovine serum albumin as a standard. Equal

quantities of protein (25mg) were resolved using SDS–PAGE

and transferred onto nitrocellulose membranes using semi-dry

blotting techniques (Bio-Rad Laboratories). Non-specific

protein-binding sites were blocked by treating the membranes

with 5 % bovine serum albumin dissolved in Tris-buffered

saline (10 mM-Tris–HCl, pH 8·0, and 150 mM-NaCl) with

0·05 % Tween-20. The membranes were incubated with primary

anti-heat shock protein 70 (HSP70; no. 4825; Cell Signaling

Technology, Inc.) and anti-GAPDH (no. GTX43800; Cell

Signaling Technology, Inc.) antibodies, as well as horseradish

peroxidase-conjugated secondary antibodies, in Tris-buffered

saline with 0·05 % Tween-20 and 1 % bovine serum albumin.

The bands were visualised using a chemiluminescence

substrate (SuperSignal West Pico; Thermo Fisher Scientific)

and fluorography. Densitometric analysis of the bands was

carried out using an AlphaImager 2200 system (AlphaInnotech).

Statistical analyses

All statistical analyses were conducted using the generalised

linear model procedure (SAS Institute, Inc.). The normality

Table 1. Primer sequences for genes in the jejunum mucosa

Primer sequence
Length of the

PCR product (bp) Tm (8C)

GAPDH Sense: 50-GGTCACCAGGGCTGCTTT-30 128 57·8
Antisense: 50-CTGTGCCGTTGAACTTGC-30 55·0

IL-1b Sense: 50-CCTGAACCCATCAACGAA-30 194 54·1
Antisense: 50-ACGATGACCGACACCACC-30 56·0

IL-8 Sense: 50-GACTTCCAAGCTGGCTGTT-30 230 54·9
Antisense: 50-GGCAGACCTCGTTTCCAT-30 55·0

TLR4 Sense: 50-CCTTCACTACAGGGACTT-30 96 45·9
Antisense: 50-GACACCACGACAATAACC-30 47·5

TNF-a Sense: 50-CCCTTGTTCCTCACCCAC-30 250 55·0
Antisense: 50-CGATGATCCCAAAGTAGACC-30 54·3

EGF Sense: 50-CGAGGAAGAAGTAGGTTTA-30 228 47·0
Antisense: 50-GAACTTTCAATTCGTGGA-30 47·9

EGFR Sense: 50-CACTCATGCTCTATGACCCTA-30 233 52·6
Antisense: 50-ACCGATTCCTATTCCGTTA-30 53·3

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TLR4, Toll-like receptor 4; EGF, epidermal growth factor;
EGFR, epidermal growth factor receptor.
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of data distribution was assessed using the Kolmogorov–

Smirnov goodness-of-fit test. As the experiments were

organised in a 5 £ 4 factorial design, a two-way ANOVA was

used to test the effects of GSE concentration, temperature

and temperature £ GSE concentration interactions, followed

by a Tukey’s post hoc test. Orthogonal contrasts were used to

examine the linear and quadratic effects in response to increa-

sing temperature or GSE concentration. All statistical tests

were two-sided and statistical significance was set at P,0·05.

Results

Supplementation with 20, 40 and 80mg/ml GSE increased the

GSH-Px activity of JEC cultured at 408C (P¼0·04) and the CAT

activity of JEC cultured at 438C (P¼0·04; Table 2). On the

whole, the activities of SOD (linear and quadratic, P,0·001),

CAT (linear and quadratic, P,0·001) and GSH-Px (linear,

P,0·001; cubic, P¼0·02) of JEC declined in response to an

increase in culture temperature. A rise in culture temperature

increased the malondialdehyde concentration of JEC (linear

and quadratic, P,0·001; cubic, P¼0·01). Supplementation of

the culture medium with GSE increased the activities of SOD

(linear, P¼0·04), CAT (linear and quadratic, P,0·001) and

GSH-Px (linear, P¼0·01) of JEC.

When cultured at 408C, JEC supplemented with 20, 40 and

80mg/ml GSE exhibited IL-1b (P¼0·02) and TLR4 (P¼0·04)

concentrations that were significantly higher than those in

cells not supplemented with GSE (Table 3). When cultured at

438C, JEC supplemented with 20, 40 and 80mg/ml GSE

exhibited TLR4 (P¼0·03) and TNF-a (P¼0·002) concentrations

that were significantly lower than those in cells not

supplemented with GSE. Overall, an increase was observed in

the concentrations of IL-1b (linear and quadratic, P,0·001;

cubic, P¼0·003), IL-8 (linear and quadratic, P,0·001; cubic,

P¼0·02), TLR4 (linear and quadratic, P,0·001) and TNF-a

(linear, quadratic and cubic, P,0·001) of JEC in response to

an increase in culture temperature (P,0·001). Supplementation

of the culture medium with GSE decreased the concentrations

of IL-1b (linear and quadratic, P,0·001), IL-8 (linear and

quadratic, P,0·001), TLR4 (quadratic, P¼0·008; cubic,

P¼0·002) and TNF-a (linear, P¼0·03) of JEC. Significant

temperature £ GSE interactions were observed for the concen-

trations of IL-1b (P,0·001), IL-8 (P,0·001) and TNF-a

(P¼0·01) of cultured JEC.

When cultured at 408C, JEC supplemented with 40 and

80mg/ml GSE exhibited decreased mRNA expression of

IL-8 (P¼0·01) and TNF-a (P¼0·03) and increased mRNA

expression of EGF (P¼0·03) when compared with those not

Table 2. Effects of grape seed extract (GSE) and heat stress on the antioxidant capacity of jejunum epithelial cells of a
Simmental £ Qinchuan steer

(Mean values and standard deviations; n 4)

SOD
(1000 IU/g protein)

CAT
(1000 IU/g protein)

GSH-Px
(1000 IU/g protein)

MDA
(mmol/g protein)

Mean SD Mean SD Mean SD Mean SD

378C 0mg/ml 227 9·03 4·46 0·17 129 5·11 1·80 0·14
10mg/ml 228 26·1 4·53 0·19 123 5·38 1·72 0·19
20mg/ml 221 10·5 4·64 0·20 125 9·33 1·77 0·23
40mg/ml 230 6·28 4·73 0·28 130 5·95 1·80 0·11
80mg/ml 232 7·14 4·71 0·10 128 6·65 1·83 0·11

408C 0mg/ml 201 8·04 3·95 0·25 103b 4·71 2·02 0·19
10mg/ml 213 11·1 4·28 0·49 109a,b 8·35 2·08 0·28
20mg/ml 215 5·92 4·40 0·28 115a 5·42 2·02 0·31
40mg/ml 218 20·6 4·49 0·47 115a 11·4 1·95 0·52
80mg/ml 216 6·68 4·50 0·09 116a 5·59 1·97 0·47

438C 0mg/ml 180 7·13 3·36b 0·15 99·8 5·60 2·19 0·14
10mg/ml 185 21·2 3·67a,b 0·16 99·4 4·36 2·06 0·48
20mg/ml 191 15·9 3·84a 0·23 104 15·0 2·02 0·33
40mg/ml 185 17·5 3·81a 0·40 105 10·9 1·91 0·51
80mg/ml 187 4·64 3·81a 0·12 103 5·91 2·42 0·07

468C 0mg/ml 144 6·44 2·93 0·14 81·8 5·96 2·83 0·14
10mg/ml 146 13·8 2·90 0·23 78·6 5·95 2·81 0·13
20mg/ml 150 8·21 3·10 0·16 84·5 5·94 2·76 0·12
40mg/ml 151 4·13 3·07 0·19 85·5 3·91 2·74 0·16
80mg/ml 152 4·69 3·04 0·06 85·1 4·91 2·75 0·11

Pooled SEM 5·53 0·11 3·28 0·12
T Linear ,0·001 ,0·001 ,0·001 ,0·001

Quadratic ,0·001 ,0·001 0·17 ,0·001
Cubic 0·86 0·33 0·02 0·01

GSE Linear 0·04 ,0·001 0·01 0·60
Quadratic 0·22 ,0·001 0·06 0·09
Cubic 0·52 0·14 0·55 0·82

T £ GSE 0·94 0·98 0·79 0·78

SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde; T, temperature; T £ GSE, interaction between T
and GSE.

a,b Mean values within a column with unlike superscript letters were significantly different (P , 0·05).

X. Li et al.350

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114514001032  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114514001032


supplemented with GSE (Table 4). When cultured at 438C, JEC

supplemented with 20, 40 and 80mg/ml GSE exhibited mRNA

expression of IL-8 (P,0·001) and TLR4 (P¼0·002) that was

lower than that in cells not supplemented with GSE. On the

whole, increases were observed in the mRNA expression of

IL-1b (linear, P,0·001; quadratic and cubic, P¼0·002), IL-8,

TLR4 and TNF-a (linear, quadratic and cubic, P,0·001) of

JEC in response to an increase in culture temperature and

declines were observed in the mRNA expression of EGF

(linear, quadratic and cubic, P,0·001) and EGFR (linear and

cubic, P,0·001). Supplementation of the culture medium

with GSE decreased the mRNA expression of IL-8 and TNF-a

(linear, P¼0·002) and increased the mRNA expression of

EGF and EGFR (linear, P,0·001) of JEC.

When cultured at 408C, JEC supplemented with 40 and

80mg/ml GSE exhibited viability that was greater than that

of cells supplemented with 0 and 10mg/ml GSE (P¼0·004)

and those supplemented with 0 and 10mg/ml GSE exhibited

HSP70 concentration that was greater than that of cells supple-

mented with 40 and 80mg/ml GSE (P,0·001; Table 5).

Similarly, when cultured at 438C, JEC supplemented with 20,

40 and 80mg/ml GSE exhibited viability that was greater

than that of cells supplemented with 0 and 10mg/ml GSE

(P,0·001) and those supplemented with 0 and 10mg/ml

GSE exhibited HSP70 concentration that was greater than

that of cells supplemented with 20, 40 and 80mg/ml

(P,0·001). Overall, the viability of JEC declined in response

to an increase in culture temperature (linear and cubic,

P,0·001), whereas the concentration of HSP70 increased

(linear, quadratic and cubic, P,0·001). Supplementation of

the culture medium with GSE increased the viability of JEC

(linear, P,0·001; quadratic, P¼0·002) and decreased the

concentration of HSP70 (linear and quadratic, P,0·001).

Temperature £ GSE interactions were detected for cell viabi-

lity (P,0·001) and HSP70 concentration of JEC (P¼0·004).

Discussion

The biological properties of polyphenols are dependent on

the quantity of polyphenols consumed and on their bioavail-

ability, which apparently differs greatly among the various

polyphenols(35). Most polyphenols present in food exist in

the form of esters, glycosides or polymers that cannot be

absorbed in their native form. Typically, these substances

must be cleaved before absorption(36,37). Polyphenols with

relatively small molecular weights are easily absorbed through

the gut(38). Most of the absorbed polyphenols present in the

circulation and tissues predominately exist in conjugated

forms – glucuronised, sulphated or methylated – or in a

combination of these forms(39). We speculate that the bioavail-

ability of polyphenols in the GSE used in the present study

would be high because it contains a relatively high proportion

Table 3. Effects of grape seed extract (GSE) and heat stress on the immune parameters of jejunum epithelial cells of a Simmental £ Qinchuan steer

(Mean values and standard deviations; n 4)

IgM
(mg/g protein)

IgG
(mg/g protein)

IL-1b
(ng/g protein)

IL-8
(ng/g protein)

TLR4
(ng/g protein)

TNF-a
(ng/g protein)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

378C 0mg/ml 2·62 0·45 42·5 5·06 0·36 0·02 0·21 0·03 0·47 0·03 0·48 0·02
10mg/ml 2·43 0·31 43·6 3·41 0·34 0·05 0·20 0·05 0·47 0·02 0·49 0·05
20mg/ml 2·51 0·41 41·4 3·63 0·35 0·04 0·22 0·04 0·46 0·02 0·50 0·03
40mg/ml 2·77 0·16 41·7 3·87 0·34 0·02 0·21 0·02 0·49 0·03 0·48 0·03
80mg/ml 2·59 0·28 40·6 4·13 0·34 0·03 0·22 0·03 0·50 0·02 0·51 0·02

408C 0mg/ml 2·80 0·41 62·1a 3·82 0·45a 0·03 0·32a 0·03 0·66a 0·04 0·63 0·05
10mg/ml 3·18 0·49 57·3a,b 5·97 0·39a,b 0·03 0·27b 0·02 0·60a,b 0·05 0·62 0·07
20mg/ml 3·15 0·42 54·1b 4·07 0·37b 0·08 0·26b 0·02 0·55b 0·04 0·64 0·05
40mg/ml 3·00 0·41 52·2b 4·22 0·34b 0·06 0·24b 0·03 0·58b 0·05 0·62 0·06
80mg/ml 2·79 0·40 51·9b 6·22 0·36b 0·04 0·25b 0·02 0·58b 0·04 0·62 0·02

438C 0mg/ml 2·88a 0·24 72·3 9·85 0·51a 0·03 0·41a 0·03 0·81a 0·06 0·86a 0·07
10mg/ml 2·82a,b 0·06 70·4 5·88 0·45b 0·03 0·37b 0·03 0·76a,b 0·04 0·83a,b 0·05
20mg/ml 2·70b,c 0·10 67·6 4·26 0·39c 0·03 0·32c 0·03 0·70b 0·06 0·78b,c 0·05
40mg/ml 2·65b,c 0·08 67·4 7·02 0·36c 0·05 0·30c 0·03 0·71b 0·06 0·73c 0·07
80mg/ml 2·63c 0·09 65·5 6·76 0·35c 0·04 0·30c 0·01 0·71b 0·06 0·72c 0·02

468C 0mg/ml 3·59 0·48 81·4 7·43 0·55 0·01 0·49 0·04 1·02 0·06 1·39 0·07
10mg/ml 3·56 0·46 78·1 4·89 0·53 0·04 0·50 0·03 0·97 0·06 1·36 0·09
20mg/ml 3·49 0·45 79·6 5·00 0·54 0·05 0·48 0·04 0·95 0·06 1·34 0·08
40mg/ml 3·45 0·47 81·1 6·25 0·55 0·03 0·49 0·04 1·00 0·06 1·37 0·06
80mg/ml 3·48 0·44 80·8 9·46 0·54 0·03 0·49 0·05 1·01 0·06 1·37 0·07

Pooled SEM 0·19 1·85 0·02 0·01 0·02 0·02
T Linear ,0·001 ,0·001 ,0·001 ,0·001 ,0·001 ,0·001

Quadratic 0·03 0·23 ,0·001 ,0·001 ,0·001 ,0·001
Cubic ,0·001 0·76 0·003 0·02 0·11 ,0·001

GSE Linear 0·35 0·001 ,0·001 ,0·001 0·34 0·03
Quadratic 0·72 0·06 ,0·001 ,0·001 0·008 0·06
Cubic 0·96 0·21 0·16 0·21 0·002 0·99

T £ GSE 0·88 0·22 ,0·001 ,0·001 0·22 0·01

TLR4, Toll-like receptor 4; T, temperature; T £ GSE, interaction between T and GSE.
a,b,c Mean values within a column with unlike superscript letters were significantly different (P , 0·05).
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of monomeric or oligomeric polyphenols. However, data

concerning differences in bioavailability between GSE poly-

phenols and dietary polyphenols are limited and therefore

further study is required.

Antioxidant capacity

The antioxidation defence network of animal organs and

tissues acting against oxygen-free radicals includes endogen-

ous (e.g. SOD, GSH, GSH-Px and CAT) and exogenous

(e.g. vitamin E and Se) factors(40). In the present study, the

activities of SOD, CAT and GSH-Px of JEC declined in

response to an increase in culture temperature, whereas the

cellular malondialdehyde concentration increased. These

results indicate that heat stress decreases the antioxidant

capacity of JEC and are in agreement with previous findings.

Burke et al.(41) reported that heat stress decreases the activities

of GSH reductase and GSH-Px of peripheral blood mono-

nuclear cells of heifers. Heat stress has been found to enhance

the formation of reactive oxygen species and disturb the

balance between the production of free radicals and the anti-

oxidant systems, ultimately leading to oxidative stress(42–46).

Mujahid et al.(47) also reported that heat stress increases the

generation of free radicals, possibly through the disruption

of electron transport assemblies of the mitochondrial mem-

brane. Moreover, heat stress has been shown to decrease

intestinal blood flow and ultimately reduce the absorption of

nutrients, including exogenous antioxidant nutrients(48).

In the present study, the CAT activity of JEC cultured at 438C

and the GSH-Px activity of those cultured at 408C increased

with GSE supplementation. This result indicates that GSE

can assist in the maintenance of redox balance in JEC cultured

at 40 and 438C. Primarily notable for the bioactivity of its phe-

nolic compounds, GSE and its antioxidative characteristics–

including scavenging of free radicals, inhibition of lipid

oxidation and reduction of hydroperoxide formation– have

been widely investigated(49,50). The highest antioxidant

capacity in grapes has been found in seeds, followed by

skin, whereas the flesh has been found to have the lowest

antioxidant capacity(51). Some clinical data have shown that

procyanidin oligomers present in grape seeds are twenty

times more potent than vitamin C and fifty times more

potent than vitamin E as antioxidants(22). The antioxidant

activity of GSE has also been reported to improve the oxi-

dative stability of a variety of biological samples – including

cooked beef(52), rats(53), turkey, and pork patties, and cold-

stored turkey meat(54–56) – based on in vitro and in vivo

studies. Many investigators have attempted to identify the phe-

nolic compounds and chemical structure(s) that are primarily

responsible for the antioxidant activity of grape extracts.

Faria et al.(57) observed that in five fractions with differing

compositions of procyanidin polymers, the dimers displayed

Table 4. Effects of grape seed extract (GSE) and heat stress on the mRNA expression of cytokines of jejunum epithelial cells of a Simmental £
Qinchuan steer

(Mean values and standard deviations; n 4)

IL-1b IL-8 TLR4 TNF-a EGF EGFR

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

378C 0mg/ml 1·00 0·12 1·00 0·08 1·00 0·07 1·00 0·06 1·00 0·05 1·00 0·05
10mg/ml 1·03 0·10 1·00 0·06 1·03 0·06 1·03 0·06 0·99 0·05 1·01 0·04
20mg/ml 1·04 0·25 1·03 0·01 0·97 0·05 0·97 0·05 0·97 0·05 1·03 0·01
40mg/ml 1·04 0·26 1·01 0·04 0·99 0·05 0·99 0·05 1·03 0·06 1·00 0·06
80mg/ml 0·98 0·17 1·00 0·05 0·98 0·05 0·98 0·05 1·00 0·04 1·00 0·05

408C 0mg/ml 1·00 0·11 1·00a 0·04 1·00 0·17 1·00a 0·07 1·00b 0·09 1·00b 0·07
10mg/ml 0·95 0·08 0·95a,b 0·06 0·96 0·01 0·97a,b 0·05 1·00a,b 0·10 1·07b 0·18
20mg/ml 0·92 0·15 0·95a,b 0·04 0·93 0·05 0·95a,b 0·04 1·08a,b 0·02 1·17a,b 0·07
40mg/ml 0·94 0·06 0·90b,c 0·09 0·88 0·05 0·91b 0·07 1·12a 0·10 1·18a,b 0·12
80mg/ml 0·94 0·07 0·86c 0·06 0·87 0·11 0·91b 0·07 1·18a 0·10 1·23a 0·07

438C 0mg/ml 1·00 0·04 1·00a 0·05 1·00a 0·05 1·00a 0·05 1·00b 0·06 1·00c 0·02
10mg/ml 0·99 0·09 0·96a,b 0·04 0·98a,b 0·05 0·95b 0·06 1·00b 0·06 1·08c 0·17
20mg/ml 0·94 0·05 0·92b,c 0·02 0·95b,c 0·07 0·93b 0·05 1·13b 0·10 1·20b,c 0·07
40mg/ml 0·92 0·06 0·90c 0·05 0·93c 0·04 0·90b 0·06 1·21b 0·08 1·45a,b 0·09
80mg/ml 0·91 0·03 0·89c 0·02 0·92c 0·05 0·90b 0·06 1·46a 0·07 1·73a 0·12

468C 0mg/ml 1·00 0·13 1·00 0·03 1·00 0·07 1·00 0·09 1·00 0·20 1·00 0·21
10mg/ml 0·97 0·07 0·99 0·11 0·99 0·20 1·01 0·05 1·02 0·18 0·98 0·16
20mg/ml 0·98 0·03 0·97 0·12 1·00 0·08 1·01 0·06 1·15 0·30 0·94 0·24
40mg/ml 0·96 0·07 0·98 0·10 0·99 0·05 0·99 0·06 1·12 0·18 1·06 0·21
80mg/ml 1·02 0·03 0·98 0·04 1·00 0·05 0·99 0·03 1·12 0·22 1·12 0·18

Pooled SEM 0·07 0·06 0·11 0·04 0·04 0·05
T Linear ,0·001 ,0·001 ,0·001 ,0·001 ,0·001 ,0·001

Quadratic 0·002 ,0·001 ,0·001 ,0·001 ,0·001 0·660
Cubic 0·002 ,0·001 ,0·001 ,0·001 ,0·001 ,0·001

GSE Linear 0·28 0·002 0·24 0·002 ,0·001 ,0·001
Quadratic 0·32 0·07 0·43 0·13 0·30 0·63
Cubic 0·62 0·80 0·93 0·85 0·81 0·89

T £ GSE 0·92 0·61 0·99 0·78 0·63 0·61

TLR4, Toll-like receptor 4; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; T, temperature; T £ GSE, interaction between T and GSE.
a,b,c Mean values within a column with unlike superscript letters were significantly different (P , 0·05).
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the highest antioxidant capacity based on a molar base

(scavenging peroxyl radicals). A similar result was observed

by Soobrattee et al.(58), who reported that the compound with

the highest antioxidative activity among the variety of phenolic

compounds was the procyanidin dimer and that antioxidant

capacity decreased in the order of procyanidin dimer .

flavanol . flavonol . hydroxycinnamic acids . simple phenolic

acids. Diphenols are more effective antioxidants than simpler

phenols due to the stabilisation of the phenoxy radical

through hydrogen bonding(59). The high-molecular-weight

compounds may be functionally as important as the monomer

flavanols, such as catechin, which have been found to

display high antioxidant potential among the phenolic

compounds(23). Furthermore, the antioxidant activity of a

sample could be a function of a synergic effect among several

components rather than of a single compound(60,61).

Immunity

In the present study, the protein concentrations of IgG, IL-1b,

IL-8, TLR4 and TNF-a and the mRNA expression levels of

IL-1b, IL-8, TLR4 and TNF-a in JEC increased in response to

an increase in culture temperature. As an important

component of the immune system(6–8), the gastrointestinal

tract initiates protective immune responses induced upon

encountering pathogens and toxins or tolerance to commensal

bacteria and food antigens. Under normal health conditions,

T cells appear to be activated but unstimulated (secreting

cytokines), but are prepared for stimulation and to secrete a

variety of cytokines, including IL-2, IL-4, IL-5, IL-10 and

interferon-g(62). Once invaded, the intestinal epithelium can

function as a component of the innate immune system by

expressing TLR (e.g. TLR2, TLR3, TLR4 and TLR5) and secrete

cytokines (e.g. TNF-a, IL-15 and IL-8)(63–66). High circulating

concentrations of cytokines in the plasma – including IL-1b,

IL-6 and IL-10 – have also been observed in heat stroke-

affected animals and humans(67,68). Heat shock has been

shown to induce (in cultured intestinal epithelial cells) the

production of cytokines (e.g. IL-6 and IL-8)(69), directly

resulting in increased epithelial permeability and a high

rate of apoptosis(70). Such a heightened immune response

could result in a systemic inflammatory reaction, ultimately

leading to multiple-organ failure, such as that observed

during sepsis(9).

In the present study, GSE supplementation was found to

decrease the protein concentrations of IgG, IL-1b, IL-8, TLR4

and TNF-a and the mRNA expression levels of IL-8, TNF-a

and TLR4 in JEC. This result indicates that GSE assists in the

suppression of inflammatory reaction of JEC subjected to

heat stress treatment. The immunoregulatory function of

GSE can be attributed to its chemical composition. Phenolic

compounds in grape seeds have been shown to exert signifi-

cant anti-inflammatory effects in rats, mice and humans(71,72),

with the contributing molecules purported to include flavo-

nols, flavanols and procyanidins (oligomeric flavonoids)(71,73).

Bralley et al.(74) reported that ear inflammation, oedema and

polymorphonuclear leucocyte infiltration induced by 12-O-

tetradecanoylphorbol 13-acetate were inhibited in mice

treated for 30 min with extracts from grape skins and seeds.

These findings indicate that phenolic compounds in

grapes apparently possess anti-inflammatory activity. The

mechanisms responsible for the anti-inflammatory activity of

procyanidins have also been investigated in previous studies.

Inhibition or reduction of cytokine gene expression may be an

important pathway involved in the anti-inflammatory activity

of grape phenolic compounds(71,73). Human adipocytes

and macrophage-like cell lines have been found to produce

low amounts of IL-6 and monocyte chemotactic protein-1

and high amounts of anti-inflammatory adipokine and adi-

ponectin after pre-treatment with extracts of grape seed

procyanidins(71). These results demonstrate that the regulation

of the expression of anti-inflammatory and pro-inflammatory

cytokines is the primary mechanism responsible for the roles

of GSE in the immunoregulatory function of JEC subjected

to heat stress treatment.

Epidermal growth factor and epidermal
growth factor receptor

In the present study, the mRNA expression levels of EGF

and EGFR in JEC decreased with an increase in culture

Table 5. Effects of grape seed extract (GSE) and heat stress on the
cell viability and heat shock protein 70 (HSP70) concentration of
jejunum epithelial cells of a Simmental £ Qinchuan steer

(Mean values and standard deviations; n 4)

Cell viability (%)
HSP70

(spot intensity)

Mean SD Mean SD

378C 0mg/ml 0·88 0·04 0·47 0·04
10mg/ml 0·88 0·06 0·45 0·03
20mg/ml 0·84 0·05 0·48 0·03
40mg/ml 0·90 0·06 0·47 0·04
80mg/ml 0·94 0·07 0·43 0·03

408C 0mg/ml 0·69b 0·04 0·68a 0·04
10mg/ml 0·71b 0·03 0·66a 0·06
20mg/ml 0·76a,b 0·07 0·61a,b 0·02
40mg/ml 0·82a 0·04 0·56b 0·05
80mg/ml 0·84a 0·06 0·57b 0·02

438C 0mg/ml 0·64b 0·04 0·68a 0·02
10mg/ml 0·66b 0·06 0·67a 0·03
20mg/ml 0·74a 0·05 0·61b 0·03
40mg/ml 0·76a 0·07 0·60b 0·07
80mg/ml 0·77a 0·06 0·58b 0·07

468C 0mg/ml 0·54 0·03 0·72 0·02
10mg/ml 0·57 0·05 0·69 0·03
20mg/ml 0·60 0·05 0·70 0·03
40mg/ml 0·59 0·03 0·71 0·03
80mg/ml 0·62 0·05 0·68 0·04

Pooled SEM 0·02 0·01
T Linear ,0·001 ,0·001

Quadratic 0·63 ,0·001
Cubic ,0·001 ,0·001

GSE Linear ,0·001 ,0·001
Quadratic 0·002 ,0·001
Cubic 0·30 0·78

T £ GSE ,0·001 0·004

T, Temperature; T £ GSE, interaction between T and GSE.
a,b Mean values within a column with unlike superscript letters were significantly

different (P , 0·05).
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temperature. Liu et al.(12) also observed that under high ambi-

ent temperatures, a treatment regimen of 408C for 5 h per d

over a 10 d period decreased the mRNA expression levels of

EGF and EGFR in porcine small-intestinal epithelia. Previous

reports indicate that the expression of EGF and EGFR is

related to the damage and recovery of small-intestinal

mucosa(75,76). Many investigators have considered that EGF

may have no effect on normal intestinal mucosal epithelium,

but rather may promote cell proliferation, repair and migration

during regeneration following damage(75,76). The signalling

cascade mediated by EGFR is characterised by pleiotropy,

including cell proliferation, repair and migration, and internal

environment stabilisation(75). Therefore, we speculate that the

cell proliferation of JEC subjected to heat stress treatment is

likely to be decreased, accompanied by a decline in EGF/

EGFR gene expression, a hypothesis supported by the obser-

vation that the viability of JEC declined in response to an

increase in culture temperature.

In the present study, we found that GSE supplementation

increased the mRNA expression levels of EGF and EGFR in

JEC cultured at 40 or 438C. This result indicates that GSE can

enhance the growth of normal cells through the activation

of EGF-induced signalling pathways. Previous studies have

also reported that GSE exhibits the beneficial property of

enhancing the growth and viability of normal cells(77) while

exhibiting cytotoxicity towards some types of cancer

cells(78,79). However, the mechanism by which GSE can

distinguish tumour cells from normal cells remains unclear.

Heat shock protein 70

In present study, the protein concentration of HSP70 in JEC

increased with elevated culture temperatures. HSP70 is the

most investigated member of a family of proteins synthesised

in response to physical, chemical or biological stresses, includ-

ing heat exposure(80–82). The expression of HSP70 is rapidly

up-regulated under conditions of oxidative stress, providing

cytoprotection by making cells resistant to otherwise lethal

levels of environmental stress(83). There have been many pub-

lished reports about the protective effects of HSP70 on the

intestine under conditions of heat or other stresses in both

in vitro and in vivo models(84–86). HSP70 develops a protec-

tive interaction with sarco(endo)plasmic reticulum Ca2þ-

ATPases 2a (SERCA2a) during heat stress, reducing the

oxidation and nitrosylation of SERCA2a and thereby increasing

its maximal activity(87).

In the present study, GSE supplementation was found to

decrease the HSP70 concentration of JEC. Kim et al.(88) also

reported that the proteins affected by GSE included those

involved in energy generation and protein folding (e.g.

HSP60, HSP70 and HSP71, cytoskeletal proteins, and

medium-chain and glial fibrillary acidic protein). According

to antioxidant capacity and immunity analyses, we speculate

that the decline in the expression of HSP70 in heat-induced

JEC supplemented with GSE may be closely related to the

increase in antioxidant capacity and the decline in inflamma-

tory reactions.

Cell viability

In the present study, heat stress-induced cytotoxicity was

assessed using a cell viability assay, which confirmed that

heat stress decreased cell viability. Heat stress has also report-

edly been found to decrease cell viability and induce cell

death in bovine mammary epithelial cells(89) and hepatic

cells of grass carp(90). Heat stress and heat stress-induced oxi-

dative stress have been found to adversely affect the structure

and physiology of the cell (e.g. impairing transcription, RNA

processing and translation and altering membrane struc-

ture)(91,92) and decrease cell viability(89,90). Based on the

results of the present study, we speculate that the decreased

cell viability of JEC subjected to heat stress treatment may be

highly related to changes in antioxidant capacity, inflamma-

tory reaction, HSP70 expression, etc.; however, the underlying

mechanisms remain unclear and require further study.

In the present study, GSE supplementation was also found to

increase the cell viability of JEC cultured at 40 or 438C. Similarly,

cocoa phenolic extract has been found to exhibit a remarkable

recovery in cell viability after damage induced by tert-butyl-

hydroperoxide(93). However, previous studies have also shown

that phenols can significantly impair the viability of human

colonic epithelial cells(94). These phenol-induced effects are

secondary to changes occurring in the cell membrane resulting

in the disruption of tight junction-containing microdomains,

and the disruption of these microdomains results in the misloca-

lisation of tight junction components and altered paracellular

permeability(95). In general, previous data on cell viability of

humans or animals exposed to plant phenols are inadequate

to establish dose–response relationships and further study is

required to establish these relationships.

Conclusion

We report that heat stress decreases the antioxidant capacity of

JEC in steers and activates the immune response by up-regulating

the expression of anti-inflammatory cytokines in cells. When

cultured at 40 and 438C, but not at 37 and 468C, GSE attenuated

the heat stress-induced responses of small-intestinal epithelial

cells obtained from a cross-bred steer by increasing the antioxi-

dant capacity and suppressing the immune response. Taken

together, we conclude that GSE attenuates the responses of JEC

of Simmental £ Qinchuan steers to heat stress, primarily by

increasing antioxidant capacity and cell viability and decreasing

inflammatory reactions. However, GSE played no role in the

regulationof the responsesof JECculturedat normal or extremely

high temperatures. Furthermore, a dose–response in vivo study

with GSE (based on the doses evaluated in the present study) is

required to obtain information regarding the practical physio-

logical and biochemical effects of GSE supplementation, as well

as the lowest effective and the highest non-toxic doses of GSE

necessary for optimum heat stress studies.
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