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Recent direct numerical simulation studies of canonical shock–isotropic turbulence
interactions (SITIs) in the highly compressible regime exhibit streamwise Reynolds stress
amplification that is significantly higher in some cases than in previous studies; an
explanation is offered based on a relatively high Mach number combined with significant
dilatational energy in the incident flow. Some cases exhibit a loss of amplification that
is associated with a highly perturbed shock structure as the flow parameters approach
the threshold between the wrinkled and broken shock regimes. The shock structure
perturbations due to the highly compressible incident turbulence match those proposed
by Donzis (Phys. Fluids, vol. 24, 2012, 126101) relatively well, but due to the presence
of thermodynamic fluctuations in addition to velocity fluctuations in the incident flow,
we propose a generalized parametrization based on the root-mean-square Mach number
fluctuation in place of the turbulence Mach number. This is found to improve the collapse
of the shock structure data, suggesting that the wrinkled–broken shock regime threshold
determined previously for vortical turbulence (Donzis, Phys. Fluids, vol. 24, 2012, 126101;
Larsson et al., J. Fluid Mech., vol. 717, 2013, pp. 293–321) can be applied to more general
isotropic inflow fields using the proposed parametrization.
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1. Introduction

Shock–isotropic turbulence interactions (SITIs) are canonical flows where isotropic
turbulence (and more generally also sound and/or entropy variations) passes through
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nominally planar normal shocks. These interactions emit vortical, acoustic and entropic
fluctuations in the post-shock region, often at strengths significantly amplified relative
to the incident fluctuations. Despite being simplified to a tractable scope, SITIs offer
insights into the physics of the shock interaction of freestream disturbances, which is one
component of the more general shock–turbulence interaction problem.

SITI flows are characterized typically by the upstream mean Mach number M, the Mach
number Mt of the upstream turbulent velocity fluctuations, and the Taylor-scale Reynolds
number Reλ. In addition, the degree of compressibility of the upstream flow must be
specified when it is not negligible; a convenient measure is the fraction χ of dilatational
turbulent kinetic energy (TKE) to total TKE. Exact definitions of these parameters are
given in § 3.

A fairly extensive collection of SITI direct numerical simulation (DNS) studies has been
reported in the literature, beginning with the pioneering three-dimensional DNS by Lee,
Lele & Moin (1993), who resolved the shock wave structure and studied the effects of
M and Mt in the regime of quasi-incompressible turbulence interacting with weak shocks.
Hannappel & Friedrich (1995) reported shock-capturing SITI DNS at Mach 2 with varying
χ and a relatively low Reλ. They found that a greater χ led to greater amplification
of transverse vorticity but lesser amplification of TKE and thermodynamic fluctuations.
Lee, Lele & Moin (1997) used shock-capturing DNS to probe the effects of greater shock
strength. Mahesh et al. (1995) used shock-capturing DNS to study incident fields of sound
in the same SITI geometry, and Mahesh, Lele & Moin (1997) studied incident turbulent
fields with correlated entropy fluctuations. Jamme et al. (2002) used shock-resolved DNS
primarily to study the influence of the type or family of incident fluctuations (i.e. vortical,
acoustic, entropic). They reported budgets to confirm that it is the baroclinic terms that lead
to increased production of transverse vorticity fluctuations in cases where the correlation
between upstream velocity and entropy fluctuations satisfies the Strong Reynolds Analogy,
as had been suggested by Mahesh et al. (1997).

Larsson & Lele (2009) explored a range of M and Mt at higher Reλ than accessible
previously, and reported many findings, including the fact that a decrease in the
Kolmogorov scale across the interaction region persists downstream, and that therefore
the post-shock region requires greater grid resolution than understood previously. They
also studied profiles conditioned on the instantaneous shock strength, finding that
locally stronger shocks resulted in temporary over-compression and that, depending
on the flow parameters, locally weaker shocks corresponded to either discontinuous
under-compression indicative of a wrinkled but intact shock front, or a smooth structure
indicative of a broken shock front. Larsson, Bermejo-Moreno & Lele (2013) expanded
on the dataset of Larsson & Lele (2009) in order to further study the effects of Mt and
Reλ. Among their findings was a criterion (discovered independently by Donzis 2012b) for
predicting whether a set of parameters will fall into the wrinkled or broken shock regime.

Ryu & Livescu (2014) carried out shock-resolved SITI DNS to show convergence
to linear interaction analysis (LIA) predictions in the limit of weak turbulence. They
also introduced a method for using the equations of LIA (rather than DNS of the
shock interaction) to process the upstream fluctuations in order to create an artificial
post-shock field that mimics SITI at Reynolds numbers impractical for DNS. Sethuraman,
Sinha & Larsson (2018) focused on the thermodynamic fluctuations, demonstrating good
agreement between DNS and LIA theory, and using budgets of transport equations to
identify the mechanisms responsible for the streamwise evolution. Chen & Donzis (2019)
used shock-resolved SITI DNS with high Mt to study the effects of strong incident
turbulence, especially the alteration of post-shock mean variables away from their classical
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Compressibility effects in SITIs

Rankine–Hugoniot values. They also used their new data to revisit the studies of turbulence
amplification and shock dilatation fluctuations of Donzis (2012a,b), respectively. Rather
than focusing on the levels of various fluctuations through the interaction, Tanaka et al.
(2018) and Tanaka, Watanabe & Nagata (2020) used SITI DNS to study the local
connections between pre-shock velocity fluctuations, shock deformations, and post-shock
pressure fluctuations. They considered both transient and quasi-steady cases. Among their
findings were a Gaussian p.d.f. for the fluctuations in shock displacement, and positive
correlations between shock normal velocity (towards the shock), shock strength and shock
deformation towards the high pressure side. They also confirmed that the integral scale of
the pre-shock turbulence is responsible for the spatial distribution of the fluctuations in
shock strength and deformation.

The forgoing studies focused on SITI with a single fluid, but DNS in the SITI geometry
has also been used to study more complex phenomena. Tian et al. (2017) studied the
effects of density variations on SITI in one- and two-fluid cases, finding that the presence
of density fluctuations intensified many effects of the canonical interaction. Notably,
they also showed that shock-capturing SITI simulations converge to LIA in the limit
of weak fluctuations. Tian, Jaberi & Livescu (2019) used additional DNS results with
velocity gradient tensor analysis to study how variable pre-shock density affects the
post-shock turbulent structure and flow topology. Boukharfane, Bouali & Mura (2018)
introduced passive scalar fields into SITI DNS problems to study the enhancement of
scalar dissipation rate due to the shock interaction. Finally, Gao, Bermejo-Moreno &
Larsson (2020) extended the study of SITI with passive scalars to a wider parameter space
that included both the wrinkled and broken shock regimes.

DNS of turbulence interactions with reacting shocks has also been carried out to
study the closely related problem of detonation–turbulence interactions. Examples include
Massa, Chauhan & Lu (2011) and Huete et al. (2017), who used DNS to study interactions
with both stable and unstable reacting shocks. In the case of unstable shocks, the chemical
reactions were shown to be capable of producing great increases in post-shock turbulence
levels.

Confining attention to canonical non-reacting, single-fluid SITI DNS studies at
moderate to high Reynolds number with primarily vortical incident fluctuations, the
relevant cases from Lee et al. (1993, 1997), Mahesh et al. (1997), Larsson & Lele (2009),
Larsson et al. (2013), Ryu & Livescu (2014), Tian et al. (2017, 2019), Huete et al. (2017),
Sethuraman et al. (2018), Boukharfane et al. (2018), Tanaka et al. (2018, 2020), Chen &
Donzis (2019) and Gao et al. (2020) cover a wide range of Mach numbers M and turbulence
intensities ∼Mt/M. The highest turbulence intensities in these studies have been achieved
through a combination of modest turbulence Mach numbers and low supersonic mean
Mach numbers. Grube & Martín (2023) add data points from the regime featuring a
high turbulence Mach number (or, equivalently, high root-mean-square (r.m.s.) Mach
number fluctuation) combined with high mean Mach number. See figure 1. This previously
unexplored regime is significant because linear theory (Ribner 1954a,b; Moore 1954;
Kerrebrock 1956; Mahesh et al. 1995) predicts significantly different amplification factors
for high versus low supersonic mean Mach numbers, and also because high turbulence
Mach numbers imply the appearance of dilatational motions in the incident turbulence.
These dilatational motions are amplified according to a separate set of transfer functions
with behaviour very different from that of the transfer functions for solenoidal turbulence.

The characterization of the inflow is complicated by the fact that the incident pressure
field contains two types of fluctuations. There are non-propagating pressure fluctuations
associated with vorticity fields. We will refer to these captive pressure fluctuations as
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Figure 1. Mach number and disturbance intensity parameter space for previous and current moderate- to
high-Re SITI DNS studies: Lee et al. (1993) (�, black) and Lee et al. (1997) (�, black), Mahesh et al. (1997)
(�, black), Larsson & Lele (2009) and Larsson et al. (2013) (�, green), Huete et al. (2017) (×, red), Tian et al.
(2017, 2019) (◦, purple), Boukharfane et al. (2018) (

�
, pink), Sethuraman et al. (2018) (⊗, green), Tanaka et al.

(2018, 2020) (+×, blue), Chen & Donzis (2019) (�, blue), Gao et al. (2020) (+, green), present work/Grube &
Martín (2023) (•, red). In addition, Ryu & Livescu (2014) provided fairly dense, systematic coverage of the
boxed area of the parameter space. The approximate boundary between the broken and wrinkled shock regimes
is shown as a dashed line. The regime criterion is based on Larsson et al. (2013) and Donzis (2012b), with Mt

converted to M′
rms using M′

rms ≈ Mt/
√

3 for the primarily solenoidal turbulence of their dataset. Figure from
Grube & Martín (2023).

pseudo-sound. The lower pressure region found at the centre of an isolated vortex is
an example of pseudo-sound. In contrast to non-propagating pseudo-sound, propagating
acoustic disturbances can also be generated through nonlinear interactions between
vortical modes (Chu & Kovasznay 1957) or through exothermic reactions (Martin &
Candler 1998) or other mechanisms. Pseudo-sound pressure fluctuations have no velocity
fluctuations of their own; they arise in association with vortical velocity fluctuations.
In contrast, acoustic disturbances possess dilatational velocity fluctuations in addition to
isentropic thermodynamic fluctuations.

From pressure fluctuation data alone, it is impossible to distinguish between
pseudo-sound and acoustic contributions. However, by assuming that all of the observed
pressure fluctuations arise from acoustic waves, we can compute an upper bound on
the fraction χ of the TKE that could be attributable to dilatational modes. In an
acoustic wave, the dilatational velocity fluctuation is related to the pressure fluctuation
by p′

rms = ρc
∣∣u′′ dil.

∣∣
rms where p′

rms is the r.m.s. pressure fluctuation, ρ is the density, c
is the speed of sound, and

∣∣u′′ dil.
∣∣
rms is the r.m.s. magnitude of the dilatational Favre

velocity fluctuation. If the pressure fluctuation field were due entirely to acoustic waves,
then the ratio χ of dilatational TKE to total TKE would be χ = (p′

rms/γ pMt)
2. Larsson

et al. (2013) report the p′ values for their wide range of cases through the relation
p′

rms/γ pM2
t = 0.39 ± 0.02. However, this relation depends on the details of how the inflow

turbulence is generated; the two nominally solenoidal cases of Jamme et al. (2002) lead
to values 0.50 and 0.53, which fall outside the range observed by Larsson & Lele (2009).
Nevertheless, the pressure fluctuation level, once known, yields an estimate on the upper
bound for the dilatational TKE fraction χ . In the case of Larsson & Lele (2009), this upper
bound becomes χ < 0.392M2

t = 0.15M2
t . Thus their highest Mt value of 0.38 implies an

958 A1-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.984


Compressibility effects in SITIs

upper bound χ < 2.2 %. Given the similarity in methods between the two studies, this
upper bound is likely applicable to Larsson et al. (2013) as well. Similarly, the computed
upper bound for the solenoidal cases of Jamme et al. (2002) is χ < 1.5 %.

The parameters of Chen & Donzis (2019) include a maximum Mt value of 0.54. They do
not report χ or pressure fluctuation levels, but if we assume a value p′

rms/γ pM2
t = 0.53 (as

in the most extreme case of Jamme et al. (2002) in order to obtain a conservative estimate),
then Mt = 0.54 gives an upper bound χ � 8.2 %. We stress that this is only a bound, and
there is no reason to expect that the majority of the pressure fluctuations are truly from
acoustic waves as opposed to pseudo-sound.

In flows where the pressure fluctuations arise mainly from pseudo-sound and/or from
acoustic waves generated by quadratic interactions of vortical modes, the true values of
χ may remain modest. Some researchers have studied more highly dilatational inflows by
producing the dilatational modes through initial conditions or through forcing. Mahesh
et al. (1995) studied a purely acoustic inflow field, and others have considered vortical
turbulence accompanied by an unusually high level of dilatation. In addition to their
vortical cases mentioned above, Jamme et al. (2002) also considered cases with primarily
dilatational velocity fluctuations that featured upper bounds on χ as high as 71 %, and
Hannappel & Friedrich (1995) featured a case with true value (not upper bound) χ = 0.5.
However, the dilatational cases of both Jamme et al. (2002) and Hannappel & Friedrich
(1995) were limited to Reλ = 5, and therefore may exhibit low-Re effects.

Grube & Martín (2023) report the DNS of highly compressible SITI cases with Mt
up to 0.69, Reλ up to 48, and true values up to 15 % of the TKE in dilatational modes.
Thus their data explore more highly dilatational turbulence than has been studied aside
from the Reλ = 5 cases of Jamme et al. (2002) and Hannappel & Friedrich (1995).
This paper discusses the relationships between this dataset and studies in the literature
regarding Reynolds stress amplification (Donzis 2012a) and shock structure modification
(Donzis 2012b), as well as the threshold for transition between the wrinkled and broken
shock regimes (Donzis 2012b; Larsson et al. 2013). It is organized as follows. Section 2
summarizes the governing equations and the numerical methods used to solve them.
Section 3 lists the flow parameters of the SITI cases under consideration. Section 4
examines the cause of the unusually high amplification of streamwise Reynolds stress
observed in these highly compressible SITI cases as compared to other cases in the
literature. Section 5 compares the modifications to the shock structure caused by the
highly compressible incident turbulence against those proposed by Donzis (2012b), and
§ 6 proposes a re-parametrization of the shock structure data that accounts for acoustic
and entropy fluctuations in order to better collapse the highly compressible SITI data with
the more solenoidal inflow cases from the literature. Finally, § 7 summarizes the results.

2. Governing equations and numerical method

The flow is governed by the three-dimensional conservation equations for mass,
momentum and energy:

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0, (2.1a)

∂(ρui)

∂t
+ ∂

∂xj
(ρuiuj + p δij − σij) = 0, (2.1b)
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∂E
∂t

+ ∂

∂xj

[
(E + p) uj − σijui + qj

] = 0, (2.1c)

in which ρ is the fluid density, ui is the velocity component in the xi direction, p is the
thermodynamic pressure, and E = ρe + 1

2ρu · u is the total energy (internal plus kinetic)
of the fluid per unit volume. The air is treated as a perfect gas; therefore the equation of
state is p = ρRT , where R = 287.1 J kg−1 K−1. The speed of sound is c = √

γ RT , where
γ = 1.4, and the specific internal energy is e = cvT , where cv = 2.5R. The viscous stress
tensor σij is assumed to obey a linear stress–strain relationship:

σij = μ

[(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
∂uk

∂xk
δij

]
. (2.2)

The viscosity μ is assumed to depend only on temperature T through a power law (White
1991) of the form

μ = μ0 (T/T0)
n , (2.3)

where μ0 and T0 are reference values that depend on the particular gas mixture. For air,
we use μ0 = 1.789 × 10−5 Pa s, T0 = 288.2 K and n = 0.76. The heat flux qi is computed
through Fourier’s law of heat conduction,

qi = −κ
∂

∂xi
T, (2.4)

in which κ is the thermal conductivity. The thermal conductivity is related to the viscosity
by the Prandtl number Pr ≡ cp μ/κ ≈ 0.7368.

The mean flow is directed in the positive x1 direction, and the mean shock location is
used as the origin for the x1 coordinate.

We define η̄ as the average value of a generic quantity η aggregated over time and
all homogeneous spatial directions (two transverse directions in SITI flows, and three
directions in auxiliary isotropic turbulence computations), η′ ≡ η − η̄ as the associated
local fluctuation, and η̃ ≡ ρη/ρ̄ and η′′ ≡ η − η̃ as the corresponding density-weighted
(Favre) average and fluctuation, respectively.

Grube & Martín (2023) solved the governing equations using a finite-difference
code with a fourth-order-accurate version of the linearly and nonlinearly optimized
WENO-SYMBO scheme (Weirs & Candler 1997; Martín et al. 2006; Taylor & Martín
2007) for the convective terms, and a fourth-order-accurate standard central-difference
scheme for the viscous terms. The solution was advanced in time using the
third-order-accurate low-storage Runge–Kutta method of Williamson (1980) with
Courant–Friedrichs–Lewy (CFL) number 0.5.

Turbulence data for the supersonic inflow boundary were provided by an auxiliary forced
isotropic turbulence simulation (Grube & Martín 2023). Relatively high and low values of
χ could be achieved by choosing to force all turbulent modes or only solenoidal ones.
A sponge zone was used to smoothly damp post-shock fluctuations and prevent acoustic
reflections from the subsonic outflow, and periodic boundary conditions were applied in
the transverse directions.

The naming scheme for the DNS cases of Grube & Martín (2023) is explained in § 3;
each case name consists of a letter and a number. In all cases, the grid was 2.5 times finer
in the streamwise direction than in the homogeneous directions. Cases in the N-series used
600 grid points in the homogeneous directions, with 1500 interior points in the streamwise
direction, plus an additional 375 streamwise points in the sponge zone. Case L1 was at
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a slightly lower Reynolds number and therefore used 450 points in the homogeneous
directions, 1125 in the streamwise direction and 282 in the sponge zone. The C-series cases
were at still lower Reynolds numbers and used 300 points in the homogeneous directions,
750 in the streamwise direction and 75 in the sponge zone.

Parameters of the computational grids are reported in table 1: N1, N2 and N3 are the
numbers of grid points within the useful computational domain in the streamwise and two
homogeneous directions, respectively; Nsp is the number of additional streamwise points
used in the sponge zone at the outflow. There are ηu|d/
x1 streamwise grid points per
Kolmogorov scale η on the upstream and downstream sides of the shock, respectively.
The least well resolved case was the case L1, which was computed for comparison with
Larsson et al. (2013) as a check for errors in methodology. L1 featured approximately
0.9 streamwise points per Kolmogorov scale on the post-shock side, which is the most
demanding region to resolve. The C- and N-series cases were of primary scientific interest,
and they featured between 1.2 and 2.2 streamwise points per ηd.

3. Flow parameters

Four non-dimensional parameters are used to characterize the state of the incident
turbulent flow: the Taylor microscale Reynolds number Reλ = ρ̄u′′

1,rms λ/μ̄, the turbulent
Mach number Mt = q/c̄, the mean Mach number M = ũ/c̄, and the ratio χ of dilatational
to total TKE. Here, q ≡ √

Rkk is the r.m.s. magnitude of the velocity fluctuation, and Rij ≡
ũ′′

i u′′
j is the Reynolds stress tensor. Computing χ begins with the Helmholtz decomposition

of the velocity fluctuation field into solenoidal and dilatational parts, u′′ = u′′ sol. + u′′ dil.,
such that ∇ · u′′ sol. = 0 and ∇ × u′′ dil. = 0. Then χ ≡ ∫ |u′′ dil.|2 dx/

∫ |u′′|2 dx, where
the integration is taken over a statistically homogeneous region. We follow previous SITI
works (Lee et al. 1993, 1997; Mahesh et al. 1997; Larsson & Lele 2009; Larsson et al.
2013) in using a Taylor microscale defined by Tennekes & Lumley (1972):

λ = u′′
α,rms/

√
(∂uα/∂xα)2 (with no summation over Greek indices), (3.1)

where u′′
α,rms is the r.m.s. Favre fluctuation of α direction velocity. (In homogeneous

turbulence, the choice of α is immaterial.) Under the definitions given by Pope (2000),
this Taylor microscale is a factor of

√
2 less than the longitudinal Taylor microscale λf and

in incompressible isotropic turbulence is equivalent to the transverse microscale λg.
As mentioned above, the SITI DNS cases of Grube & Martín (2023) are each designated

by a letter–number combination (e.g. C1, N2). All but one of the DNS cases belong to one
of two series, the C-series and the N-series. The C-series cases C1, C2 and C3 included
turbulence Mach numbers that were unprecedented in SITI studies; questions raised by
the case C1–C3 results motivated the rest of the DNS cases. In addition to higher Mt
values, cases C1–C3 also featured an unusually high compressibility ratio χ = 11 %, and
somewhat lower Reynolds numbers (Reλ = 18–25) than some of the other cases available
in the literature, such as Larsson & Lele (2009) and Larsson et al. (2013).

Because the C-series cases simultaneously featured lower Reλ, higher χ , and higher
Mt than previous studies, it was difficult to determine which of these differences might
be responsible for the observed results. This difficulty motivated additional DNS cases
undertaken in order to better isolate the effects of Reλ and χ . The new cases included
the N-series, with generally lower χ and higher Reλ than C1–C3, as well as a new case
C4 that differs from C1 only in having lower χ . Finally, in order to help rule out errors
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Case (N1 + Nsp) × N2 × N3

x2|3

x1

ηu


x1

ηd


x1
Comment

C1 (750 + 75) × 300 × 300 2.5 2.47 1.21 Low Re, high χ base case
C2 (750 + 75) × 300 × 300 2.5 2.92 1.78 Mt ↑
C3 (750 + 75) × 300 × 300 2.5 2.85 1.77 Mt ↑ M ↑
C4 (750 + 75) × 300 × 300 2.5 4.53 2.22 χ ↓
L1 (1125 + 282) × 450 × 450 2.5 2.13 0.94 Compare to Larsson et al. (2013)
N1 (1500 + 375) × 600 × 600 2.5 2.94 1.41 High Re, low χ base case
N2 (1500 + 375) × 600 × 600 2.5 2.98 1.52 Mt ↑
N3 (1500 + 375) × 600 × 600 2.5 2.95 1.51 M ↑
N4 (1500 + 375) × 600 × 600 2.5 2.85 1.45 χ ↑

Table 1. Grid parameters.

At the shock Inlet

Case M Mt M′ Reλ ReL
p′

rms

P
s′

rms

cp
χ Comment

C1 3.37 0.458 0.29 25 81 0.22 0.018 0.11 Low Re, high χ base case
C2 3.05 0.660 0.41 18 45 0.33 0.045 0.11 Mt ↑
C3 4.36 0.691 0.46 19 49 0.35 0.043 0.11 Mt ↑ M ↑
C4 3.39 0.507 0.30 27 91 0.15 0.021 0.018 χ ↓
L1 3.45 0.224 0.13 46 260 0.003 ∼ 0 0.007 Compare to Larsson et al. (2013)
N1 2.98 0.504 0.30 48 270 0.15 0.020 0.026 High Re, low χ base case
N2 3.04 0.639 0.38 41 210 0.24 0.034 0.047 Mt ↑
N3 4.69 0.499 0.30 47 260 0.15 0.019 0.027 M ↑
N4 2.99 0.524 0.33 44 280 0.29 0.020 0.15 χ ↑

Table 2. Upstream flow parameters extrapolated to the mean shock location.

in methodology, case L1 was designed to match approximately a case already studied by
Larsson et al. (2013).

The flow parameters for the DNS cases are listed in table 2. All parameters except
for χ are extrapolated to the mean shock location. Decomposing the pre-shock flow into
solenoidal and dilatational components was hampered by the spatial inhomogeneity of the
flow (i.e. by the shock wave and by the gradual decay of certain properties between the
inflow and the shock location). Therefore the fraction χ of TKE in the dilatational modes
is computed using the Fourier transform of the auxiliary forced isotropic turbulence field
that supplies the inflow data.

Each entry in the table is accompanied by a comment explaining the significance of
that particular case. There are ‘base’ cases (numbered 1) for the C- and N-series, and
then the other cases differ from their respective base case mainly in the manner noted in
the comment column. For example, case N2 is labelled Mt ↑ because it can be compared
against the base case N1 to determine the effect of increasing turbulence Mach number.

The SITI inflow disturbances are primarily a mixture of solenoidal (vortical) turbulence
and dilatational (acoustic) modes. Entropy fluctuations s′/cp are approximately an order
of magnitude smaller.
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Case Comment G11

C1 Low Re, high χ base case 1.97
C2 Mt ↑ 1.57
C3 Mt ↑ M ↑ 2.22
C4 χ ↓ 1.74
L1 Compare to Larsson et al. (2013) 1.73
N1 High Re, low χ base case 1.83
N2 Mt ↑ 1.72
N3 M ↑ 2.04
N4 χ ↑ 1.88

Table 3. Amplification factors G11 for streamwise Reynolds stress R11. In order to facilitate comparison with
the data compiled by Donzis (2012a), the values of R11 used in computing G11 are the pre-shock minimum and
the post-shock maximum.

4. Streamwise Reynolds stress amplification factors

The parameter choices for the N-series DNS cases as well as cases C4 and L1 were
motivated partially by the need for data points to investigate the unusually high streamwise
Reynolds stress amplification levels observed in cases C1 and C3. Donzis (2012a)
considered DNS SITI studies from the literature and compiled values of the amplification
factor G11 ≡ R11u,min/R11d,max , where subscripts u, min and d, max denote upstream and
downstream minimum and maximum values, respectively. Donzis (2012a) proposed a
universal relation between G11 and the dimensionless parameter K ≡ Mt/(

√
Reλ(M − 1)),

which is proportional to the ratio of the shock thickness to the Kolmogorov scale. Ryu
& Livescu (2014) pointed out that the proposed parametrization by K alone conflicted
with the Mach number dependence of G11 in the inviscid, weak turbulence limit, and
the original parametrization has since been superseded by the more sophisticated analysis
of Chen & Donzis (2019) which takes the Mach number into account. Nevertheless,
the original Mach-number-insensitive parametrization remains helpful as a means of
separating visually the data points in order to place the present results in the context of
previous works. However, as discussed in Chen & Donzis (2019), the data points should
not be expected to collapse completely onto this single curve.

Table 3 lists the values of G11 computed from the current DNS cases, and figure 2
plots them on top of Donzis’s compiled data. The greatest value of G11 from the literature
is approximately 1.7, which was observed in a case from Larsson & Lele (2009). The
amplification factors of cases C1 and C3 (1.97 and 2.22, respectively) are considerably
higher than 1.7. In order to help rule out errors in methodology, the parameters of
case L1 were chosen to match approximately a case of Larsson & Lele (2009). The
amplification factor computed for case L1 is 1.73, which differs by approximately 3.5 %
from the amplification factor of 1.67 observed in the similar case (M = 3.5, Mt = 0.22,
Reλ ≈ 40) of Larsson & Lele (2009). This level of agreement indicates that differences in
methodology are unlikely to account for the majority of the higher amplification factors
observed in cases C1 and C3 compared to previous cases in the literature.

Pairwise comparisons of the C- and N-series DNS cases reveal the effects of varying
the flow parameters. Comparing C2 (Mt ↑) to C3 (Mt ↑ M ↑), and N1 (base) to N3 (M ↑),
we see that increasing M tends to increase G11. Comparing C4 (χ ↓) to C1 (base), and N1
(base) to N4 (χ ↑), we see that increasing χ tends to increase G11. Comparing C1 (base)
to C2 (Mt ↑), and N1 (base) to N2 (Mt ↑), we see that increasing Mt tends to decrease G11.
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K = Mt/(Reλ
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Figure 2. Reynolds stress R11 amplification factor G11 versus K ≡ Mt/Re1/2
λ (M − 1): current DNS results

(∗, blue), Lee et al. (1993) (�), Hannappel & Friedrich (1995) (♦), Barre, Alem & Bonnet (1996) (�), Lee
et al. (1997) (�), Mahesh et al. (1997) (�), Jamme et al. (2002) (•), Larsson & Lele (2009) (�), Boukharfane
et al. (2018) (	). The solid line is the original proposed fit of Donzis (2012a). Note that the proposed fit has
been superseded by the more sophisticated analysis of (Chen & Donzis 2019). It is used here for its simplicity
(i.e. lack of Mach number dependence) and for a means of separating the data points visually. Data points
should not be expected to collapse completely. Adapted from Donzis (2012a).

Finally, the Reynolds numbers of the C-series (Reλ = 18–27) and N-series (Reλ = 41–48)
cases bracket the value Reλ ≈ 40 for the cases in Larsson & Lele (2009). Since cases from
both the C- and N-series show elevated values of G11 relative to the results of Larsson &
Lele (2009), it appears that the effect is not closely related to the Reynolds number.

We therefore hypothesize that the elevated amplification factors G11 arise from a
combination of high M and high χ . LIA can be applied separately to the solenoidal
and dilatational modes of incident turbulence. While the solenoidal part of the incident
TKE (a fraction 1 − χ ) is amplified in the linear limit according to the familiar vortical
or solenoidal transfer functions (Ribner 1954a,b), the dilatational part (a fraction χ ) is
amplified according to a different set of transfer functions (Moore 1954; Kerrebrock 1956;
Mahesh et al. 1995). It is found that although the solenoidal transfer functions remain of
order 1, their dilatational or acoustic counterparts grow as M2 for high Mach numbers.

Figure 3 presents transfer functions |Xa→b|2 that relate incident streamwise velocity
fluctuation levels (u′′

1,u,rms/ũ1,u)
2 to emitted streamwise velocity fluctuation levels

(u′′
1,d,rms/ũ1,u)

2 as functions of upstream Mach number. The generic subscripts a and b
can represent p or v, which stand for the pressure (dilatational) and vortical (solenoidal)
parts of the velocity fields. The dilatational field is further broken down into near-field
and far-field values. Because Donzis (2012a) defines the amplification factor G11 in terms
of the post-shock maximum value of R11, which occurs relatively far from the shock in
comparison to the spatial evolution of the acoustic field, the far-field acoustic values are
of more interest than the near-field values in this context. Therefore, above approximately
Mach 3, the post-shock velocity field due to the interaction of incident dilatational modes
is dominated by its solenoidal part.

Thus at high enough mean Mach number, the Reynolds stress amplification factor for
incident dilatational modes greatly exceeds that for incident vortical modes. This is true
for both the streamwise and transverse Reynolds stress transfer functions. It can be seen in
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Figure 3. Linear amplification factors for dilatational velocity fluctuations.

Reynolds stress budgets such as those in Grube, Taylor & Martín (2011) or Larsson et al.
(2013) that nonlinear effects in the post-shock region redistribute TKE from R22 and R33
to R11. If similar nonlinear processes apply to the vortical field produced by the incident
dilatational modes, then the actual contribution to R11d,max due to the incident dilatational
modes might be somewhat greater than indicated by |Xp→v|2.

The greater transfer functions applicable to incident dilatational modes at high Mach
numbers are consistent with the observation that the DNS cases with greatest G11 values
feature both high M and high χ .

In order to assess quantitatively the plausibility of this explanation, let us estimate the
contribution to G11 that is attributable solely to the solenoidal part of the incident field,
and then compare this against the data from the literature. Because the incident dilatational
modes and incident solenoidal modes are uncorrelated, the Reynolds stresses and TKE
immediately behind the shock could be computed by simply adding the contributions from
the vortical and dilatational incident modes (computed from Xv→v and Xp→v). However,
further downstream from the shock, where the streamwise maximum of R11 is found, this
way of combining the contributions becomes an approximation due to nonlinear effects
(such as pressure–strain redistribution). There is also a viscous decay not captured by the
inviscid LIA transfer functions. Nevertheless, in order to estimate the effects of the incident
dilatational modes, let us assume that the dilatational and solenoidal transfer functions can
be combined approximately in a weighted sum based on χ . Since Xp→v dominates Xfar

p→p,
and since the evanescent waves corresponding to Xnear

p→p will have largely decayed by the
point of maximum R11, we use Xp→v alone to estimate the contribution of the dilatational
incident field to the post-shock Reynolds stress:

G11 ≈ (1 − χ)Gsol.
11 + χ |Xp→v|2. (4.1)

Here, Xp→v is computed from LIA, G11 is the actual amplification factor computed from
the DNS solution, and Gsol.

11 is an effective transfer function linking the solenoidal parts of
the pre- and post-shock Reynolds stresses.

Since the works cited by Donzis (2012a) all had relatively low χ |Xp→v|2 (i.e. low χ

and/or low M), it is appropriate to compare Gsol.
11 from the present work with the data
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Figure 4. Effective solenoidal Reynolds stress R11 amplification factor Gsol.
11 versus K = Mt/

√
Reλ(M − 1):

current DNS results (∗, blue), Lee et al. (1993) (�), Hannappel & Friedrich (1995) (♦), Barre et al. (1996)
(�), Lee et al. (1997) (�), Mahesh et al. (1997) (�), Jamme et al. (2002) (•), Larsson & Lele (2009) (�),
Boukharfane et al. (2018) (	). The solid line is the proposed fit of Donzis (2012a). Adapted from Donzis
(2012a).

compiled by Donzis. Solving (4.1) for the effective solenoidal amplification factor Gsol.
11 ,

and plotting it against the compiled data (figure 4), we find that the solenoidal part of
the amplification falls much closer to the range of the previous DNS works. In other
words, after approximately removing the contribution from incident dilatational modes,
the R11 amplification factors of the present DNS lie near the data from previous works
(which featured very little dilatational TKE in the inflow). This supports the hypothesis
that the high G11 values observed in the present DNS arise from significant levels of
incident dilatational TKE combined with large values of |Xp→v| that result from high
Mach numbers.

However, we stress that parametrizing the amplification by the single parameter K still
does not capture the Mach number dependence of the amplification factors and that (4.1)
is only an approximate relation. In addition, the results are sensitive to χ , the exact
value of which is difficult to determine at x1 = 0. The values of χ used in computing
Gsol.

11 in figure 4 are based on the Fourier transforms of the auxiliary forced turbulence
simulations, and these values may be inaccurate at the shock location due to differences
in decay rates between vortical and dilatational turbulent motions as they travel from
the inlet to the shock location. Furthermore, the eddies in the incident field have some
level of pseudo-sound associated with them (i.e. pressure variations that convect along
with the vorticity field rather than propagating as acoustic waves), and this pseudo-sound,
although a second-order effect, may have transfer functions that scale as M2, similar to
the acoustic transfer functions. Thus perhaps the pseudo-sound, which is not accounted
for in the present first-order analysis, may be related to the remaining gap between the
Gsol.

11 values observed in cases N3 and N1, and those from previous works. The gap may
also be related to the nonlinear terms that redistribute TKE from transverse to streamwise
Reynolds stresses in the post-shock region; such effects would lead to a larger contribution
by the dilatational modes than indicated by |Xp→v|2 alone. Furthermore, we have chosen
the far-field transfer function despite the fact that some of the evanescent near-field energy
still persists at the location of the post-shock maximum.
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Figure 5. Normalized r.m.s. peak shock dilatation Θ as a function of Mt/(M − 1): current DNS results
(∗, blue), Jamme et al. (2002) (•), Larsson & Lele (2009) (◦ wrinkled,  transitional, � broken), Boukharfane
et al. (2018) (	). The solid line is the proposed curve of Donzis (2012a). Adapted from Donzis (2012a).

5. Alteration of shock structure by incident fluctuations

To understand why cases C2 and N2 exhibit lower amplification than cases C1
and N1, respectively (i.e. why higher Mt leads to lower G11), consider the ratio
of the r.m.s. and mean values of the peak dilatation rate inside the shock. Define
θmin(x2, x3, t) ≡ minx1 θ(x1, x2, x3, t), where θ = ∂xiui is the dilatation rate. Then the
ratio Θ ≡ (θmin)

′
rms/|θmin| characterizes the alteration of the shock structure due to the

incident disturbances. An unperturbed shock corresponds to Θ = 0, and increasing values
of Θ correspond to shocks with increasing variations in strength. Above some value
of Θ , fluctuation events can completely cancel out the shock jump, leaving gaps in
the shock surface. (This is the so-called broken shock regime, in which amplification
falls precipitously.) As Θ increases, such events become more common, and a greater
fraction of the shock surface is replaced by areas of smooth compression. As pointed
out by Larsson & Lele (2009), computed values of Θ continue to characterize the shock
structure even in shock-capturing simulations where the dilatation computed within the
shock is influenced by the grid spacing. Donzis (2012b) shows that for the compilation of
previous DNS results, Θ is approximately a universal function of Mt/(M − 1), therefore
Mt/(M − 1) serves as a measure of how broken or intact a shock is. Donzis (2012b) and
Larsson et al. (2013) arrive independently at the value Mt/(M − 1) ≈ 0.6 as the threshold
between the wrinkled and broken shock regimes.

The normalized dilatation rate values from the present DNS are overlaid on the data
compiled by Donzis (2012b) in figure 5. The new data follow roughly Donzis’s best-fit
curve. Cases C2 and N2 have the highest Θ values of the present cases (0.19 and 0.17,
respectively). Of the DNS cases studied by Larsson et al. (2013), the one with the highest
value of Θ that is judged by them to fall within the wrinkled shock regime is Θ = 0.21,
around 10 % greater than for case C2. Thus the range of present DNS cases is nearing the
upper limit of Θ for the wrinkled shock regime. The proximity of cases C2 and N2 to the
broken shock regime where amplification falls off may explain why, in comparisons of C1
to C2 and N1 to N2, a higher Mt appears to give lower G11.
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6. A generalized parametrization of the shock structure

Since the appearance of locally subsonic regions upstream of the shock signals the
transition from the wrinkled to broken shock regimes, the difference between the local
instantaneous Mach number M and unity is of fundamental importance in parametrizing
the modification of the shock structure. A measure of the velocity fluctuations can be
obtained from Mt, and a measure of how large a velocity fluctuation is needed on average
in order to reduce the flow to a locally subsonic value is provided by M − 1. Therefore,
parametrizing the shock structure (i.e. Θ) by the ratio Mt/(M − 1) as done by Donzis
(2012b) and Larsson et al. (2013) makes sense for incident solenoidal turbulence where
the Mach number fluctuation arises solely from velocity fluctuations.

However, in flows with compressible isotropic turbulence incident on the shock, this
parameter gives only part of the necessary information. The velocity field in this more
general case can be decomposed into vortical (solenoidal) and acoustic (dilatational)
parts. The vortical and acoustic parts give different contributions to the local Mach
number fluctuation. Whereas the vortical part contributes only velocity fluctuations,
the acoustic part is also associated with isentropic thermodynamic fluctuations, which
alter the Mach number via the speed of sound. Similarly, any entropy variations (i.e.
temperature spottiness) present in the pre-shock field contribute additional thermodynamic
fluctuations. Incident fluctuations of any type lead to alteration of the shock structure, so
Mt/(M − 1), which omits entropic fluctuations and does not distinguish between vortical
and acoustic fluctuations, cannot fully parametrize Θ .

Then in the case of a general isotropic incident field, it makes sense to compare
the r.m.s. Mach number fluctuation M′

rms to how far the local pre-shock Mach number
exceeds unity. We therefore propose M′

rms/(M − 1) as the general parameter for
collapsing Θ .

The r.m.s. Mach number fluctuation can be obtained to leading order from the incident
fluctuation strengths by means of a series expansion. Consider streamwise velocity,
pressure and entropy perturbations (
u1, 
p, 
s) superimposed on an undisturbed
uniform base flow (u◦

1, p◦, s◦). Then the instantaneous Mach number M and its fluctuation

M = M − M◦ can be computed from

M

M◦ = 1 + 
M
M◦ = u1

u◦
1

c◦

c
=

(
1 + 
u1

u◦
1

)
c◦

c
. (6.1)

Beginning with the relation c = √
γ p/ρ and writing the density in terms of pressure and

entropy via the perfect gas equation of state

ρ

ρ◦ =
(

p
p◦

)1/γ

exp
(

− s − s◦

cp

)
(6.2)

gives

c◦

c
=

√
γ p◦/ρ◦

γ p/ρ
=

(
1 + 
p

p◦

)−(γ−1)/(2γ )

exp
(

−1
2


s
cp

)
. (6.3)
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Expanding the first factor using Newton’s generalized binomial theorem and the second
using a Maclaurin series gives

c◦

c
=

[
1 − γ − 1

2

(

p
γ p◦

)
+ (3γ − 1)(γ − 1)

8

(

p
γ p◦

)2

+ · · ·
]

×
[

1 − 1
2

(

s
cp

)
+ 1

8

(

s
cp

)2

+ · · ·
]

. (6.4)

Then the normalized Mach number is related to the velocity and thermodynamic
fluctuations by

M

M◦ = u1

u◦
1

c◦

c
=

(
1 + 
u1

u◦
1

)(
1 − γ − 1

2

p
γ p◦ + · · ·

) (
1 − 1

2

s
cp

+ · · ·
)

. (6.5)

The normalized Mach number fluctuation becomes


M
M◦ = M

M◦ − 1 = 
u1

u◦
1

− 1
2

(γ − 1)

p
γ p◦ − 1

2

s
cp

+ · · · , (6.6)

and the mean-square Mach number fluctuation is given by

(
M)2 ≈ M◦2

[(

u1

u◦
1

)2

+ (γ −1)2

4

(

p
γ p◦

)2

+ 1
4

(

s
cp

)2

− γ − 1
2

(

u1

u◦
1

)(

p
γ p◦

)
− 1

2

(

u1

u◦
1

) (

s
cp

)
+ γ − 1

4

(

s
cp

)(

p
γ p◦

)]
. (6.7)

In order for the turbulence field to be isotropic, both 
p 
u1 and 
s 
u1 must be
zero. Furthermore, because acoustic (dilatational) disturbances propagate relative to the
fluid, whereas entropy fluctuations merely convect, any instantaneous correlation between
the entropy and acoustic fluctuations in the isotropic turbulence must be temporary, and
we therefore assume that 
s 
p ≈ 0. Some pressure fluctuations associated with vortical
motions do convect along with the vorticity (which of course convects with the local fluid
velocity), but such ‘pseudo-sound’ pressure fluctuations are proportional to the square
of the vortical fluctuation strength and can be neglected to leading order. With these
assumptions, (6.7) leads to

(
M)rms ≈
√√√√(
u1)2

c◦2 + (γ − 1)2M◦2

4
(
p)2

γ 2p◦2 + M◦2

4
(
s)2

c2
p

. (6.8)

The isotropic, homogeneous pre-shock fluctuation field can be decomposed into
sinusoidal Fourier modes, and the Reynolds average of each mode is individually
zero. Therefore, Reynolds-averaged variables differ from their undisturbed base flow
counterparts by at most a term of O(Δ2), where Δ2 is shorthand for (
u1)2/u◦2

1 ,
(
p)2/(γ p◦)2, (
s)2/c2

p. It follows that the mean Mach number M based on the
averaged velocity and temperature is related to the base flow Mach number by M =
M◦ + O(
2), and therefore to first order we can set M ≈ M◦. Similarly, we identify other
undisturbed base flow properties with the corresponding mean values. It follows that
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to leading order, 
u1 ≈ u′′
1, 
p ≈ p′, and so on. In the pre-shock isotropic turbulence,

the first term within the radical in (6.8) may be rewritten using (
u1)rms ≈ (u′′
1)rms =

c̃Mt/
√

3 ≈ c◦Mt/
√

3, where c̃ = √
γ p̄/ρ̄. For a propagating acoustic disturbance, the

associated dilatational velocity fluctuation is related to the pressure fluctuation by
|p′| ≈ |
p| = ρ◦c◦ |
u| ≈ ρ̄c̃ |u′′|. If the pressure field is dominated by propagating
acoustic disturbances with dilatational kinetic energy making up a fraction χ of the total
TKE, then we have ∣∣u′′∣∣dil.

rms ≈ √
χ

∣∣u′′∣∣
rms = √

χ Mtc̃ = p′
rms

ρ̄c̃
= p′

rms

γ p̄/c̃
(6.9)

or
p′

rms

γ p̄
= √

χ Mt. (6.10)

We justify using the assumption that the pressure field is dominated by the dilatational
modes by noting that for a fixed χ , the dilatational mode strength is O(u′′

rms), whereas the
pseudo-sound field (pressure fluctuations that accompany vortical structures) is O(u′′ 2

rms).
Pseudo-sound would thus be included as part of a higher-order extension of the present
analysis.

With these considerations, the r.m.s. Mach number fluctuation in the isotropic pre-shock
field becomes

M′
rms ≈

√√√√M2
t

3
+ (γ − 1)2M2

4
p′2

γ 2p̄2 + M2

4
s′2

c2
p

(6.11)

or

M′
rms ≈

√√√√M2
t

3
+ (γ − 1)2M2

4
χM2

t + M2

4
s′2

c 2
p

. (6.12)

The first term in (6.12) contains contributions from both solenoidal and dilatational
velocity modes. The second and third terms come from dilatational and entropic
fluctuations, respectively.

If the Mach number fluctuation in the SITI problem is attained primarily through
vortical turbulence, then the Mach number fluctuation M′ and the turbulence Mach number
Mt are related by Mt ≈ √

3 M′
rms. Thus the broken shock regime threshold Mt/(M − 1) ≈

0.6 found by Donzis (2012b) and Larsson et al. (2013) from nearly incompressible
turbulence translates to a threshold M′

rms/(M − 1) ≈ 0.35 under the new parametrization.
It follows from (6.12) that the thermodynamic fluctuations associated with acoustic

modes and entropy spots, if any, always increase M′
rms for a given Mt. Furthermore, the

effect is stronger at higher Mach numbers due to the factor M2 in the second and third
terms. Thus the generalized parametrization predicts that a more dilatational incident field
gives a higher Θ than an incompressible field with the same Mt. This is consistent with the
fact that under the original parametrization, the present DNS cases lie above the fit line in
figure 6(a). Hence there is a greater tendency towards a broken shock for a given Mt when
there is significant energy in dilatational modes.

When Θ is plotted against M′
rms/(M − 1) as in figure 6(b), the present data collapse

better and fall closer to the best-fit curve of Donzis (2012b), which has been converted to
the new abscissa using Mt ≈ √

3 M′
rms. For case N1, Θ already lies below the best-fit

line, so the rightward shift due to the inclusion of the additional terms of the new

958 A1-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.984


Compressibility effects in SITIs















0.1

0.2

(a) (b)

0.1

0.2

C4

C2

N2

N4

N3

C1

C3

N1

C4

C2

N2
N4

N3

C1

C3

N1

0.40.30.2 0.20.1 0.10 0

Mt/(M – 1)

Θ

M ′
rms /(M – 1)

Figure 6. Enlarged view of normalized r.m.s. peak shock dilatation Θ as a function of: (a) Mt/(M − 1), and
(b) M′

rms/(M − 1). Line and symbols as in figure 5.

DNS Parametrized by Mt/(M − 1) Parametrized by M′
rms/(M − 1)

Case Θ Θfit 
Θ δΘ (%) Θfit 
Θ δΘ (%)

N1 (high Re, low χ base) 0.124 0.130 0.00593 4.80 0.132 0.00843 6.82
N2 (Mt ↑) 0.166 0.161 −0.00513 −3.09 0.167 0.000773 0.466
N3 (M ↑) 0.0843 0.0682 −0.0161 −19.1 0.0715 −0.0128 −15.2
N4 (χ ↑) 0.146 0.134 −0.0120 −8.18 0.145 −0.000796 −0.544
C1 (low Re, high χ base) 0.110 0.0976 −0.0121 −11.0 0.105 −0.00423 −3.86
C2 (Mt ↑) 0.191 0.166 −0.0255 −13.3 0.179 −0.0126 −6.56
C3 (Mt ↑ M ↑) 0.128 0.104 −0.0241 −18.8 0.119 −0.00888 −6.92
C4 (χ ↓) 0.111 0.107 −0.00318 −2.87 0.110 −0.00104 −0.944

r.m.s. (all) — — 0.0152 11.8 — 0.00784 6.95
r.m.s. (high dil. cases) — — 0.0176 12.1 — 0.00715 4.61

Table 4. Errors between the DNS results and the curve fit of Donzis (2012b) using both the original parameter
Mt/(M − 1) and the generalized parameter M′

rms/(M − 1). The (signed) absolute and relative errors are defined
by 
Θ ≡ Θfit − ΘDNS and δΘ ≡ 
Θ/ΘDNS, respectively. R.m.s. values are also provided, both over the eight
cases and over only the five most strongly dilatational cases, namely C1, C2, C3, N2 and N4.

parametrization moves the data point slightly farther from the fit line. However, the
agreement with N1 still remains relatively good compared to the overall scatter of the
dataset considered by Donzis, and in all other cases, the rightward shift improves the
agreement. Table 4 lists the errors between the best-fit curve and the present data under
both parametrizations. The r.m.s. absolute and relative errors are reduced by factors of 1.9
and 1.7, respectively, upon changing to the new parametrization.

A more meaningful assessment of the generalized parametrization can be obtained by
excluding cases N1, N3 and C4 because these cases have the lowest dilatational content
and therefore the re-parametrization has relatively little effect on them. Including cases
that are only weakly dilatational renders the comparison of r.m.s. errors less sensitive to
the performance of the additional terms in the new parametrization. Confining attention to
the remaining five cases with the strongest dilatational content (C1, C2, C3, N2 and N4)
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yields r.m.s. errors that are reduced by factors of 2.5 and 2.6 for the absolute and relative
errors, respectively.

The reduction of the errors in the highly dilatational cases by a factor of more than 2
is encouraging, but the choice of the best-fit curve strongly affects the error. If the curve
were systematically biased in a region of interest (and indeed, all but one of the current
data points initially lie above the fit curve), then the lower r.m.s. error might simply be a
result of shifting the data towards the best-fit curve in an average sense. In this case, the
r.m.s. error alone would not give a good measure of the scatter in the data; despite the
decreased r.m.s. error, the new parametrization might actually worsen the scatter.

Therefore it is instructive to consider the effect of the new parametrization directly on
the scatter of the data. Because there is little curvature in the best-fit curve over the interval
containing the present DNS data, an approximate measure of the scatter can be obtained by
temporarily discarding the cubic curve of Donzis and applying linear regression analysis.
The R2 goodness-of-fit measure from linear regression can be interpreted as the fraction
of the variance of Θ that can be explained by the independent variable. Linear regression
analyses of the full dataset using the two parametrization schemes show that the R2 value
increases from 0.901 to 0.953, indicating that the fraction of the variance attributable to
scatter is reduced by a factor of 2.1. Restricting attention to the five most dilatational cases
gives R2 values that increase from 0.924 to 0.968, for a factor of 2.8 reduction in the
fraction of variance attributable to scatter.

Thus the generalized parametrization improves the collapse of the present highly
compressible DNS data in terms of both scatter and the average collective agreement of
the dataset with Donzis’s proposed parametrization. For this reason, in order to allow for
incident fluctuations other than pure vorticity, we prefer M′

rms/(M − 1) as a parameter
for Θ . The threshold Mt/(M − 1) ≈ 0.6 between the wrinkled and broken shock regimes
determined by Donzis (2012b) and Larsson et al. (2013) presumably remains applicable
in the highly compressible regime provided that the new parametrization is employed, and
thus becomes M′

rms/(M − 1) ≈ 0.35.
The incident fields in the present DNS cases are dominated by vortical and acoustic

fluctuations, thus the present study does not demonstrate the performance of the
generalized parametrization on flows with pre-shock temperature spottiness. However,
since the DNS data do appear to confirm the success of the series expansion method
for determining the leading-order effects of acoustic fluctuations on Θ , it is reasonable to
expect that the leading-order entropy effects found using the same method will be similarly
successful.

Note that in the discussions of M′
rms, fluctuations due to the shock motion are

ignored. Any motion of the shock, no matter how slight, gives rise to large velocity and
thermodynamic fluctuations at the points traversed by the shock. These contributions to
M′ are distinct from those due to fluctuations in the pre-shock field, and are not of direct
interest in predicting how much the incident disturbances modify the shock.

7. Summary

The DNS results of Grube & Martín (2023) represent a new regime within the SITI
parameter space, where high mean Mach numbers coexist with high-intensity pre-shock
turbulence. Unusually large amplification of streamwise Reynolds stress is observed in
this regime. Systematic variation of the flow parameters reveals that this amplification
is a consequence of the combination of a high mean Mach number with a high level of
incident dilatational TKE. According to LIA theory, the transfer functions for dilatational
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(i.e. acoustic) incident fluctuations grow rapidly with Mach number, so at high Mach
numbers, even relatively modest degrees of compressibility in the incident turbulence
can lead to a significant departure from the amplification factors associated with
incompressible turbulence. Previous SITI DNS studies at these higher Mach numbers
have featured relatively little dilatational content in the freestream, so the influence of
the acoustic transfer functions at these Mach numbers was minimal.

Another important aspect of SITI behaviour is the departure from LIA-predicted transfer
functions as the turbulence intensity increases. As the turbulence becomes stronger, the
resulting local variations in shock strength eventually give rise to holes in the shock surface
where smooth compression replaces the discontinuous pressure rise of the shock. This
transition from wrinkled to broken shocks is accompanied by a pronounced reduction
of turbulence amplification. The modification of the shock structure by the incident
fluctuations can be measured by Θ , the normalized r.m.s. peak dilatation rate inside
the shock. Donzis (2012b) and Larsson et al. (2013) parametrized Θ by Mt/(M − 1)

and determined a threshold for the onset of the broken shock regime in the existing
DNS results. However, the new high-Mach, high-intensity regime contains pre-shock
thermodynamic fluctuations that have a significant effect on the shock but make no
contribution to Mt/(M − 1).

The broken shock regime is encountered when fluctuations lower the local normal
Mach number to subsonic values. This can be accomplished through a combination of
a lower streamwise velocity and a higher speed of sound. A parametrization based on
Mt considers only the former. It is found that in the new regime, the shock structure
data (i.e. Θ) are collapsed better by the parameter M′

rms/(M − 1). The proposed more
general parametrization based directly on M′

rms considers not only velocity fluctuations
but also fluctuations in the speed of sound due to thermodynamic fluctuations associated
with acoustic and entropic content. The improved collapse of the highly compressible
DNS data under the new parametrization demonstrates that the acoustic fluctuations have
been properly accounted for. Although the DNS dataset of Grube & Martín (2023) does
not include cases with significant entropic fluctuations, the speed of sound variations are
expected to have a similar effect on the shock structure whether they arise from acoustic
or entropic fluctuations. Therefore the effect of entropic fluctuations (i.e. temperature
spottiness) is expected to also be well represented by the proposed parametrization. In this
case, the proposed parametrization will allow the wrinkled–broken shock regime threshold
determined by Donzis (2012b) and Larsson et al. (2013) to be applied successfully to flows
with fully general isotropic incident fluctuation fields.
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