A FLAT NONMETRIZABLE CONNEXION

BY

H. G. HELFENSTEIN

A linear connexion ∇ on a smooth manifold M with vanishing torsion and curvature is called flat. It is well known that such a connexion need not be the Levi-Civita connexion of a Riemannian (nor pseudo-Riemannian) structure (cf. [1]).

The following example with M homeomorphic to a cylinder is particularly simple. Using polar coordinates the punctured plane $M = R^2 \setminus \{0\}$ is covered by a smooth atlas with two charts:

$$x^1 = r,$$
 $0 < x^2 = \theta < 2\pi,$
 $y^1 = r,$ $-\pi < y^2 = \theta < \pi.$

The following system of connexion coefficients is compatible with the coordinate transformation and hence defines a linear connexion ∇ on M.

$$\Gamma_{11}^1 = 2, \quad \Gamma_{12}^1 = \Gamma_{21}^1 = 1, \quad \Gamma_{22}^1 = -2, \\ \Gamma_{11}^2 = -2, \quad \Gamma_{12}^2 = \Gamma_{21}^2 = 4, \quad \Gamma_{22}^2 = -3.$$

It is a trivial, though lengthy, computation to verify that torsion and curvature of ∇ vanish.

To see that ∇ is not induced by a pseudo-Riemannian structure of any arbitrary signature we observe that the equations for parallel displacement can be explicitly integrated: If the vector $\lambda(\partial/\partial r) + \mu(\partial/\partial \theta)$ is transported parallel to itself along a circle, r = const, we obtain

$$\lambda(\theta) = e^{\theta} [\lambda(0) \cos 2\theta + (\mu(0) - \lambda(0)) \sin 2\theta],$$

$$\mu(\theta) = e^{\theta} [\mu(0) \cos 2\theta + (\mu(0) - 2\lambda(0)) \sin 2\theta].$$

Thus passing from $\theta = 0$ to $\theta = 2\pi$ every vector is multiplied by $e^{2\pi}$, which is impossible if parallel transport were to preserve a bilinear nondegenerate form on the tangent spaces.

This also shows that the holonomy group H_p of ∇ at $p \in M$ contains an infinite cyclic group. Since the fundamental group $\pi_1(M)$ is Z_{∞} and the holonomy homomorphism $h:\pi_1(M) \to H_p$ is surjective for a connected flat manifold we conclude that H_p is infinite cyclic.

Note also that the geodesics of ∇ can be determined by quadratures.

Topologically our example cannot be simplified, according to the following

Received by the editors May 13, 1971.

H. G. HELFENSTEIN

THEOREM. Let M be a connected manifold with a finite fundamental group and a flat linear connexion ∇ . Then ∇ is the Levi-Civita connexion of a Riemannian structure.

Proof. For any point $p \in M$ the holonomy group H_p must be finite because of subjectivity of h, say

$$H_p = \{h_1, h_2, \ldots, h_k\}$$

with each h_i a linear isomorphism of the tangent space M_p . Choose an arbitrary Euclidean scalar product \langle , \rangle on M_p and define a bilinear form on M_p by

(1)
$$\beta(X_p, Y_p) = \sum_{j=1}^k \langle h_j(X_p), h_j(Y_p) \rangle, \quad X_p, Y_p \in M_p.$$

For any $x \in M$ we choose a smooth path σ from p to x and denote parallel translation along σ by τ_{σ} . Letting

(2)
$$g_x(X, Y) = \beta(\tau_\sigma^{-1}X, \tau_\sigma^{-1}Y), \quad X, Y \in M_x$$

we obtain a Riemannian metric tensor g on M: Since β is invariant under H_p , g_x is independent of σ , symmetric, positive definite, and depends differentiably on x.

If α is an arbitrary smooth path on M and $X_{\alpha(t)}$, $Y_{\alpha(t)} \in M_{\alpha(t)}$ denote two parallel vector fields along α , we choose as σ in (2) the composition of a path ρ from p to $\alpha(0)$ and α . Then

$$g_{\alpha(t)}[X_{\alpha(t)}, Y_{\alpha(t)}] = \beta[\tau_{\rho}^{-1}\tau_{\alpha}^{-1}X_{\alpha(t)}, \tau_{\rho}^{-1}\tau_{\alpha}^{-1}Y_{\alpha(t)}]$$

= $\beta[\tau_{\rho}^{-1}X_{\alpha(0)}, \tau_{\rho}^{-1}Y_{\alpha(0)}]$

is independent of t. Hence scalar products are preserved under parallel transport. Since ∇ is torsion free it coincides with the Levi-Civita connexion determined by g. Q.E.D.

(Hence there exist exactly as many Riemannian structures on M compatible with ∇ as there are Euclidean metrics on M_p invariant under H_p .)

In particular a simply connected M cannot carry a flat nonmetric connexion.

Replacing the sum in (1) by HAAR integration we can prove similarly:

Let M be a connected manifold with a torsion free connexion ∇ (not necessarily flat) whose holonomy group H_p is compact with respect to the compact-open topology. Then ∇ can be metrized by a Riemannian structure.

Reference

1. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.

UNIVERSITY OF OTTAWA, OTTAWA, ONTARIO

206