Some Properties of Rational Functions with Prescribed Poles

Abdul Aziz-Ul-Auzeem and B. A. Zarger

Abstract. Let $P(z)$ be a polynomial of degree not exceeding n and let $W(z)=\prod_{j=1}^{n}\left(z-a_{j}\right)$ where $\left|a_{j}\right|>1$, $j=1,2, \ldots, n$. If the rational function $r(z)=P(z) / W(z)$ does not vanish in $|z|<k$, then for $k=1$ it is known that

$$
\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left|B^{\prime}(z)\right| \operatorname{Sup}_{|z|=1}|r(z)|
$$

where $B(Z)=W^{*}(z) / W(z)$ and $W^{*}(z)=z^{n} \overline{W(1 / \bar{z})}$. In the paper we consider the case when $k>1$ and obtain a sharp result. We also show that

$$
\operatorname{Sup}_{|z|=1}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|+\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\}=\operatorname{Sup}_{|z|=1}|r(z)|
$$

where $r^{*}(z)=B(z) \overline{r(1 / \bar{z})}$, and as a consquence of this result, we present a generalization of a theorem of O'Hara and Rodriguez for self-inversive polynomials. Finally, we establish a similar result when supremum is replaced by infimum for a rational function which has all its zeros in the unit circle.

1 Introduction and Statement of Results

Let \mathcal{P}_{n} denote the class of all complex polynomials of degree at most n. Let D_{k-} denote the region inside the circle $T_{k}:=\{z ;|z|=k>0\}$ and D_{k+} the region outside T_{k}. For $a_{j} \in C$ with $j=1,2, \ldots, n$, write

$$
W(z)=\prod_{j=1}^{n}\left(z-a_{j}\right), \quad B(z)=\prod_{j=1}^{n}\left(\frac{1-\bar{a}_{j} z}{z-a_{j}}\right)
$$

and

$$
\mathcal{R}_{n}=\mathcal{R}_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\frac{P(z)}{W(z)} ; \quad P \in \mathcal{P}_{n}
$$

Then \mathcal{R}_{n} is the set of all rational functions with poles $a_{1}, a_{2}, \ldots, a_{n}$ at most and with finite limit at infinity. We observe that $B(z) \in \mathcal{R}_{n}$. For f defined on T_{k} in the complex plane, we set $\|f\|=\operatorname{Sup}_{z \in T_{k}}|f(z)|$, the Chebyshev norm of f on T_{1}. Throughout this paper, we shall always assume that all poles $a_{1}, a_{2}, \ldots, a_{n}$ are in D_{1+}.

The following famous result is due to Bernstein (for reference see [8]).
Theorem A If $P \in \mathcal{P}_{n}$, then $\left\|P^{\prime}\right\| \leq n\|P\|$.
Received by the editors July 31, 1996; revised April 22, 1998.
AMS subject classification: 26D07.
(C)Canadian Mathematical Society 1999.

As a refinement of Theorem A, we mention the following result due to A. Aziz [2] and M. A. Malik [5].

Theorem B If $P \in \mathcal{P}_{n}$ and $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$, then

$$
\left\|\left|\left(P^{*}(z)\right)^{\prime}\right|+|P(z)|\right\|=n\|P\| .
$$

The next result was conjectured by P. Erdős and later verified by P. D. Lax [4].
Theorem C If $P \in \mathcal{P}_{n}$ and all the zeros of $P(z)$ lie in $T_{1} \cup D_{1_{+}}$, then for $z \in T_{1}$, we have

$$
\begin{equation*}
\left\|P^{\prime}\right\| \leq \frac{n}{2}\|P\| \tag{1}
\end{equation*}
$$

Equality in (1) holds for $P(z)=\alpha z^{n}+\beta$ with $|\alpha|=|\beta|$.
Recently Li, Mohapatra, and Rodriguez [6] (see also [3]) have proved Bernstein-type inequalities similar to Theorem A and Theorem C for rational functions with prescribed poles where they replaced z^{n} by Blaschke product $B(z)$. Among other things, they proved the following generalization of Theorem C.
Theorem D Suppose $r \in \mathcal{R}_{n}$ and all the zeros of r lie in $T_{1} \cup D_{1_{+}}$, then for $z \in T_{1}$, we have

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left|B^{\prime}(z)\right|\|r\| \tag{2}
\end{equation*}
$$

Equality in (2) holds for $r(z)=\alpha B(z)+\beta$ with $|\alpha|=|\beta|=1$.
We first prove the following generalization of Theorem D.
Theorem 1 Suppose $r \in \mathcal{R}_{n}$ and all the zeros of r lie in $T_{k} \cup D_{k+}$, where $k \geq 1$, then for $z \in T_{1}$, we have

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|-\frac{n(k-1)}{(k+1)} \cdot \frac{|r(z)|^{2}}{\|r\|^{2}}\right\}\|r\| . \tag{3}
\end{equation*}
$$

Equality in (3) holds for $r(z)=((z+k) /(z-a))^{n}$ where $a>1, k \geq 1$, and $B(z)=$ $((1-a z) /(z-a))^{n}$ evaluated at $z=1$.

For $k=1$, this reduces to Theorem D.
The next result is a generalization of Theorem B for rational functions.
Theorem 2 If $r \in \mathcal{R}_{n}$ and $r^{*}(z)=B(z) \overline{r(1 / \bar{z})}$, then we have

$$
\begin{equation*}
\operatorname{Sup}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|+\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\}=\operatorname{Sup}_{z \in T_{1}}|r(z)| \tag{4}
\end{equation*}
$$

Moreover, the suprema of both sides in (4) are attained at the same point $z_{0} \in T_{1}$.

The rational function $r \in \mathcal{R}_{n}$ is self-inversive if $r^{*}(z)=u r(z)$ for $u \in T_{1}$. The following result, which is a generalization of Theorem 1 of [7] for self-inversive polynomials, easily follows from Theorem 2.

Corollary 1 If $r \in \mathcal{R}_{n}$ is a self-inversive rational function, then

$$
2 \operatorname{Sup}_{z \in T_{1}}\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|=\operatorname{Sup}_{z \in T_{1}}|r(z)| .
$$

Finally we establish the following result which is a generalization of the corresponding result for polynomials [1, Remark 1].

Theorem 3 Suppose $r \in \mathcal{R}_{n}$ has n zeros and all the zeros of r lie in $T_{1} \cup D_{1-}$. If $r^{*}(z)=$ $B(z) \overline{r(1 / \bar{z})}$, then for $z \in T_{1}$,

$$
\begin{equation*}
\operatorname{Inf}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|-\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\}=\operatorname{Inf}_{z \in T_{1}}|r(z)| \tag{5}
\end{equation*}
$$

Moreover, the infima of both sides in (5) are attained at the same point $z_{0} \in T_{1}$.
From Theorem 3 we can easily deduce
Corollary 2 Suppose $r \in \mathcal{R}_{n}$ and all the zeros of r lie in $T_{1} \cup D_{1-}$, then for $z \in T_{1}$ we have

$$
\operatorname{Inf}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|\right\} \geq \operatorname{Inf}_{z \in T_{1}}\{|r(z)|\}
$$

Corollary 2 is a generalization of Theorem 1 of [1].

Lemmas

For the proof of these theorems we need the following lemmas. The first result is due to Li , Mohapatra and Rodriguez [6, Theorem 2].

Lemma 1 If $r \in \mathcal{R}_{n}$ and $r^{*}(z)=B(z) \overline{r(1 / \bar{z})}$, then for $z \in T_{1}$ we have

$$
\begin{equation*}
\left|\left(r^{*}(z)\right)^{\prime}\right|+\left|r^{\prime}(z)\right| \leq\left|B^{\prime}(z)\right|\|r\| \tag{6}
\end{equation*}
$$

Equality in (6) holds for $r(z)=u B(z)$ with $u \in T_{1}$.
Lemma 2 If $z \in T_{1}$, then

$$
\operatorname{Re}\left(\frac{z W^{\prime}(z)}{W(z)}\right)=\frac{n-|B(z)|}{2}
$$

and

$$
\operatorname{Re}\left(\frac{z\left(W^{*}(z)\right)^{\prime}}{W^{*}(z)}\right)=\frac{n+|B(z)|}{2}
$$

where $W(z)=\prod_{j=1}^{n}\left(z-a_{j}\right)$, and $W^{*}(z)=z^{n} \overline{W(1 / \bar{z})}$.

Proof of Lemma 2 We have $W^{*}(z)=z^{n} \overline{W(1 / \bar{z})}$. By direct calculation, we obtain

$$
\begin{equation*}
z\left(W^{*}(z)\right)^{\prime}=n z^{n} \overline{W(1 / \bar{z})}-z^{n-1} \overline{W^{\prime}(1 / \bar{z})} \tag{7}
\end{equation*}
$$

Now for $z \in T_{1}$, we have $\bar{z}=1 / z$ and from (7), we get

$$
\frac{z\left(W^{*}(z)\right)^{\prime}}{W^{*}(z)}=n-\overline{\left(\frac{z W^{\prime}(z)}{W(z)}\right)}
$$

This gives for $z \in T_{1}$

$$
\begin{equation*}
\operatorname{Re} \frac{z\left(W^{*}(z)\right)^{\prime}}{W^{*}(z)}+\operatorname{Re} \frac{z W^{\prime}(z)}{W(z)}=n \tag{8}
\end{equation*}
$$

Also we have

$$
B(z)=\prod_{j=1}^{n}\left(\frac{1-\bar{a}_{j} z}{z-a_{j}}\right)
$$

which gives

$$
\begin{aligned}
\frac{z B^{\prime}(z)}{B(z)} & =\sum_{j=1}^{n} z\left(\frac{-\bar{a}_{j}}{1-\bar{a}_{j} z}-\frac{1}{z-a_{j}}\right) \\
& =\sum_{j=1}^{n} \frac{z\left(\left|a_{j}\right|^{2}-1\right)}{\left(1-\bar{a}_{j} z\right)\left(z-a_{j}\right)}
\end{aligned}
$$

This implies for $z \in T_{1}$,

$$
\frac{z B^{\prime}(z)}{B(z)}=\sum_{j=1}^{n} \frac{\left|a_{j}\right|^{2}-1}{\left|z-a_{j}\right|^{2}}>0
$$

Hence

$$
\begin{equation*}
\left|B^{\prime}(z)\right|=\frac{z B^{\prime}(z)}{B(z)} \quad \text { for } z \in T_{1} \tag{9}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\frac{z B^{\prime}(z)}{B(z)}=\frac{z\left(W^{*}(z)\right)^{\prime}}{W^{*}(z)}-\frac{z W^{\prime}(z)}{W(z)} \tag{10}
\end{equation*}
$$

From (9) and (10), we get for $z \in T_{1}$

$$
\left|B^{\prime}(z)\right|=\frac{z\left(W^{*}(z)\right)^{\prime}}{W^{*}(z)}-\frac{z W^{\prime}(z)}{W(z)}
$$

This gives for $z \in T_{1}$,

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z\left(W^{*}(z)\right)^{\prime}}{W^{*}(z)}\right)-\operatorname{Re}\left(\frac{z W^{\prime}(z)}{W(z)}\right)=\left|B^{\prime}(z)\right| \tag{11}
\end{equation*}
$$

Finally, from (8) and (11), we obtain for $z \in T_{1}$,

$$
\operatorname{Re}\left(\frac{z\left(W^{*}(z)\right)^{\prime}}{W^{*}(z)}\right)=\frac{n+|B(z)|}{2}
$$

and

$$
\operatorname{Re}\left(\frac{z W^{\prime}(z)}{W(z)}\right)=\frac{n-\left|B^{\prime}(z)\right|}{2}
$$

This completes the proof of Lemma 2.

Proofs of the Theorems

Proof of Theorem 1 Let $r(z)=P(z) / W(z) \in \mathcal{R}_{n}$; if $b_{1}, b_{2}, \ldots, b_{m}$ are all the zeros of $P(z)$, then $m \leq n,\left|b_{j}\right| \geq k>1, j=1,2, \ldots, m$ and we have

$$
\begin{aligned}
\frac{z r^{\prime}(z)}{r(z)} & =\frac{z P^{\prime}(z)}{P(z)}-\frac{z W^{\prime}(z)}{W(z)} \\
& =\sum_{j=1}^{m} \frac{z}{z-b_{k}}-\frac{z W^{\prime}(z)}{W(z)}
\end{aligned}
$$

For $z \in T_{1}$, this gives, with the help of Lemma 2, that

$$
\begin{align*}
\operatorname{Re} \frac{z r^{\prime}(z)}{r(z)} & =\operatorname{Re} \sum_{j=1}^{m} \frac{z}{z-b_{k}}-\operatorname{Re} \frac{z W^{\prime}(z)}{W(z)} \\
& =\operatorname{Re} \sum_{j=1}^{m} \frac{z}{z-b_{k}}-\left(\frac{n-\left|B^{\prime}(z)\right|}{2}\right) \tag{12}
\end{align*}
$$

Now it can be easily verified that for $z \in T_{1},|b| \geq k>1$,

$$
\operatorname{Re}\left(\frac{z}{z-b}\right) \leq \frac{1}{1+k}
$$

Using this in (12), we get for $z \in T_{1}$,

$$
\begin{aligned}
\operatorname{Re} \frac{z r^{\prime}(z)}{r(z)} & \leq \frac{m}{1+k}-\left(\frac{n-\left|B^{\prime}(z)\right|}{2}\right) \\
& \leq \frac{n}{1+k}-\frac{n}{2}+\frac{\left|B^{\prime}(z)\right|}{2} \\
& =\frac{\left|B^{\prime}(z)\right|}{2}-\frac{n(k-1)}{2(k+1)}
\end{aligned}
$$

Hence for $z \in T_{1}$ we have [6, p. 529],

This implies for $z \in T_{1}$,

$$
\left\{\left|r^{\prime}(z)\right|^{2}+\frac{n(k-1)}{(k+1)}|r(z)|^{2}\left|B^{\prime}(z)\right|\right\}^{\frac{1}{2}} \leq\left|\left(r^{*}(z)\right)^{\prime}\right|
$$

Combining this with Lemma 1, we get

$$
\left|r^{\prime}(z)\right|+\left\{\left|r^{\prime}(z)\right|^{2}+\frac{n(k-1)}{(k+1)}|r(z)|^{2}\left|B^{\prime}(z)\right|\right\}^{\frac{1}{2}} \leq\left|B^{\prime}(z)\right|\|r\|
$$

or equivalently,

$$
\begin{aligned}
\left|r^{\prime}(z)\right|^{2}+\frac{n(k-1)}{(k+1)}|r(z)|^{2}\left|B^{\prime}(z)\right| & \leq\left\{\left|B^{\prime}(z)\right|\|r\|-\left|r^{\prime}(z)\right|\right\}^{2} \\
& =\left|B^{\prime}(z)\right|^{2}\|r\|^{2}-2\left|B^{\prime}(z)\right|\left|r^{\prime}(z)\right|\|r\|+\left|r^{\prime}(z)\right|^{2}
\end{aligned}
$$

which after a short simplification yields for $z \in T_{1}$ that

$$
\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|-\frac{n(k-1)}{(k+1)} \frac{|r(z)|^{2}}{\|r\|^{2}}\right\}\|r\|
$$

This proves (3).
To show equality in (3) holds for $r(z)=((z+k) /(z-a))^{n}$ and $B(z)=((1-a z) /(z-a))^{n}$, $a>1, k \geq 1$ at $z=1$, we observe that

$$
\begin{gathered}
\operatorname{Sup}_{z \in T_{1}}|r(z)|=\left\{\frac{(1+k)}{(a-1)}\right\}^{n}=|r(1)|=\|r\|, \quad B(1)=1, \\
\left|r^{\prime}(1)\right|=n\left(\frac{1+k}{a-1}\right)^{n-1}\left(\frac{(k+a)}{(a-1)^{2}}\right) \quad \text { and } \quad\left|B^{\prime}(1)\right|=\frac{n(a+1)}{(a-1)} .
\end{gathered}
$$

It can now be seen easily that two sides of (3) are equal. This completes the proof of Theorem 1.

Proof of Theorem 2 Let $r(z) \in \mathcal{R}_{n}$, then we have

$$
r^{*}(z)=B(z) \overline{r(1 / \bar{z})}
$$

A straightforward computation shows that

$$
\frac{z\left(r^{*}(z)\right)^{\prime}}{r^{*}(z)}=\frac{z B^{\prime}(z)}{B(z)}-\frac{\overline{r^{\prime}(1 / \bar{z})}}{z \overline{r(1 / \bar{z})}}
$$

This implies with the help of (9) for $z \in T_{1}$ that

$$
\frac{z\left(r^{*}(z)\right)^{\prime}}{r^{*}(z)}=\left|B^{\prime}(z)\right|-\overline{\left(\frac{z r^{\prime}(z)}{r(z)}\right)}
$$

which gives

$$
\begin{equation*}
\left|\frac{z\left(r^{*}(z)\right)^{\prime}}{r^{*}(z)}\right|+\left|\overline{\left(\frac{z r^{\prime}(z)}{r(z)}\right)}\right| \geq\left|\overline{\left(\frac{z r^{\prime}(z)}{r(z)}\right)}+\frac{z\left(r^{*}(z)\right)^{\prime}}{r^{*}(z)}\right|=\left|B^{\prime}(z)\right| . \tag{14}
\end{equation*}
$$

Using the fact that for $z \in T_{1},|r(z)|=\left|r^{*}(z)\right|$, it follows from (14) that

$$
\begin{equation*}
\left|r^{\prime}(z)\right|+\left|\left(r^{*}(z)\right)^{\prime}\right| \geq\left|B^{\prime}(z)\right||r(z)| \tag{15}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\operatorname{Sup}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|+\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\} \geq \operatorname{Sup}_{z \in T_{1}}|r(z)| \tag{16}
\end{equation*}
$$

Also from Lemma 1, we easily get

$$
\begin{equation*}
\operatorname{Sup}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|+\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\} \leq \operatorname{Sup}_{z \in T_{1}}|r(z)| . \tag{17}
\end{equation*}
$$

From (16) and (17), we obtain

$$
\operatorname{Sup}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|+\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\}=\operatorname{Sup}_{z \in T_{1}}|r(z)| .
$$

This proves (4).
We now show the suprema of both sides in (4) are attained at the same point $z_{0} \in T_{1}$. Let

$$
\operatorname{Sup}_{z \in T_{1}}|r(z)|=\left|r\left(z_{0}\right)\right| ;
$$

then from Lemma 1, we get

$$
\begin{equation*}
\left|\frac{r^{\prime}\left(z_{0}\right)}{B^{\prime}\left(z_{0}\right)}\right|+\left|\frac{\left(r^{*}\left(z_{0}\right)\right)^{\prime}}{B^{\prime}\left(z_{0}\right)}\right| \leq\left|r\left(z_{0}\right)\right| \quad z_{0} \in T_{1} \tag{18}
\end{equation*}
$$

Also from (15), we have

$$
\begin{equation*}
\left|\frac{r^{\prime}\left(z_{0}\right)}{B^{\prime}\left(z_{0}\right)}\right|+\left|\frac{\left(r^{*}\left(z_{0}\right)\right)^{\prime}}{B^{\prime}\left(z_{0}\right)}\right| \geq\left|r\left(z_{0}\right)\right| \quad z_{0} \in T_{1} \tag{19}
\end{equation*}
$$

From (18) and (19), we obtain

$$
\left|\frac{r^{\prime}\left(z_{0}\right)}{B^{\prime}\left(z_{0}\right)}\right|+\left|\frac{\left(r^{*}\left(z_{0}\right)\right)^{\prime}}{B^{\prime}\left(z_{0}\right)}\right|=\left|r\left(z_{0}\right)\right| .
$$

This completes the proof of Theorem 2.
Proof of Theorem 3 Suppose all the n zeros of $r \in \mathcal{R}_{n}$ lie in $T_{1} \cup D_{1-}$ and let $m=$ $\operatorname{Inf}_{z \in T_{1}}|r(z)|$, then we have $m \leq|r(z)|$ for $z \in T_{1}$. We show for every complex number α with $|\alpha|<1$, the rational function $F(z)=r(z)+\alpha m$ has all its zeros in $T_{1} \cup D_{1-}$. This is obvious if $m=0$, that is, if $r(z)$ has a zero on T_{1}. So we suppose all the zeros of $r(z)$ lie in D_{1-} so that $m \neq 0$ and we have

$$
|\alpha m|<m \leq|r(z)| \quad \text { for } z \in T_{1} .
$$

Applying Rouché's theorem, it follows that $F(z)=r(z)+\alpha m$ has all its zeros in D_{1-}. Hence in any case $F(z)$ has all its zeros in $T_{1} \cup D_{1-}$ for every α with $|\alpha|<1$. Let

$$
\begin{aligned}
F^{*}(z) & =B(z) \overline{F(1 / \bar{z})} \\
& =B(z) \overline{r(1 / \bar{z})}+\bar{\alpha} m B(z) \\
& =r^{*}(z)+\bar{\alpha} m B(z)
\end{aligned}
$$

Then all the zeros of $F^{*}(z)$ lie in $T_{1} U D_{1+}$. Now it follows from (13) with $k=1$ and r replaced by F^{*},

$$
\left|\left(F^{*}(z)\right)^{\prime}\right| \leq\left|F^{\prime}(z)\right| \quad \text { for } z \in T_{1}
$$

or equivalently,

$$
\left|\left(r^{*}(z)\right)^{\prime}+\bar{\alpha} m B^{\prime}(z)\right| \leq\left|r^{\prime}(z)\right| \quad \text { for } z \in T_{1}
$$

Choosing argument of α suitably, we get

$$
\left|\left(r^{*}(z)\right)^{\prime}\right|+|\alpha| m\left|B^{\prime}(z)\right| \leq\left|r^{\prime}(z)\right| \quad \text { for } z \in T_{1}
$$

Letting $|\alpha| \rightarrow 1$, we obtain

$$
\begin{equation*}
\left|r^{\prime}(z)\right|-\left|\left(r^{*}(z)\right)^{\prime}\right| \geq m\left|B^{\prime}(z)\right| \quad \text { for } z \in T_{1} \tag{20}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\operatorname{Inf}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|-\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\} \geq \operatorname{Inf}_{z \in T_{1}}|r(z)| \tag{21}
\end{equation*}
$$

Again $r^{*}(z)=B(z) \overline{r(1 / \bar{z})}$ and it can be easily verified that for $z \in T_{1}$,

$$
\begin{aligned}
\left|\left(r^{*}(z)\right)^{\prime}\right| & =\left|B^{\prime}(z) r(z)-r^{\prime}(z) B(z)\right| \\
& \geq\left|r^{\prime}(z)\right|-\left|B^{\prime}(z)\right||r(z)|
\end{aligned}
$$

This gives

$$
\begin{align*}
& \left|B^{\prime}(z)\right||r(z)| \geq\left|r^{\prime}(z)\right|-\left|\left(r^{*}(z)\right)^{\prime}\right| \quad \text { for } z \in T_{1} \tag{22}\\
& \operatorname{Inf}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|-\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\} \leq \operatorname{Inf}_{z \in T_{1}}|r(z)|=m \tag{23}
\end{align*}
$$

Combining (21) and (23), we get

$$
\operatorname{Inf}_{z \in T_{1}}\left\{\left|\frac{r^{\prime}(z)}{B^{\prime}(z)}\right|-\left|\frac{\left(r^{*}(z)\right)^{\prime}}{B^{\prime}(z)}\right|\right\}=\operatorname{Inf}_{z \in T_{1}}|r(z)|
$$

This proves (5).
We now show the infima of both sides in (5) are attained at the same point $z_{0} \in T_{1}$. Let

$$
\operatorname{Inf}_{z \in T_{1}}|r(z)|=\left|r\left(z_{0}\right)\right|
$$

Then from (20), we get

$$
\begin{equation*}
\left|\frac{r^{\prime}\left(z_{0}\right)}{B^{\prime}\left(z_{0}\right)}\right|-\left|\frac{\left(r^{*}\left(z_{0}\right)\right)^{\prime}}{B^{\prime}\left(z_{0}\right)}\right| \geq\left|r\left(z_{0}\right)\right| \quad \text { for } z_{0} \in T_{1} \tag{24}
\end{equation*}
$$

Also from (22), we obtain

$$
\left|\frac{r^{\prime}(z)}{B^{\prime}\left(z_{0}\right)}\right|-\left|\frac{\left(r^{*}\left(z_{0}\right)\right)^{\prime}}{B^{\prime}\left(z_{0}\right)}\right| \leq\left|r\left(z_{0}\right)\right| .
$$

From (24) and (25), it follows that

$$
\left|\frac{r^{\prime}\left(z_{0}\right)}{B^{\prime}\left(z_{0}\right)}\right|-\left|\frac{\left(r^{*}\left(z_{0}\right)\right)^{\prime}}{B^{\prime}\left(z_{0}\right)}\right|=\left|r\left(z_{0}\right)\right| .
$$

This completes the proof of Theorem 3.

References

[1] Abdul Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative. J. Approx. Theory (3) 54(1988), 306-313.
[2] Abdul Aziz and Q. G. Mohammad, Simple proof of a Theorem of Erdős and Lax. Proc. Amer. Math. Soc. 80(1980), 119-122.
[3] Abdul Aziz and W. M. Shah, Some refinements of Bernstein type inequalities for rational functions. Glas. Mat. (52) 32(1997), 29-37.
[4] P. D. Lax, Proof of a conjecture of P. Erdős on the derivative of a polynomial. Bull. Amer. Math. Soc. 50(1944), 509-513.
[5] M. A. Malik, An integral mean estimate for polynomials. Proc. Amer. Math. Soc. 91(1984), 281-284.
[6] Xin Li, R. N. Mohapatra and R. S. Rodriguez, Bernstein-type inequalities for rational functions with prescribed poles. J. London Math. Soc. (51) 20(1995), 523-531.
[7] P. J. O'Hara and R. S. Rodriguez, Some properties of self-inversive polynomials. Proc. Amer. Math. Soc. (2) 44(1974), 331-335.
[8] A. C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions. Bull. Amer. Math. Soc. 47(1941), 565-579.

Post Graduate Department of Mathematics \& Statistics
University of Kashmir
Hazratbal
Srinagar 190006
Kashmir
India

