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Abstract

An alternative method via generalised functions is used to obtain the
surface integral representation for a finite body in an infinite fluid in Stokes
flow. The problem is further generalised to a finite number of intersecting
finite bodies in an infinite and semi-infinite fluid. Possible applications to line
distributions for axi-symmetric bodies are discussed.

1. Introduction

Volume and surface integral representations for finite bodies in an
infinite fluid for Stokes flow have been known for many years (see for
example Oseen [8], Ladyzhenskaya [7] and Happel and Brenner [5]). The
derivation of the integral representation has been via Green's theorem
techniques and the subsequent substitution of the fundamental velocity and
pressure singularity into the integral equations. In this paper a simpler and
more straightforward approach is developed using generalised functions for a
finite body in an infinite fluid. This can be extended to a finite number of finite
bodies. The equivalent problem for a semi-infinite fluid has been obtained in
terms of previously known solutions (Blake [1] and Blake and Chwang [2]) for
singular point forces and mass sources.

2. Finite body in an infinite fluid

Let us consider a finite body, volume V*, surface S, with outward normal
n defined by a scalar function g(x) such that g(x) is less than zero inside the
body and greater than zero outside (i.e. g(x) = 0 defines the surface S)*. The
Heaviside step function H(g(x)) is defined such that it takes a zero value
inside S and a unit value outside. The volume V consists of the remaining

* We suppose g(x) is infinitely differentiate such that Vg^Q anywhere on g = 0; thus the
hypersurface has no singular points.
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volume outside of V* (i.e. VUV* is the complete Euclidean three-
dimensional space).

The Stokes flow equations of motion for an incompressible fluid are
defined by,

Vp = /AV2H

V • « = 0, (1)

where p is the pressure and u is the velocity vector. These equations are valid
in V and on its boundary S. The validity of these equations can be extended
to the complete space VUV* by introducing the terms pH(g(x)) and
uH(g(x)); thus on reverting to tensor notation,

d(pH)_
dx, ~

where

and

Af = «„ | Vg | S(g). (3)

The normal velocity is denoted by un and likewise d/dn is the normal
derivative. The formulae in (3) were derived by using the relation

f^=JjM(g)=n,|Vg|S(g), (4)

where 5(g) is the Dirac delta function and Vg is the gradient. The expressions
for F(y) and M(y) can now be interpreted as a generalised volume force
distribution and a mass per unit volume source distribution respectively.

Equations (2) can be solved in a straightforward manner by Fourier
transform methods. The solution for a force F(y) and mass/unit volume
source M(y) is

\x-y\3 \+ 4TT \x-y\3\dV ( 5 a )

and

where the integral dV is over all space V U V*. On substitution of the
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expressions in (3) into (5a), using the integral properties of the delta function
(Jones [6], p. 263) and integrating by parts where necessary, we obtain for
x<= V

and

where we have defined

and

This is the surface integral representation derived by Oseen using a Green's
theorem for Stokes flow (see Happel and Brenner [5]).

The problem can quite easily be extended to a finite number of
non-singular, non-intersecting hypersurfaces S,- defined by

S,={x:g,(x) = 0}, i = l,2,---,n. (8)

If we use the expressions (Jones [6])

/ - I

then it follows in an analogous way that

«• (*) = t js [~ («-<?. + vnip ) + n(v«J%- «/ U ) ] dS (10a)
and

where x G V, the volume exterior to Sk, k = 1, ••-,«. Thus the integral
representation derived by Oseen [8] can be extended to a finite number of
bodies in Stokes flow.

We can further extend this derivation to a semi-infinite fluid; all we need
in this case are the Green's functions for a force and a mass source subject to a
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no-slip condition on a plane boundary, say x3 = 0. We require that the
surfaces g,(x) = 0 be wholly contained in the half space JC3>0, and that they
are, as before, non-singular and non-intersecting. Explicit formulae and
interpretation for the Green's functions can be found in Blake [1] for the
Green's function due to a point force, and Blake and Chwang [2] for the
Green's functions due to a mass source. We can then substitute these Green's
functions into (10a) and (10b) to obtain the integral representations for the
semi-infinite case.

Recently Chwang and Wu [3], [4] have obtained numerous exact
solutions for flow around axi-symmetric bodies, by using a line distribution of
singularities along the axis of symmetry. Their method consists of empirical
rules to obtain the correct distribution of singularities for a spheroid in
different flow fields. Although their method is refreshingly simple and
elegant, the method of extension to general axi-symmetric bodies is not
entirely clear. It should be possible by using the above surface integral
representation to calculate the exact strengths and singularities needed on the
axis of symmetry for any flow field. This could be obtained by a Taylor series
expansion in the direction normal to the surface.

In conclusion an alternative method of deriving the Oseen surface
integral representations via generalised functions has been used for the cases
of a single body and a finite number in either an infinite or semi-infinite fluid.
The method is straightforward and elegant, in comparison to the more
complicated derivation of Oseen [8].
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