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Abstract

Let G be a permutation group on a set Q. with no fixed point in Q. If for each subset P of Q the size
|rg — f| is bounded, for g € G, we define the movement of g asthemax|r* — F| over all subsets f of Q.
In particular, if all non-identity elements of G have the same movement, then we say that G has constant
movement. In this paper we will first give some families of groups with constant movement. We then
classify all transitive permutation groups with a given constant movement m on a set of maximum size.

2000 Mathematics subject classification: primary 20BXX.

1. Introduction

Let G be a permutation group on a set £2 with no fixed points in Q and let m be a
positive integer. If for each subset F of Q and each element g e G, the size | Fg — F | is
bounded, we define the movement of Fas move(F)=maXgeG|F* —F|. Ifmove(F) < m
for all F c £2, then G is said to have bounded movement and the movement of G is
defined as the maximum of move(F) over all subsets F. This notion was introduced in
[6]. Similarly, for each 1 ̂  g e G, we define the movement of g as the max|Fg — F|
over all subsets F of fi. If all non-identity elements of G have the same movement,
then we say that G has constant movement.

Clearly every permutation group with constant movement has bounded movement.
By [6, Theorem 1], if G has bounded movement equal to m, then £2 is finite, and its
size is bounded by a function of m.

For transitive groups of movement m, the following bounds on Q were obtained
in [6].
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LEMMA 1.1. Let G be a transitive permutation group on a set Q. such that G has
movement m.

(a) If G is a 2-group then |£2| < 2m.
(b) If G is not a 2-group and p is the least odd prime dividing \G\, Then \Q.\ <
[2mp/(p — 1)J. {For x 6 R, \x\ denotes the integer part of x.)

There are various types of permutation groups with constant movement for which
the bounds in Lemma 1.1 may be attained. For example, let G be either a p -group
of exponent p or a 2-group. If we consider G as a permutation group in its regular
representation, then we see that all non-identity elements have the same movement.

The purpose of this paper is to classify all transitive permutation groups G of
maximum degree n with constant movement m, (where n = 2m if G is a 2-group and
otherwise n = \2mp/(p — 1)J if p is the least odd prime dividing | G\ and by [6] these
are the maximum sizes of n).

THEOREM 1.2. Let m be a positive integer, and let G be a transitive permutation
group on a set Q of maximum size n with constant movement m. Then either G is
a 2-group in its regular representation, or for an odd prime p one of the following
holds:

(1) \Q\ =• p, m — (p — \)/2 and G is the semi-directed product of ZPZ^, where
2a|(p - 1) for some a > 1;
(2) G:= A4, A5, \&\ = 6andm = 2;
(3) G is a p-group of exponent p in its regular representation.

Moreover, all permutation groups listed above have constant movement.

All the groups in Theorem 1.2 are examples (see Section 2). In Section 3, we prove
the above theorem, which is a classification theorem for the transitive permutation
groups of maximal degree with constant movement.

2. Attaining the bounds: examples

Let G be a transitive permutation group on a finite set f2. Then by [9, Theorem 3.26],
which we shall refer to as Burnside's Lemma, the average number of fixed points in
Q of elements of G is equal to the number of G-orbits in £2, namely 1, and since 1G

fixes \Q\ points and \Q\ > 1, it follows that there is some element of G which has no
fixed points in £2. We shall say that such elements are fixed point free on £2.

Let 1 5̂  g e G and suppose that g in its disjoint cycle representation has t nontrivial
cycles of lengths lt, . . . , /,, say. We might represent g as

g = {aia2 • • • a,,)(bib2 • • • bh) • • • (zizi • • • Zi,).
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Let F(g) denote a subset of Q, consisting of LA/2J points from /"" cycle, for each i,
chosen in such away that F(g)* D F(g) = 0.

For example we could choose V(g) = {a2, ait... , b2, b*,... , z2, U, • • • }• Note
that T{g) is not uniquely determined as it depends on the way each cycle is written
down. For any set V(g) of this kind, we say that F(g) consists of every second point
of every cycle of g. From the definition of F(g) we see that

In [3] we have shown that this quantity is an upper bound for |F* — F| for an
arbitrary subset F. Thus the movement of g is |F(g)|.

Now we will show that there certainly are some families of examples of transitive
groups with constant movement for which the bound of Lemma 1.1 holds, for any
prime p. First we look at groups of exponent p.

LEMMA 2.1. (a) Let m := p"~x(p — l)/2 for some a > 1, where p is an odd
prime and suppose that G is a regular permutation group of exponent p on a set Q of
size p" = 2mp/{p — 1). Then G has constant movement m.
(b) Let m be a power of 2, and suppose that G is a 2-group of order 2m. Then the

regular representation of G is a permutation group of constant movement m.

PROOF. Letl ^ g e G and let F c Q. By [3, Lemma 2.1], | F « - F | < m. Since G
is regular, g is fixed point free on £2. Suppose that F(g) consists of every second point
of every cycle of g. Then by definition V(g)8 D F(g) = 0. If p is an odd prime, then
I W - r(g)\ = \r(g)\ = (\n\/P)(p -1)/2 = pa~x(j> - i)/2 = m.

Thus G has constant movement m. Also with the same argument it can be shown that
every 2-group of degree 2m in its regular representation has constant movement m. •

In what follows we will see that the regularity condition for each transitive p-group
is a necessary condition. Let H be a core-free subgroup of a /?-group G and consider
the permutation representation by right multiplication on the right cosets of H. If
H £ 1, then G is not regular in this action and does not have constant movement. An
example of such a core-free subgroup H in a p -group G of exponent p is the cyclic
group generated by any non-central element. Such elements exist provided that G is
non-abelian.

Let H = (h) ~ Zn, and let K = (k) = Zm be such that K is a subgroup of Aut(//).
Then hk — hr for some positive integer r such that rm — 1 (mod n). Let G = H K be
the natural semi-direct product of H by K. Then G is given by the defining relations:
h" = 1, km = 1, k~lhk = hr, with rm = 1 (mod n).

Here every element of G is uniquely expressible as h'kJ, where 0 < / < n — 1,
0 < j < m — 1. Certain semi-direct products of this type also provide examples of
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groups with constant movement where the bound in Lemma 1.1 holds. (We note that, if
n = p, a prime, then this group G is a subgroup of the group A GL(l, p) = ZPZP_\.)

LEMMA 2.2. Let G := Zp Z^- denote a group defined as above of order p .2", where
2a\(p — 1) for some a > 1. Then G acts transitively on a set ft of size p and in this
action G has constant movement (p — l)/2.

PROOF. The group G is a Frobenius group and has up to permutational isomorphism
a unique transitive representation of degree p, on a set ft, say. Let g e Gbe such that
o(g) = p. Then by [3, Lemma 2.1], |F« - F| < m = (p - l)/2 for all subsets I\ and
if F(g) consists of every second point of the unique cycle of g , then |F(g)* — F(g)|
has size equal to m. Suppose now that g € G has order o(g) a power of 2. Then g
has one fixed point and (p — l)/o(g) cycles of length o(g) in ft. For each F c ft,
\Vg — T\ consists of at most o(g)/2 points from each cycle of g of length o{g) ,and
hence has size at most m. Since each non-identity element of G is either a 2-element
or has order p, it follows that G has constant movement equal torn. •

LEMMA 2.3. The groups A4, and A 5 acting transitively on a set of size 6 have
constant movement equal to 2.

PROOF. By [2, 4, 5] the groups A 4 and A 5 have bounded movement equal to 2.
Using similar argument as in [3, Lemma 3.3], we will show that they also have
constant movement 2. Let 1 ^ g e A4. Then g has order 2 or 3. If g has order 2
then g has two cycles of length 2 and hence |F(g)* — F(g)| = 2. Similarly, if g has
order 3 then g has two cycles of length 3 and again \T(g)g — F(g)| = 2. As for A5,
since every non-identity element of A 5 has order 2, 3 or 5, as above it is easy to see
that every element of A5 has movement equal to 2. Hence both of them have constant
movement 2. •

3. Proof of Theorem 1.2

Let m be a positive integer. Suppose that G is a transitive permutation group on
a set ft of size n with constant movement m, which have maximal degree. (Where
n = 2m if G is a 2-group and otherwise n = [2mp/(p — 1)J where p is the least odd
prime dividing \G\.) By [1, Theorem 1], for some prime q dividing \G\, there exists
a ^-element g of order q" (for some positive integer a) in G which is fixed point free
on ft. Then g has bt cycles of length q' for i = 1, . . . , a , where YH=\ ^'<?' = n

ba > 0. Now we consider two cases:
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Case 1: Suppose that q is odd. Then by the definition of V(g) we have,

q'-l

,-. 2

Suppose that a > 2, and consider h = gq° \ say. Then /i has baq
a~x cycles of length

q, so by the definition of every second point of every cycles of h we have,

-I 0~1 I I n 1

m = \T{h)\ = baq
a-x^— =

which is a contradiction. Hence a = 1 and therefore Z»fl = &i = n/g, and m =
(n/q)(q — l)/2. Suppose there exists an odd prime r dividing \G\ such that r < q,
and let x e G, o(x) = r. Then

n r — 1 2mo r — 1
m = \V(x)\ < — = ^-——.

r 2 ^ — 1 2r

So (g — l)r < ^(r — 1) and hence q < r which is a contradiction. Hence q is the
least odd prime dividing \G\, that is, we have proved that q = p.
Case 2: Now we suppose that q = 2, so as above we can assume that o(g) = 2° for
some positive integer a, and g is a fixed point free element on fi. Then g has fe, cycles
of length 2' for i = 1 , . . . , a , where n = J2i<a * '^ ' ^" > 0>

Suppose that a > 2, and consider g2° ' = /i, say. Then A has 6fl2
a ' cycles of

length 2, so

ba2"-1 = \r(h)\ = m = J ] A.2'-1 + ba2°-x.
a-l

The above equality is true if bt = 0 for each j < a. So all g-cycles have length 2°,
and hence 2" \n.
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We first suppose that G is a transitive permutation group on a set of size n = 2m
and G is a 2-group. As each 1 ^ g e G has constant movement m, | supp(g)| = 2m,
where supp(g) = {a e £2|a* ^ or}. Thus g is a fixed point free element on £2, that is,
Ga = 1 for each a e £2. Hence G is a regular 2-group.

Now suppose that p is an odd prime. Then G is not a 2-group. Since G is a
transitive permutation group with maximal degree, by [7, Theorem 6.4]

\2mp_\2mp_

lp-lj p-l

where p is the least odd prime dividing \G\ . (Since 2m < 2mp/(p — 1), so if G is
not a 2-group with maximal degree then |£2| ^ 2m.) Then by [2, 3, 4, 5], one of the
following holds:

(1) |S2| —p,m = (p -1)/2 and G is the semi-direct product ZPZ2« where 2" \ (p-l)
for some a > 1.
(2) G is the semi-direct product K P with K a 2-group and P = Zp is fixed point

free on £2; |£2| = 2*p, m = 2s~l(p — 1), and 2s < p, where K has p-orbits of
length 2s, and each element of K moves at most 2s {p — 1) points of £1. (We note
that A 4 = (Z2)2Z3 is a transitive permutation group of degree 6 which has constant
movement 2, this occur in this case where p = 3 and m = 2.)
(3) G is a p -group.
(4) p = 3, m = 2, and G = A5.

All groups in part (1) are examples for Theorem 1.2. In parts (2) and (4), except for
the groups A4 and As acting on a set of size 6, the other groups have some elements
whose movements are less than m, which contradicts the fact that G has constant
movement, (since G = KP has constant movement m, each non-identity element
k e K has (p — 1) cycles of length 2s. We consider the element kkg of K. This
element is fixed point free on £2 and so has movement p2s~l, which is a contradiction).
In part (3), by Burnside's lemma, G has a fixed point free element, say g, on a set
of size p" for some positive integer a. Since every fixed point free element has
order p with movement pa(p — l)/2 (see [3, Proposition 4]), o(g) = p and hence
move(g) = p"~l (p — l)/2. But, by our assumption, G has constant movement m and
som = p"~} {p — l)/2. Therefore, each non-identity element g of G is a fixed point
free element, so that G is a regular p-group of exponent p. This completes the proof
of Theorem 1.2. •

4. Intransitive examples

In this section we show that there certainly are families of examples of intransitive
permutation groups with constant movement, for any prime p. First for p = 2, we
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have the following example.

EXAMPLE 4.1. Let m = 2r~x > 1 and let G :== Zr
v Then G has T - 1 = 2m - 1

subgroups of index 2, say Hi,..., #2m-t- For i = 1, . . . , 2m — 1, let £2, denote the
set of two cosets of Ht in G, and set

2 m - l

£2 := ( J £2,,

Then G acts faithfully on £2 by right multiplication with 2m — 1 orbits £2,, . . . ,
each of length 2. Each nontrivial element g € G lies in exactly 2r~' — 1 = m — 1
of the subgroups #, and permutes nontrivially the remaining m = 2r - 1 points of £2,.
Thus each nontrivial element of G has m = 2r - 1 cycles of length 2 in £2. For any
subset F c £2 and any I jt g € G, the set (F* — F) consists of at most 1 point from
each of the G-orbits on which g acts nontrivially, and hence max\Ts — T\ = m. It
follows that G has constant movement m.

The following example shows that intransitive p -groups, p odd, with constant
movement do exist.

EXAMPLE 4.2. Let d be a positive integer, let G := Z^, let t := (pd - l)/(p - 1),
and let //i H, be an enumeration of the subgroups of index p in G. Define £2,
to be the coset space of Ht in G and Q = £2, U • • • U Qt. If g e G - {1}, then g lies
in (prf~' — l)/(p — 1) of the groups //, and therefore acts on Q as a permutation with
p(pd~l — l)/(p — l) fixed points and prf~' orbits of length p. Taking every second point
from each of these p -cycles to form a set F we see that move(g) = m > pd~x (p —1)/2,
and it is not hard to prove that in fact move (g) = m = pd~x(p — l)/2. Since g is
non-trivial, G has constant movement pd~l (p — l)/2.

The last example for p = 3, inclined to the following example not only are examples
of permutation groups with constant movement equal to 3rf~' and 2 respectively, but
also gives some positive answer to the Question 1.5 in [8].

EXAMPLE 4.3. Let £2 = £2i U £22 be a set of size 7, such that £2i = {1, 2, 3}
and £22 = {1', 2', 3', 4'}. Moreover, suppose that Z\ = ((1'2')(3'4'), (1'3')(2'4')> and
Z3 ^ <(123)(1'2'3')>

Then the semi-direct product G := Z\ZZ with normal subgroup Z\ is a permutation
group on a set £2 with 2-orbits which has constant movement 2, since each non-identity
element of G has two cycle of length 2 or two cycle of length 3.

Finally, one may ask whether there exist further examples of intransitive groups,
which have constant movement.
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