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Abstract We use the compensated compactness method coupled with some basic ideas of kinetic for-
mulation developed by Lions, Perthame, Souganidis and Tadmor to give a refined proof for the existence
of global bounded entropy solutions to the Le Roux system. This new method of the reduction of Young
measures can be applied to solve other problems.
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1. Introduction

We are concerned with the Cauchy problem for the following nonlinear hyperbolic system:

ut + 2
3 (u2 + v)x = 0,

vt + 2
3 (uv)x = 0,

}
(1.1)

with bounded measurable initial data

(u(x, 0), v(x, 0)) = (u0(x), v0(x)), v0(x) � 0. (1.2)

The scaling x → 2
3x allows one to reduce system (1.1) to the following:

ut + (u2 + v)x = 0,

vt + (uv)x = 0,

}
(1.3)

which was first derived by Le Roux in [3] as a mathematical model and is therefore called
the Le Roux system.

By simple calculations, two eigenvalues of system (1.1) are λ1 = u− 1
3D, λ2 = u+ 1

3D,
and two corresponding Riemann invariants are w(u, v) = u + D, z(u, v) = u − D, where
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D = (u2 + 4v)1/2. Thus, λ1 = λ2 at point (0, 0), at which strict hyperbolicity fails to
hold. The singularity of entropies at this singular point is the main difficulty in dealing
with system (1.1).

Lu [8] obtained the global existence of weak solutions to the Cauchy problem (1.3),
(1.2) by constructing four families of entropies and entropy fluxes of Lax type, while, in
the current paper, we apply the compensated compactness method and kinetic formula-
tion to give a refined proof for the following theorem.

Theorem 1.1. Let the initial data (u0(x), v0(x)) be bounded measurable and let
v0(x) � 0. Then the Cauchy problem (1.1), (1.2) has a global bounded entropy solution
(u, v) with the property v � 0.

Remark 1.2. A pair of functions (u(x, t), v(x, t)) is called an entropy solution of the
Cauchy problem (1.1), (1.2) if∫ ∞

0

∫ ∞

−∞
uφt + 2

3 (u2 + v)φx dxdt +
∫ ∞

−∞
u0(x)φ(x, 0) dx = 0,

∫ ∞

0

∫ ∞

−∞
vφt + 2

3uvφx dxdt +
∫ ∞

−∞
v0(x)φ(x, 0) dx = 0

for any test function φ(x, t) ∈ C1
0 (R × R

+) and

η(u(x, t), v(x, t))t + q(u(x, t), v(x, t))x � 0

in the sense of distributions for any convex entropy η(u, v) of system (1.1), where q(u, v)
is the entropy flux associated with η(u, v).

2. Proof of Theorem 1.1

First consider the Cauchy problem for the related parabolic system:

uε
t + 2

3 ((uε)2 + vε)x = εuε
xx,

vε
t + 2

3 (uεvε)x = εvε
xx

}
(2.1)

with bounded measurable initial data

(uε(x, 0), vε(x, 0)) = (uε
0(x), vε

0(x)), (2.2)

where (uε
0(x), vε

0(x)) = (u0(x), v0(x) + ε) ∗ Jε and Jε is a mollifier.

Lemma 2.1. Let (uε(x, t), vε(x, t)) ∈ C∞(R×(0, T ]) be a local solution of the Cauchy
problem (2.1), (2.2) and let v0(x) � 0. Then vε(x, t) � c(ε, t) > 0, where the positive
function c(ε, t) could tend to 0 as ε → 0 or t → ∞.

Proof. We rewrite the second equation of system (2.1) as follows:

Wt + 2
3uWx + 2

3ux = ε(Wxx + W 2
x ),
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where we omit the superscript ε and W = log v. Then

Wt = εWxx + ε

(
Wx − u

3ε

)2

− 2
3
ux − u2

9ε
. (2.3)

The solution W of (2.3) with initial data W0(x) = log vε
0(x) can be represented by a

Green function

Gε(x − y, t) =
1√
4πεt

exp
{

− (x − y)2

4εt

}
as follows:

W =
∫ ∞

−∞
Gε(x−y, t)W0(y) dy+

∫ t

0

∫ ∞

−∞

[
ε

(
wx− u

3ε

)2

− 2
3
ux− u2

9ε

]
Gε(x−y, t−s) dy ds.

(2.4)
Since vε

0(x) � ε and∫ ∞

−∞
Gε(x − ξ, t) dξ = 1,

∫ t

0

∫ +∞

−∞
|Gε

y(x − y, t − s)| dy ds = 2

√
t

πε
, t > 0,

it follows from (2.4) that

W � log ε +
∫ t

0

∫ ∞

−∞

(
− 2

3
ux − u2

9ε

)
Gε(x − y, t − s) dy ds

= log ε +
∫ t

0

∫ ∞

−∞

(
2
3
uGε

y(x − y, t − s) − u2

4ε
Gε(x − y, t − s)

)
dy ds

� log ε − C1

√
t

ε
− C2t

ε

= −C(ε, t)

> −∞.

Thus, vε(x, t) has a positive lower bound c(ε, t). �

Lemma 2.2. The viscous solutions (uε(x, t), vε(x, t)) of the Cauchy problem (2.1),
(2.2) exist globally and satisfy |uε(x, t)| � M , 0 < c(ε, t) � vε(x, t) � M , where M is
a positive constant independent of ε and c(ε, t) is a positive function, which could tend
to 0 as ε → 0 or t → ∞.

Proof. Multiply system (2.1) by ∇w(uε, vε) and ∇z(uε, vε), respectively. Then, by
simple calculations, we have

wt + λ2wx = εwxx − ε(wuu(uε
x)2 + wuvuε

xvε
x + wvv(vε

x)2) = εwxx − ε

D
wxzx,

zt + λ1zx = εzxx − ε(wuu(uε
x)2 + wuvuε

xvε
x + wvv(vε

x)2) = εzxx +
ε

D
wxzx.

⎫⎪⎬
⎪⎭ (2.5)

Thus, we obtain −M1 � z(uε, vε) � w(uε, vε) � M1 by applying the maximum principle
to (2.5), where M1 is a suitable large constant independent of ε. This shows that the
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region Σ = {(u, v) : −M1 � z(u, v) � w(u, v) � M1, v � 0} is an invariant region by
Lemma 2.1, so we get the a priori estimates

|uε(x, t)| � M, 0 < c(ε, t) � vε(x, t) � M, (2.6)

and hence obtain the proof of Lemma 2.2 by [6, Theorem 1.0.2]. �

In view of the estimates (2.6), there exists a subsequence (uε(x, t), vε(x, t)) of the
viscous solutions such that

(u(x, t), v(x, t)) = w� − lim(uε(x, t), vε(x, t)), v(x, t) � 0.

We shall show that the weak-� convergence is indeed pointwise almost-everywhere con-
vergence.

Now we use the kinetic formulation to give three families of entropy–entropy flux pairs
of system (1.1). Our idea is motivated partly by the argument in [2, 10], where some
other hyperbolic systems are treated by the kinetic formulation. Let ρ = D3, u = u.
Then for smooth solutions, system (1.1) is equivalent to the following:

ρt + (ρu)x = 0,

ut + ( 1
2u2 + 1

6ρ2/3)x = 0,

}
(2.7)

which is just the Euler equations of one-dimensional, compressible fluid flow with γ = 5
3 .

Any entropy–entropy flux pair (η̄(ρ, u), q̄(ρ, u)) of system (2.7) satisfies the additional
system

q̄ρ = uη̄ρ + 1
9ρ−1/3η̄u, q̄u = ρη̄ρ + uη̄u. (2.8)

Eliminating q̄ from (2.8), we have the entropy equation

η̄ρρ = 1
9ρ−4/3η̄uu. (2.9)

It is well known that there exists a non-positive bounded measure m(x, t, ξ) such that
the fundamental solution G(x, t, ξ) = G(ρ, ξ − u) of Equation (2.9) satisfies

∂tG + ∂x[θξ + (1 − θ)u]G = ∂ξξm(x, t, ξ),

especially m(x, t, ξ) = 0 for smooth solutions of system (2.7), and the entropies of sys-
tem (2.7) are generated by the following fundamental solutions (see [2,4,5,7]):

G0(ρ, ξ − u) = [(w − ξ)(ξ − z)]+,

G+(ρ, ξ − u) = (ξ − z)(ξ − w)+,

G−(ρ, ξ − u) = (w − ξ)(z − ξ)+,

since θ = 1
2 (γ − 1) = 1

3 and λ = (3 − γ)/2(γ − 1) = 1. Here we use the notation
x+ = max{0, x}.
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Precisely, one family of weak entropy of system (2.7) is given by

η̄0(ρ, u) =
∫

R

g(ξ)G0(ρ, ξ − u) dξ,

and the corresponding weak entropy flux is

q̄0(ρ, u) =
∫

R

g(ξ)
ξ + 2u

3
G0(ρ, ξ − u) dξ.

Two families of strong entropies of system (2.7) are given as follows:

η̄±(ρ, u) =
∫

R

g(ξ)G±(ρ, ξ − u) dξ,

and the strong entropy fluxes q̄± associated with η̄± are

q̄±(ρ, u) =
∫

R

g(ξ)
ξ + 2u

3
G±(ρ, ξ − u) dξ,

where g(ξ) is a non-negative smooth function with a compact support set in (−∞,∞).
Because g(ξ) ∈ C∞

0 (R), the Lebesgue integrals in the kinetic formulations make sense,
and hence the entropies given above touch the singular point (0, 0) and are compatible
with this singularity. More precisely, we have the following.

Lemma 2.3. Let η0(u, v) = η̄0(ρ, u), η1(u, v) = η̄+(ρ, u) and η2(u, v) = η̄−(ρ, u). Then
ηi(uε, vε)t + qi(uε, vε)x, i = 0, 1, 2, are compact in H−1 with respect to the viscous
solutions (uε, vε) obtained in Lemma 2.2, where qi(u, v) are the entropy fluxes associated
with ηi(u, v).

Proof. Let τ = ξ − w. Then

η̄+(ρ, u) =
∫ ∞

w

g(ξ)(ξ − z)(ξ − w) dξ

=
∫ ∞

0
g(τ + w)(τ + 2ρ1/3)τ dτ,

η̄+
ρ =

ρ−2/3

3

∫ ∞

0
g′(τ + w)(τ + 2ρ1/3)τ dτ +

2ρ−2/3

3

∫ ∞

0
g(τ + w)τ dτ,

since w(ρ, u) = u + ρ1/3, z(ρ, u) = u − ρ1/3. Thus,

η̄+
ρ = O(ρ−2/3) as ρ → 0.

Integrating by parts, we obtain that∫ ∞

0
g′(τ + w)(τ + 2ρ1/3)τ dτ = −

∫ ∞

0
g(τ + w)(2τ + 2ρ1/3) dτ

and hence

η̄+
ρ = −2ρ−1/3

3

∫ ∞

0
g(τ + w) dτ � 0. (2.10)
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By the chain rule, we have

η1
uu = η̄+

ρρρ
2
u + 2η̄+

ρuρu + η̄+
ρ ρuu + η̄+

uu,

η1
uv = η̄+

ρρρuρv + η̄+
ρuρv + η̄+

ρ ρuv,

η1
vv = η̄+

ρρρ
2
v + η̄+

ρ ρvv.

It is not difficult to see that η̄+(ρ, u) is smooth on the variable u, so by the entropy
Equation (2.9), η̄+

ρρρ
2
u = η̄+

uu(u2/(u2 + 4v)) is bounded; similarly, η̄+
ρρρ

2
vv and η̄+

ρρρuρv
√

v

are also bounded. Since η̄+
ρ = O(ρ−2/3) as ρ → 0, we can see that η̄+

ρuρu and η̄+
ρuρv

√
v

are both bounded by direct calculations.
Obviously, system (1.1) has a convex entropy

η�(u, v) =
u2

2
+

∫ v

0
log v dv

and the corresponding entropy flux

q�(u, v) =
4u3

9
+

2
3
uv log v.

We multiply system (2.1) by ∇η�(uε, vε) to obtain

η�
t + q�

x = εη�
xx − ε(η�

uu(uε)2x + 2η�
uvuε

xvε
x + η�

vv(vε
x)2) = εη�

xx − ε

(
(uε

x)2 +
(vε

x)2

vε

)
.

Hence, ε(uε
x)2 and ε(vε

x)2/vε are bounded in L1
loc. For simplicity, we will drop the super-

script ε.
Therefore, multiplying system (2.1) by ∇η1(u, v), we have

η1
t + q1

x = εη1
xx − ε(η1

uuu2
x + 2η1

uvuxvx + η1
vvv2

x)

= εη1
xx − εA(ρ, u)u2

x − εB(ρ, u, v)ux
vx√
v

− εC(ρ, u, v)v2
x − εI, (2.11)

where A(ρ, u), B(ρ, u, v) and C(ρ, u, v) are bounded and

I = η̄+
ρ (ρuuu2

x + 2ρuvuxvx + ρvvv2
x) = 3η̄+

ρ (u2 + 4v)−1/2((u2 + 4v)u2
x + (uux + 2vx)2)

is non-positive from (2.10).
Multiplying equality (2.11) by a test function φ, where φ ∈ C∞

0 (R × R
+) satisfies

φK = 1, 0 � φ � 1, K ⊂ S = suppφ is an arbitrary compact set and integrating over
R × R

+, we then have∫∫
S

2ε|I|φ dxdt = −
∫∫

S

εη1φxx − ε

[
A(ρ, u)u2

x + B(ρ, u, v)ux
vx√
v

+ C(ρ, u, v)
v2

x

v

]
φ dxdt

−
∫∫

S

η1φt + q1φx dxdt

� M(φ).
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Thus, ε(η1
uuu2

x + 2η1
uvuxvx + η1

vvv2
x) is bounded in L1

loc and hence compact in W−1,α for
a constant α ∈ (1, 2). Since

|η1
x| = |η̄+

ρ (ρuux + ρvvx) + η̄+
u ux| � C

(
|ux| +

∣∣∣∣ vx√
v

∣∣∣∣
)

,

the part η1
xx is compact in H−1. Noting the boundedness of η1

t + q1
x in W−1,∞, we obtain

the H−1 compactness of η1
t + q1

x by Murat’s lemma (see [9, 11]). A similar treatment
gives the proof for η2. Since

η̄0(ρ, u)ρ =
∫ 1

−1
(g(u + ρ1/3s) +

ρ1/3

3
g′(u + ρ1/3s))(1 − s2) ds

(see [7]), we can easily obtain the H−1 compactness of η0
t + q0

x by similar treatment.
Thus, we obtain the proof of Lemma 2.3. �

Finally, we use a new technique to reduce Young measures. Since the viscous solutions
(uε(x, t), vε(x, t)) are uniformly bounded in L∞ space, by using the representation theo-
rem of Young measures we may consider the family of compactly supported probability
measures νx,t. Without loss of generality we may fix (x, t) ∈ R × R

+ and consider only
one measure, ν. We apply the measure equation to obtain∫

g(ξ1)Gi(ξ1) dξ1

∫
h(ξ2)

ξ2 + 2u

3
Gj(ξ2) dξ2

−
∫

h(ξ2)Gj(ξ2) dξ2

∫
g(ξ1)

ξ1 + 2u

3
Gi(ξ1) dξ1

=
∫

g(ξ1)h(ξ2)Gi(ξ1)
ξ2 + 2u

3
Gj(ξ2) dξ1 dξ2

−
∫

g(ξ1)h(ξ2)Gi(ξ1)
ξ1 + 2u

3
Gj(ξ2) dξ1 dξ2,

where Gi is any one of the three fundamental solutions. Here and below we use the
bar to indicate the usual integration with respect to the Young measure; for example,
G(ξ) =

∫
G(ρ, ξ − u) dν(ρ, u).

The above equality holds for any non-negative smooth functions g, h with compact
support sets and this yields

Gi(ξ1)
ξ2 + 2u

3
Gj(ξ2) − Gj(ξ2)

ξ1 + 2u

3
Gi(ξ1)

= Gi(ξ1)
ξ2 + 2u

3
Gj(ξ2) − Gi(ξ1)

ξ1 + 2u

3
Gj(ξ2)

=
ξ2 − ξ1

3
Gi(ξ1)Gj(ξ2). (2.12)

In fact, if we choose

gn(x) ∈ C∞
0

(
ξ1 − 1

n
, ξ1 +

1
n

)
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such that gn � 0,
∫

R
gn(x) dx = 1, and

hn(x) ∈ C∞
0

(
ξ2 − 1

n
, ξ2 +

1
n

)

such that hn � 0,
∫

R
hn(x) dx = 1, then letting n → ∞, we obtain the desired result

(2.12). It is worth mentioning that the equality (2.12) plays a crucial role later in the
present paper, which is exactly [6, (47)] with θ = 1

3 .
Let

z− = inf
(ρ,u)∈supp ν

z(ρ, u), z+ = sup
(ρ,u)∈supp ν

z(ρ, u),

w− = inf
(ρ,u)∈supp ν

w(ρ, u), w+ = sup
(ρ,u)∈supp ν

w(ρ, u).

If we choose Gi = Gj = G+ and ξ1, ξ2 ∈ (w−, +∞), then we may rewrite (2.12) as

1
2

[
G+(ξ1)G+(ξ2)
G+(ξ1)G+(ξ2)

− 1
]

=
1

ξ2 − ξ1

[
uG+(ξ2)
G+(ξ2)

− uG+(ξ1)
G+(ξ1)

]
. (2.13)

Similarly, choosing Gi = Gj = G− and ξ1, ξ2 ∈ (−∞, z+), we have

1
2

[
G−(ξ1)G−(ξ2)
G−(ξ1)G−(ξ2)

− 1
]

=
1

ξ2 − ξ1

[
uG−(ξ2)
G−(ξ2)

− uG−(ξ1)
G−(ξ1)

]
. (2.14)

As in [5], we define

f±
0 (ξ) =

G±(ξ) − G±(ξ)
G±(ξ)

so that (2.13) and (2.14) take the equivalent form:

1
2f±

0 (ξ1)f±
0 (ξ2) =

1
ξ2 − ξ1

[
uG±(ξ2)
G±(ξ2)

− uG±(ξ1)
G±(ξ1)

]
. (2.15)

Let Iα(ξ) be a non-negative, smooth function with compact support set in (−1/α, 1/α)
satisfying Iα(ξ) → 1 as α → 0+, let ψα(ξ) � 0 be a unit mass mollifier and define
f±

α = (f±
0 Iα) ∗ ψα. Then, from (2.15), we have that

1
2f±

α (ξ1)f±
α (ξ2) =

1
ξ2 − ξ1

[
uG±(ξ2)
G±(ξ2)

− uG±(ξ1)
G±(ξ1)

]
Iα(ξ1)Iα(ξ2) ∗ ψα(ξ1) ∗ ψα(ξ2).

Owing to the boundedness of the left-hand side and the smoothness of the right-hand
side, we may now take ξ2 = ξ1 = ξ, which shows that

1
2 (f±

α (ξ)2) =
1

ξ2 − ξ1

[
uG±(ξ2)
G±(ξ2)

−uG±(ξ1)
G±(ξ1)

]
Iα(ξ1)Iα(ξ2)∗ψα(ξ1)∗ψα(ξ2)

∣∣∣∣
ξ2=ξ1=ξ

. (2.16)

If we now let α → 0+, then the left-hand side of (2.16) yields a positive measure,
whereas the right-hand side tends to (∂/∂ξ)(uG±(ξ)/G±(ξ)). Thus, uG+(ξ)/G+(ξ) and
uG−(ξ)/G−(ξ) are non-decreasing in (w−,∞) and (−∞, z+), respectively. In a similar
fashion, we find that uG0(ξ)/G0(ξ) is non-decreasing in (z−, w+).
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Case 1 (z+ � w−). If z+ � w−, then we choose Gi = G+, Gj = G0 and ξ1 = ξ2 = ξ

in (2.12) to obtain
uG+(ξ) G0(ξ) = uG0(ξ)G+(ξ).

Hence,
uG+(ξ)
G+(ξ)

=
uG0(ξ)
G0(ξ)

for ξ ∈ (w−, w+). In particular,

lim
ξ→w−+0

uG+(ξ)
G+(ξ)

=
uG0(w−)
G0(w−)

.

Similarly, we have
uG−(ξ)
G−(ξ)

=
uG0(ξ)
G0(ξ)

for ξ ∈ (z−, z+). In particular,

lim
ξ→z+−0

uG−(ξ)
G−(ξ)

=
uG0(z+)
G0(z+)

.

Therefore,

ū = lim
ξ→∞

uG+(ξ)
G+(ξ)

� lim
ξ→w−+0

uG+(ξ)
G+(ξ)

=
uG0(w−)
G0(w−)

� uG0(z+)
G0(z+)

� lim
ξ→z+−0

uG−(ξ)
G−(ξ)

� lim
ξ→−∞

uG−(ξ)
G−(ξ)

= ū

and hence uG+(ξ)/G+(ξ) and uG−(ξ)/G−(ξ) are constant in (w−,∞) and (−∞, z+),
respectively, by the monotonicity of the two functions.

Using the similar treatment in [5], we can finish the reduction of the Young measure
in this case. Indeed, it follows from (2.16) that (f±

α (ξ))2 = 0. Hence, f±
α (ξ) vanishes on

the support of ν and, in particular, by letting α → 0, so do f±
0 (ξ) and

f±
0 (ξ) =

G(ρ, ξ − u)
G(ξ)

− 1 = 0, (ρ, u) ∈ supp ν.

This shows that the Young measure must be a Dirac mass.

Case 2 (z+ > w−). If z+ > w−, then we choose Gi = G+, Gj = G− and ξ2 = ξ1 = ξ

in (2.12) to obtain uG+(ξ) G−(ξ) = uG−(ξ)G+(ξ). Hence,

uG+(ξ)
G+(ξ)

=
uG−(ξ)
G−(ξ)

for ξ ∈ (w−, z+). In particular,

lim
ξ→w−+0

uG+(ξ)
G+(ξ)

=
uG−(w−)
G−(w−)

, lim
ξ→z+−0

uG−(ξ)
G−(ξ)

=
uG+(z+)
G+(z+)

.
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Therefore,

ū = lim
ξ→∞

uG+(ξ)
G+(ξ)

� uG+(z+)
G+(z+)

= lim
ξ→z+−0

uG−(ξ)
G−(ξ)

� lim
ξ→w−+0

uG+(ξ)
G+(ξ)

=
uG−(w−)
G−(w−)

� lim
ξ→−∞

uG−(ξ)
G−(ξ)

= ū

and hence uG+(ξ)/G+(ξ) and uG−(ξ)/G−(ξ) are constant in (w−,∞) and (−∞, z+),
respectively, by the monotonicity of the two functions. Thus, the Young measure ν is
also a Dirac mass from the proof of case 1. This is contrary to the assumption z+ > w−
since w � z. Thus, only case 1, i.e. z+ � w− is permitted, and hence ν is a Dirac mass.
According to the compensated compactness method (see [1]), (uε(x, t), vε(x, t)) converges
to (u(x, t), v(x, t)) almost everywhere, which is a global bounded entropy solution to the
Cauchy problem (1.1), (1.2). Thus, we complete the proof of Theorem 1.1.
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