Renormalization


https://doi.org/10.1017/9781009401807

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

CAMBRIDGE MONOGRAPHS
ON MATHEMATICAL PHYSICS

General Editors: P. V. Landshoff, D. R. Nelson, D. W. Sciama, S. Weinberg

RENORMALIZATION

This title, first published in 1984, has been reissued as an Open Access
publication on Cambridge Core.

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

RENORMALIZATION

Anintroduction to renormalization, the renormalization group, and the
operator-product expansion

JOHN C.COLLINS

Illinois Institute of Technology

BE CAMBRIDGE

QP UNIVERSITY PRESS

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

CAMBRIDGE

UNIVERSITY PRESS

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi — 110025, India
103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

‘We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009401760

DOI: 10.1017/9781009401807
© Cambridge University Press 1984, 2023

This work is in copyright. It is subject to statutory exceptions and to the provisions
of relevant licensing agreements; with the exception of the Creative Commons version the
link for which is provided below, no reproduction of any part of this work may take
place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009401807 under a
Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use,
distribution and reproduction in any medium for non-commercial purposes providing appropriate
credit to the original work is given. You may not distribute derivative works
without permission. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties.
Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009401807

First published 1984
First paperback printing 1985
Reprinted 1987, 1989, 1992, 1995, 1998
Reissued as OA 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-40176-0 Hardback
ISBN 978-1-009-40179-1 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of
URLSs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


www.cambridge.org
www.cambridge.org/9781009401760
http://dx.doi.org/10.1017/9781009401807
http://dx.doi.org/10.1017/9781009401807
http://dx.doi.org/10.1017/9781009401807
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1017/9781009401807

2.1
22
23
24
25
2.6
2.7
2.8
29
2.10
211
2.12
213
2.14
215
2.16

31
311
312
313
314
32
33
331
332
333
34
341
342
35
36

Contents

Introduction

Quantum field theory

Scalar field theory

Functional-integral solution
Renormalization

Ultra-violet regulators

Equations of motion for Green’s functions
Symmetries

Ward identities

Perturbation theory

Spontaneously broken symmetry
Fermions

Gauge theories

Quantizing gauge theories

BRS invariance and Slavnov-Taylor identities
Feynman rules for gauge theories

Other symmetries of (2.11.7)

Model field theories

Basic examples

One-loop self-energy in ¢* theory
Wick rotation

Lattice

Interpretation of divergence
Computation

Higher order

Degree of divergence

¢ atd=6

Why may Z be zero and yet contain divergences?

Renormalizability and non-renormalizability
Renormalization group

Arbitrariness in a renormalized graph
Renormalization prescriptions

Dimensional regularization

Minimal subtraction

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press

[ N S

O

13
15
19
21
25
27
28
29
32
34
35
36

38
38
39
40
41
43

45
47
48
49
50
50
52
53
56


https://doi.org/10.1017/9781009401807

vi

36.1
36.2
36.3
364
37

4.1
42
43
44
44.1
442
45
46

51
52
5.2.1
522
523
53
531
532
533
534
54
55
5.5.1
5.5.2
5.6
5.7
5.71
572
573
5.74
5.7.5
5.7.6
5.8
5.8.1
5.8.2
5.8.3
59
59.1

Contents

Definition

d=6

Renormalization group and minimal subtraction
Massless theories

Coordinate space

Dimensional regularization
Definition and axioms
Continuation to small d
Properties

Formulae for Minkowski space
Schwinger parameters
Feynman parameters

Dirac matrices

?s and Sx)luv

Renormalization

Divergences and subdivergences

Two-loop self-energy in (¢3),

Fig. 5.1.2

Differentiation with respect to external momenta

Fig. 5.1.3

Renormalization of Feynman graphs
One-particle-irreducible graph with no subdivergences
General case

Application of general formulae

Summary

Three-loop example

Forest formula

Formula

Proof

Relation to ¥

Renormalizability

Renormalizability and non-renormalizability
Cosmological term

Degrees of renormalizability

Non-renormalizability

Relation of renormalizability to dimension of coupling
Non-renormalizable theories of physics

Proof of locality of counterterms; Weinberg’s theorem
Degree of counterterms equals degree of divergence
R(G) is finite if 6(G) is negative

Asymptotic behavior

Oversubtractions

Mass-shell renormalization and oversubtraction

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press

56
57
58
59
59

62
64
68
73
81
81
83
83
86
88
89
93
94
97
99
101
102
103
105
106
106
109
109
110
112
116
116
118
118
120
121
122
125
126
127
129
130
130


https://doi.org/10.1017/9781009401807

592
593
5.10
511
5.11.1
5.11.2
5113

6.1
6.2
6.2.1
6.2.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.1.1
7.1.2
713
72
73
7.3.1
732
733
14
74.1
15
75.1
752
753
754
7.6
7.6.1
7.6.2
7.6.3
1.1
7.8
79
7.10

Contents

Remarks

Oversubtraction on 1PR graphs

Renormalization without regulators: the BPHZ scheme
Minimal subtraction

Definition

MS renormalization

Minimal subtraction with other regulators

Composite operators

Operator-product expansion

Renormalization of composite operators: examples
Renormalization of ¢*

Renormalization of ¢2(x)¢2(y)

Definitions

Operator mixing

Tensors and minimal subtraction

Properties

Differentiation with respect to parameters in ¥
Relation of renormalizations of ¢2 and m*

Renormalization group

Change of renormalization prescription
Change of parametrization
Renormalization-prescription dependence
Low-order examples

Proof of RG invariance
Renormalization-group equation
Renormalization-group coefficients

RG equation

Solution

Large-momentum behavior of Green’s functions
Generalizations

Varieties of high- and low-energy behavior
Asymptotic freedom

Maximum accuracy in an asymptotically free theory
Fixed point theories

Low-energy behavior of massless theory
Leading logarithms, etc.
Renormalization-group logarithms
Non-renormalization-group logarithms
Landau ghost

Other theories

Other renormalization prescriptions
Dimensional transmutation

Choice of cut-off procedure

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press

vii

131
131
133
135
135
137
137

138
139
142
142
145
146
149
150
152
163
166

168
169
169
171
172
176
180
180
183
184
185
187
187
187
189
190
191
193
193
196
196
197
200
203
206


https://doi.org/10.1017/9781009401807

viil

7.10.1
7.10.2
7.10.3
7.10.4
7.10.5
7.10.6
7.11

7.12

8.1

82

821
822
823
824
83

83.1
83.2
84

84.1
84.2
843
844
84.5
8.5

85.1
852

9.1
9.2
9.2.1
9.2.2
9.23
9.3
93.1

10
10.1
10.1.1
10.1.2
10.1.3
10.1.4

Contents

Example: ¢* self-energy

RG coefficients

Computation of g, and Z; asymptotically free case
Accuracy needed for g,

mg

Non-asymptotically free case

Computing renormalization factors using dimensional
regularization

Renormalization group for composite operators

Large-mass expansion

A model

Power-counting

Tree graphs

Finite graphs with heavy loops

Divergent one-loop graphs

More than one loop

General ideas

Renormalization prescriptions with manifest decoupling
Dominant regions

Proof of decoupling

Renormalization prescription R* with manifest decoupling
Definition of R*

IR finiteness of C*(I')

Manifest decoupling for R*

Decoupling theorem

Renormalization-group analysis

Sample calculation

Accuracy

Global symmetries

Unbroken symmetry

Spontaneously broken symmetry

Proof of invariance of counterterms

Renormalization of the current

Infra-red divergences

Renormalization methods

Generation of renormalization conditions by Ward identities

Operator-product expansion
Examples

Cases with no divergences
Divergent example
Momentum space

Fig. 10.1.3 inside bigger graph

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press

208
208
209
213
216
216

217
219

222
224
225
225
226
226
229
230
231
232
233
233
236
237
239
239
240
242
243

244
245
247
249
251
252
253
254

257
258
258
260

262
262


https://doi.org/10.1017/9781009401807

10.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
104
10.5

11
11.1
11.1.1
11.1.2
11.2
113
11.4
12
12.1
12.2
1221
12.2.2
12.2.3
1224
1225
12.2.6
12.2.7
12.2.8
12.2.9
12.3
12.3.1
12.3.2
12.3.3
12.4
124.1
124.2
12.5
12.6
12.6.1
12.7
12.8
12.9
129.1
129.2
1293

Contents

Strategy of proof

Proof

Construction of remainder

Absence of infra-red and ultra-violet divergences in r(I')
R(I') — r(I) is the Wilson expansion

Formula for C(U)

General case

Renormalization group

Coordinate space

Short-distance singularities of free propagator
Zero temperature

Non-zero temperature

Construction of counterterms in low-order graphs
Flat-space renormalization

External fields

Renormalization of gauge theories

Statement of results

Proof of renormalizability

Preliminaries

Choice of counterterms

Graphs with external derivatives

Graphs finite by equations of motion

Gluon self-energy

BRS transformation of 45

Gluon self-interaction

(N4

Quark-gluon interaction, 8y, 8y ; introduction of B
More general theories

Bigger gauge group

Scalar matter

Spontaneous symmetry breaking

Gauge dependence of counterterms

Change of ¢

Change of F,

R,-gauge

Renormalization of gauge-invariant operators
Caveat

Renormalization-group equation
Operator-product expansion

Abelian theories: with and without photon mass
BRS treatment of massive photon

Elementary treatment of abelian theory with photon mass
Ward identities

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press

263
266
266
269
270
272
273
274

277
278
278
280
281
286
291

293
296
298
298
300
301
302
302
303
304
304
305
307
307
307
308
309
310
313
314
316
319
319
321
322
323
324
325


https://doi.org/10.1017/9781009401807

129.4
12.9.5
12.9.6
12.9.7
12.10

13
13.1
13.2
133
13.3.1
1332
1333
13.3.4
134
134.1
135
13.6
13.6.1
13.6.2
13.7
13.71
13.7.2
13.7.3

14
14.1
14.2
14.3
14.4
145
14.5.1
14.5.2
14.5.3
14.6
14.6.1
14.7
14.8

Contents

Counterterms proportional to 42 and ¢&- 42
Relation between e, and Z,

Gauge dependence

Renormalization-group equation

Unitary gauge for massive photon

Anomalies

Chiral transformations

Definition of

Properties of axial currents

Non-anomalous currents

Anomalous currents

Chiral gauge theories

Supersymmetric theories

Ward identity for bare axial current
Renormalization of operators in Ward identities
One-loop calculations

Non-singlet axial current has no anomaly
Reduction of anomaly

Renormalized current has no anomalous dimension
Three-current Ward identity; the triangle anomaly
General form of anomaly

One-loop value

Higher orders

Deep-inelastic scattering

Kinematics, etc.

Parton model

Dispersion relations and moments
Expansion for scalar current

Calculation of Wilson coefficients
Lowest-order Wilson coefficients
Anomalous dimensions

Solution of RG equation — non-singlet
OPE for vector and axial currents
Wilson coefficients — electromagnetic case
Parton interpretation of Wilson expansion
W, and W,

References

Index

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press

326
327
327
329
330

331
333
334
338
338
338
339
339
339
340
342
346
346
347
349
349
351
352

354
355
358
359
361
364
364
365
367
367
368
369
371
372

377


https://doi.org/10.1017/9781009401807

1

Introduction

The structure of a quantum field theory often simplifies when one considers
processes involving large momenta or short distances. These simplifi-
cations are important in improving one’s ability to calculate predictions
from the theory, and in essence form the subject of this book.

The first simplification to be considered involves the very existence of the
theory. The problem is that there are usually ultra-violet divergences caused
by large fluctuations of the field(s) on short distance scales. These manifest
themselves in Feynman graphs as divergences when loop momenta go to
infinity with the external momenta fixed. The simplification is that the
divergences can be cancelled by renormalizations of the parameters of the
action. Consequently our first task will be to treat the ultra-violet
renormalizations. Renormalization is essential, for otherwise most field
theories do not exist.

We will then expose the methods needed to handle high-energy/short-
distance problems. The aim is to be able to make testable predictions from a
strong interaction theory, or to improve the rate of convergence of the
perturbation expansion in a weakly coupled theory. The simplifications
generally take the form of a factorization of a cross-section or of an
amplitude, each factor containing the dependence of the process on
phenomena that happen on one particular distance scale. Such a factori-
zation is useful, because the coefficients of the perturbation expansion for a
process are large when the process involves widely different distance scales.

The industry called ‘perturbative QCD’ consists of deriving such
factorization theorems for strong interactions (Mueller (1981)) and explor-
ing their phenomenological consequences. We will only study the earliest of
these factorizations, the operator product expansion of Wilson (1969). We
will also discuss the theorems that describe the behavior of a theory when
the masses of its fields get large (Appelquist & Carazzone (1975) and Witten
(1976)). These large-mass theorems have their main uses in weak in-
teraction theories.

The presence of ultra-violet divergences, even though they are cancelled
by renormalization counterterms, means that in any process there are

1
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2 Introduction

contributions from quantum fluctuations on every distance scale. This is
both a complication and an opportunity to find interesting physics. The
complication is that the derivation of factorization theorems is made
difficult. The opportunity is given by the observable phenomena that
directly result from the existence of the divergences. A standard example is
given by the scaling violations in deep-inelastic scattering.

It is the renormalization group (Stueckelberg & Petermann (1953) and
Gell-Mann & Low (1954)) that is the key technique in disentangling the
complications. The infinite parts of the counterterms are determined by the
requirement that they cancel the divergences, but the finite parts are not so
determined. In fact, the partition of a bare coupling g, into the sum of a
finite renormalized coupling g and a singular counterterm Ag is arbitrary.
One can reparametrize the theory by transferring a finite amount from gy to
Ag without changing the physics: the theory is renormalization-group
invariant.

This trivial-sounding observation is in practice very useful, and far from
trivial. Suppose one has some graph whose renormalized value is large (so
that it is inadequate to use a few low orders of the perturbation theory to
compute the corresponding quantity). Then in appropriate circumstances it
is possible to adjust the partition of g, (viz., g, =gz + Ag) so that the
counterterm Ag cancels not only the divergence but also the excessively
large piece of the graph’s finite part. The large piece is now in the lowest
order instead of higher orders. Construction of factorization theorems of
the sort reviewed by Mueller (1981) provides many circumstances where
this trick is applicable. Without it the factorization theorems would be
almost powerless.

We see that the subjects of renormalization, the renormalization group,
and the operator product expansion are intimately linked, and we will treat
them all in this book. The aim will be to explain the general methods that
are applicable not only to the examples we will examine but in many other
situations. We will not aim at complete rigor. However there are many
pitfalls and traps ready to ensnare an unwary physicist. Thus a precise set of
concepts and notations is necessary, for many of the dangers are essentially
combinatorial. The appropriate basis is then that of Zimmermann (1969,
1970, 1973a, 1973b).

One other problem is that of choice of an ultra-violet cut off. From a
fundamental point of view, the lattice cut-off seems best as it appears in non-
perturbative treatments using the functional integral (e.g., Glimm & Jaffe
(1981)). In perturbation theory one can arrange to use no regulator
whatsoever (e.g,, Piguet & Rouet (1981)). In practice, dimensional reg-
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Introduction 3

ularization has deservedly become very popular. This consists of replacing
the physical space-time dimensionality 4 by an arbitrary complex number d.
The main attraction of this method is that virtually no violence is done to
the structure of a Feynman graph; a second attraction is that it also
regulates infra-red divergences. The disadvantage is that the method has
not been formulated outside of perturbation theory (at least not yet). Much
of the treatment in this book, especially the examples, will be based on the
use of dimensional regularization. However it cannot be emphasized too
strongly that none of the fundamental results depend on this choice.
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Quantum field theory

Most of the work in this book will be strictly perturbative. However it is
important not to consider perturbation theory as the be-all and end-all of
field theory. Rather, it must be looked on only as a systematic method of
approximating a complete quantum field theory, with the errors under
control. So in this chapter we will review the foundations of quantum field
theory starting from the functional integral.

The purpose of this review is partly to set out the results on which the rest
of the book is based. It will also introduce our notation. We will also list a
number of standard field theories which will be used throughout the book.
Some examples are physical theories of the real world; others are simpler
theories whose only purpose will be to illustrate methods in the absence of
complications.

The use of functional integration is not absolutely essential. Its use is to
provide a systematic basis for the rest of our work: the functional integral
gives an explicit solution of any given field theory. Our task will be to
investigate a certain class of properties of the solution.

For more details the reader should consult a standard textbook on field
theory. Of these, probably the most complete and up-to-date is by Itzykson &
Zuber (1980); this includes a treatment of the functional integral method.
Other useful references include: Bjorken & Drell (1966), Bogoliubov &
Shirkov (1980), Lurié (1968), and Ramond (1981).

2.1 Scalar field theory

The simplest quantum field theory is that of a single real scalar field ¢(x*).
The theory is defined by canonically quantizing a classical field theory. This
classical theory is specified by a Lagrangian density:

Z =(0¢)*/2 — P(), (2.1.1)
from which follows the equation of motion
Oo¢ + P(p)=0. (2.12)
4
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Here P(¢) is a function of ¢(x), which we generally take to be a polynomial
like P(¢) = m*$?/2 + g¢*/4!, and P'(¢) = dP/d¢. (Note that we use units
with h=c=1.)

In the Hamiltonian formulation of the same theory, we define a canonical
momentum field:

n(x)=0%/0¢ = ¢ = d¢/ot, (2.1.3)

and the Hamiltonian
H= j d3x(n?/2 + V?/2 + P(¢)). (2.1.4)

Physically, we require that a theory have a lowest energy state. If it does not
then all states are unstable against decay into a lower energy state plus a
collection of particles. If the function P(¢) has no minimum, then the
formula (2.1.4) implies that just such a catastrophic situation exists (Baym
(1960)). Thus we require the function P(¢) to be bounded below.

Quantization proceeds in the Heisenberg picture by reinterpreting ¢(x)
as a hermitian operator on a Hilbert space satisfying the canonical equal-
time commutation relations, i.e.,

[2(x), ()] = —i6PGE =7, | .. o
[¢(x), p(»)] = [n(x), n(y)] = 0} if x%=y° (2.1.5)

The Hamiltonian is still given by (2.1.4) so the equation of motion (2.1.2)
follows from the Heisenberg equation of motion

i0gp/0t=[¢, H]. (2.1.6)

A solution to the theory is specified by stating what the space of states is

and by giving the manner in which ¢ acts on the states. We will construct a

solution by use of the functional integral. It should be noted that ¢(x) is in

general not a well-behaved operator, but rather it is an operator-valued

distribution. Physically that means that one cannot measure ¢(x) at a single
point, but only averages of ¢(x) over a space-time region. That is,

¢, = fq&(x)f (x)d*x, (2.1.7)

for any complex-valued function f(x), is an operator. Now, products of
distributions do not always make sense (e.g., &(x)?). In particular, the
Hamiltonian H involves products of fields at the same point. Some care is
needed to define these products properly; this is, in fact, the subject of
renormalization, to be treated shortly.

The following properties of the theory are standard:
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(1) The theory has a Poincaré-invariant ground state |0), called the
vacuum.

(2) The states and the action of ¢ on them can be reconstructed from the
time-ordered Green’s functions

Gy(X1s- .., xy) = <O| TP(x,)... d(xx)| 0. (2.1.8)

The T-ordering symbol means that the fields are written in order of
increasing time from right to left.

(3) The Green’s functions have appropriate causality properties, etc., so
that they are the Green’s functions of a physically sensible theory.
Mathematically, these properties are summarized by the Wightman
axioms (Streater & Wightman (1978)).

Bose symmetry of the ¢-field means that the Green’s functions are
symmetric under interchange of any of the x’s. From the equations of
motion of ¢ and from the commutation relations can be derived equations
of motion for the Green’s functions. The simplest example is

0,G,(3, %) + <O| TP (¢(»)p(x)|0> = — i) (x — y). (2.1.9)

For a general (N + 1)-point Green’s function, we have N J-functions on the
right:

O,Gn+ 105 X1, x3) + O TP ($(y))(x,). .. p(xy)|0>
N
=—i) 09y —Xx)Gy_ 1 (X1sees X o gy X g 1eee s Xny). (2.1.10)

j=1
This equation summarizes both the equations of motion and the com-
mutation relations. Solving the theory for the Green’s functions means in
essence solving this set of coupled equations. It is in fact the Green’s
functions that are the easiest objects to compute. All other properties of the
theory can be calculated once the Green’s functions are known.

2.2 Functional-integral solution

The solution of a quantum field theory is a non-trivial problem in
consistency. Only two cases are elementary: free field theory (P = m?¢$?/2),
and the case of one space-time dimension, d = 1. The case d = 1 is a rather
trivial field theory, for it is just the quantum mechanics of a particle with
Heisenberg position operator ¢(¢) in a potential P(¢). (In Section 2.1, we
explained the case d = 4. It is easy to go back and change the formulae to be
valid for a general value of d.)
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For the case of ¢* theory, with

P(p)=m*¢?/2 + gp*/4!, (2.2.1)
solutions are rigorously known to exist if d = 2 or 3 (Glimm & Jaffe (1981)).
If d > 4 then no non-trivial solution exists (Aizenman (1981)). The cased = 4
is difficult; the difficulty is to perform renormalization of the ultra-violet
divergences beyond perturbation theory. As we will see the theory at d =4
is ‘exactly renormalizable’ in perturbation theory; this is the most
interesting case. For the most part we will ignore the difficulties in going
beyond perturbation theory. We will return to this problem in Section 7.10
when we discuss the application of the renormalization group outside of
perturbation theory.
If we ignore, temporarily, the renormalization problem, then a solution
for the theory can be found in terms of a functional integral. The formula for
the Green’s functions is written as

Gyl(Xgyeoesxy) =N J-[dA]eiS[A]A(xl). . A(xy). (222

(See Chapter 9 of Itzykson & Zuber (1980), or see Glimm & Jaffe (1981).) On
the right-hand side of this equation A(x) represents a classical field, and the
integration is over the value of A(x) at every space-time point. The result of
the integral in (2.2.2) is the N-point Green’s function for the corresponding
quantum field, ¢. In the integrand appears the classical action, which is

S[A] =f “. (2.23)

The normalization factor 4" is to give (0|0) =1, so that

N = { f [dA]eiS[’”}_ } 2.2.4)

Equivalent to (2.2.2) is the integral for the generating functional of
Green’s functions:

Z[J]= /Vj[dA]exp {iS[A] + J d4xJ(x)A(x)}, (2.2.5)

where J(x)is an arbitrary function. Functionally differentiating with respect
to J(x) gives the Green’s functions, e.g.,

52

1
<OITPxWI0> = 707 57005707 2L (2.2.6)

(J=0)-

It is somewhat delicate to make precise the definition of the integration
over A. The principal steps are:
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(1) ‘Wick-rotate’ time to imaginary values: t = — iz, so that space-time is
Euclidean. The exponent in the integral is then:

= Spual4] = — J drd3x[ — 04%/2 + P(A)]. (22.7)

With our metric, we have 042 = — (04/01)> — VA% We may subtract
out from # the minimum value of P(4); this subtraction gives an
overall factor in the functional integral, and it cancels between the
integral and the normalization factor (2.2.4). Therefore the Euclidean
action Sg,, is positive definite. The factor exp(— Sg,.) gives much
better convergence for large 4 and for rapidly varying 4 than does
exp (iS) in Minkowski space.

(2) Replace space-time by a finite lattice. We may choose a cubic lattice
with spacing a. Its points are then

x* = n"a.
where the n*’s are integers. They are bounded to keep x inside a spatial
box of volume V and to keep t within a range — T/2 to + T/2. The
integral

f [dATA(x,). .. A(xy) exp ( — Sgua[4]) (2.238)

is now an absolutely convergent ordinary integral over a finite number
of variables. The action Sg,, is given its obvious discrete
approximation.

(3) Take the continuum limit a — 0, and the limits of infinite volume V¥ and
infinite time T.

(4) Analytically continue back to Minkowski space-time.

The difficulties occur at step 3. Taking the limits of infinite T and V gives
divergences of exactly the sort associated with taking the thermodynamic
limit of a partition function — see below. Further divergences occur when
the continuum limit a — 0 is taken. In addition, the canonical derivation of
(2.2.2) gives an overall normalization factor which goes to infinity as a >0
or as the number of space-time points goes to infinity; this factor is
absorbed by the normalization 4"

The limits of infinite volume and time are under good control. They are
literally thermodynamic limits of a classical statistical mechanical system in
four spatial dimensions. Recall, for example, that in ¢* theory one can
write

S[4]=g"" f d*x(0A4%/2 — m24%/2 — A*/4)) (2.2.9)
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where 4 = g'/2 4. Thus the integral {[dA]exp (— S[4]) is proportional to
f [dA]exp{—(1/g)S[4— 4,9~ 1]}. (2.2.10)

This is the partition function of a classical system at temperature 1/g, when
the phase space is spanned by the field 4, and when the energy of a given
configuration is

SewalA]= Jd“x( — 0422+ m*A%/2 + A%/4)).

The identity between Euclidean field theory and certain classical statistical
mechanics systems has been fruitful both in working out the rigorous
mathematical treatment of quantum field theory (Glimm & Jaffe (1981))
and in finding new ways to treat thermodynamic problems (Wilson &
Kogut (1974)). Asis particularly emphasized in Wilson’s work, there is a lot
of cross-fertilization between field theory and the theory of phase tran-
sitions. The methods of the renormalization group are common to both
fields, and the continuum limit in field theory can be usefully regarded as a
particular type of second-order phase transition.

The thermodynamic limit gives a factor exp(— pTV), where p is the
ground state energy-density. This factor is clearly cancelled by .#". All the
remaining divergences are associated with the continuum limit a — 0. These
are the divergences that form the subject of renormalization. They are
called the ultra-violet (UV) divergences.

One notational change needs to be made now. In more complicated
theories, there will be several fields, and the functional-integral solution of
such a theory involves an integral over the values of a classical field for each
quantum field. It is convenient to have a symbol for each classical field that
is clearly related to the corresponding quantum field. The standard
notation is to use the same symbol. Thus we change the integration variable
in (2.2.2) from A(x) to ¢(x), with the result that

Q0| T(x,)...p(xy)|0> = A f [dp]ep(x,)...d(xy).  (2.2.11)

This is somewhat of an abuse of notation. However, it is usually obvious
whether one is using ¢ to mean the quantum field, as on the left-hand side,
or to mean the corresponding classical field, as on the right-hand side.

2.3 Renormalization

The difficult limit is the continuum limit a — 0. There are divergences in this
limit; this has been known from the earliest days of quantum elec-
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trodynamics (e.g., Oppenheimer (1930)). It is possible to say that the UV
divergences mean that the theory makes no physical sense, and that the
subject of interacting quantum field theories is full of nonsense (Dirac
(1981)). Luckily we can do better, for our ultimate aim need not be to
construct a field theory literally satisfying (2.1.2)—(2.1.5). Rather, our aim is
to construct a relativistic quantum theory with a local field as its basic
observable. These requirements are satisfied if we construct a collection of
Green’s functions satisfying sensible physical properties (for example, as
formulated in the Osterwalder—Schrader axioms —see Glimm & Jaffe
(1981)). We may further ask that we find a theory that is close in some sense
to satisfying the defining equations (2.1.2)-(2.1.5). Combining the func-
tional integral with suitable renormalizations of the parameters of the
theory satisfies these requirements.

The basic idea of renormalization comes from the observation that in
one-loop graphs the divergences amount to shifts in the parameters of the
action. For example, they change the mass of the particles described by ¢(x)
from the value m to some other effective value, which is infinite if m is finite.
Renormalization is then the procedure of cancelling the divergences by
adjusting the parameters in the action. To be precise, let us consider the ¢*
theory with

£ =(04,)%/2—m2AL/2 — gAL/A + A,. (2.3.1)
The subscript zero is here used to indicate so-called bare quantities, i.e.,
those that appear in the Lagrangian when the (04,)?/2 term has unit
coefficient. (We also introduce a constant term. It will be used to cancel a
UYV divergence in the energy density of the vacuum.) Then we rescale the
field by writing

Ay=2"%4, (232

so that, in terms of the ‘renormalized field’ 4, the Lagrangian is

P =Z0A%12—miZA%2 — g,Z*A%/4!

=Z0A*2 — miA*/2 — ggA*/4\. (2.3.3)
We have dropped A, from < since it has no effect on the Green’s functions.

The Green’s functions of the quantum field ¢ are now obtained by using
(2.3.3) as the Lagrangian in the functional integral (2.2.2). We let Z, m,,, and
g, be functions of the lattice spacing a, and we choose these functions (if
possible) so that the Green’s functions of ¢ are finite as a— 0. If this can be

done, then we have succeeded in constructing a continuum field theory, and
it is termed ‘renormalizable’. The theory may be considered close to solving
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(2.1.2)—(2.1.5). This is because the theory is obtained by taking a discrete
(ie., lattice) version of the equations and then taking a somewhat odd
continuum limit.

We will call m, the bare mass, and g, the bare coupling, and we will call Z
the wave-function, or field-strength, renormalization. It is also common to
call mg and gg the bare mass and coupling; but for the sake of consistency
we will not do this in this book.

Another way of viewing the renormalization is to write (2.3.3) as

P =0A4%2—m?24%/2 — gA*/4!
+5Z0A%)2 — Sm2 A%/ — 5gA% /4L, (2.3.4)

We will call the first three terms the basic Lagrangian and the last three the
counterterm Lagrangian. The renormalized mass m and the renormalized
coupling g are finite quantities held fixed as a—0. The counterterms
0Z=2Z—1, dm* =mj —m?, and g =gy —¢g are adjusted to cancel the
divergences as a—0. This form of the Lagrangian is useful in doing
perturbation theory; we treat 4%/2 — m?A?/2 as the free Lagrangian and
the remainder as interaction. The expansion is in powers of the re-
normalized coupling g. The counterterms are expanded in infinite series,
each term cancelling the divergences of one specific graph.

The form (2.3.4) for & also exhibits the fact that the theory has two
independent parameters, m and g. The counterterms are functions of m, g,
and of a.

We will discuss these issues in much greater depth in the succeeding
chapters. For the moment it is important to grasp the basic ideas:

(1) The self-interactions of the field create, among other things, dynamical
contributions to the mass of the particle, to the potential between
particles, and to the coupling of the field to the single particle state. Thus
the measured values of these parameters are renormalized relative to
the values appearing in the Lagrangian.

(2) These contributions, or renormalizations, are infinite, in many cases.
The most important theorem of renormalization theory is that they are
the only infinities, in the class of theories called ‘renormalizable’.

(3) The infinities are cancelled by wave-function, mass, and coupling
counterterms, so that the net effect of the interactions is finite.

(4) To make quantitative the sizes of the infinities, the theory is constructed
as the continuum limit of a lattice theory. The infinities appear as
divergences when the lattice spacing goes to zero.
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2.4 Ultra-violet regulators

In the last sections we showed how to construct field theories by defining
the functional integral as the continuum limit of a lattice theory. Ultra-
violet divergences appear as divergences when the lattice spacing, a, goes to
zero, and are removed by renormalization counterterms. The lattice
therefore is a regulator, or cut-off, for the UV divergences.

To be able to discuss the divergences quantitively and to construct a
theory involving infinite renormalizations, it is necessary to use some kind
of UV cut-off. Then the theory is obtained as an appropriate limit when the
cut-off is removed. There are many possible ways of introducing a cut-off, of
which going to a lattice is only one example. The lattice appears to be very
natural when working with the functional integral. But it is cumbersome to
use within perturbation theory, especially because of the loss of Poincaré
invariance. There are two other very standard methods of making an ultra-
violet cut-off: the Pauli—Villars method, and dimensional regularization.

The Pauli-Villars (1949) method is very traditional. In its simplest
version it consists of replacing the free propagator i/(p?> — m?) in a scalar
field theory by

i i
Sp(p,m;M)=p2 —5 -

= _ . (2.4.1)

As M — oo, this approaches the original propagator. The behavior for large
p has clearly been improved. Thus the degree of divergence of the Feynman
graphs in the theory has been reduced. All graphs in the ¢* theory, except
for the one-loop self-energy are in fact made finite. In the ¢* theory it is
necessary to use a more general form in order to make all graphs finite:

i i (m* — M3)
(p*—m?)  (p? = M}) (M- M)

i (m* — M?)

(PP - M) (MM

i (MP-m)(M]-m’)
(p* = m?) (p* = M3) (p> = M})’ (24.2)

Se(p,m; M, M) =

It is usually convenient to set M, = M ,.

Now the regulated propagator has extra poles at p?> = M?, or at p> = M1
and p? = M2. Since one of the extra poles has a residue of the opposite sign
to the pole at p> = m?, the regulated theory cannot be completely physical.
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It is normally true that a theory with an ultra-violet cut-off has some
unphysical features.

Perhaps the most convenient regulator for practical calculations is
dimensional regularization. There it is observed that the UV divergences
are removed by going to a low enough space-time dimension d, so d is
treated as a continuous variable. In perturbation theory this can be done
consistently (Wilson (1973)), as we will see when we give a full treatment of
dimensional regularization in Chapter 4. However it has not been possible
to make it work non-perturbatively, so it cannot at present be regarded as a
fundamental method.

Since it is only the renormalized theory with no cut-off that is of true
interest, the precise method of cut-off is irrelevant. In fact, all methods of
ultra-violet cut-off are equivalent, at least in perturbation theory. The
differences are mainly a matter of practical convenience (or of personal
taste). Thus dimensional regularization is very useful for perturbation
theory. But the lattice method is maybe most powerful when working
beyond perturbation theory; it is possible, for example, to compute the
functional integral numerically by Monte-Carlo methods (Creutz (1980,
1983), and Creutz & Moriarty (1982)).

Within perturbation theory one need not even use a cut-off.
Zimmermann (1970, 1973a) has shown how to apply the renormalization
procedure to the integrands rather than to the integrals for Feynman
graphs. The lack of fundamental dependence on the procedure of cut-off is
thereby made manifest. The application of this procedure to gauge theories,
especially, is regarded by most people as cumbersome.

2.5 Equations of motion for Green’s functions

We have defined a collection of Green’s functions by the functional integral
(2.2.2). (Implicit in the definition are a certain number of limiting
procedures, as listed below (2.2.6).) This definition we will take as the basis
for the rest of our work. First we must check that it in fact gives a solution of
the theory. This means, in particular, that we are to derive the equations of
motion (2.1.10) for the Green’s functions, thus ensuring that both the
operator equation of motion (2.1.2) and the commutation relations (2.1.5)
hold. (For the remainder of this chapter we will not specify the details of
how renormalization affects these results.)

It is convenient to work with the generating functional (2.2.5). We make
the change of variable 4(x) - A(x) + ¢f(x), where ¢ is a small number, and
f(x)is an arbitrary function of x*. Since the integration measure is invariant
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under this shift, the value of the integral is unchanged:
J[dA] exp {iS[A +ef]+ j(A + ef)J} = f[dA]exp{iS[A] + fAJ}.

(2.5.1)

Picking out the terms of order ¢ gives

fdﬁ,f@)J}dA]eXp{iS[A]+JAJH: 5jf)+J(y)] 0, (252

where, as usual, we define the functional derivative

——5S = A dp 2.53
5A(y)__[] VR (2.5.3)
Since f(y) is arbitrary, we get
. oS
J[dA]exp{lS[A] + JAJ}[léA—() +J(y )] (2.5.9)

Functionally differentiating N times with respect to J, followed by setting
J=0, gives the equation of motion (2.1.10). For example,

0= [left-hand side of (2.5.4)],_,

5 (
A f [dA]eiSfAl[A(x)i 5

I

M (x —
(y)+ (x y)]

N f[dA] " M{iAX)[ ~ OAW) - P(A(y)] +69x — )}

I

- JViElyf[dA]e"S“]A(x)A(y)

—iA f[dA] AP (A() + 89(x - y)
—1[3,<0| T¢(x)¢(y)I0> —i<0[TP(x)P($(1))|0) + ¥ (x — y)

10| T(x) |0> + 69 (x — y), (2.5.5)

5¢( )

which is equivalent to (2.1.9). Note that in the fourth line we have exchanged
the order of integration and of differentiation for the [] ,term. We have also
used the normalization condition (2.2.4). It is important that the derivative
of the quantum field (next-to-last line) is outside the time ordering, and
0S/0¢(y) in the last line is defined to be a shorthand for the combination of
operators in the previous line.
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This is somewhat paradoxical since we have the operator equation of
motion:

éS
=" = - — P(o),
55 = 09— P(®)
from which it is tempting to deduce that the Green’s function
<0| T¢(x)5S/6¢(y)|0) should be zero. However, in view of the work above
it is convenient to define this Green’s function by the functional-integral

formula
oS
SA(y)

Then, as we have seen, the [, is implicitly outside the time-ordering.
Bringing it inside the time-ordering gives a commutator, so that we get the
d-function term in (2.1.9) or (2.5.5).

The momentum-space version of the equation of motion (2.1.10) is often
useful. We define the momentum-space Green’s functions

oS .
<0|T¢WIO> = /Vj[dA]e‘S[‘lA(x)

Gn(Pys---sPN) = ~[d“x,...d“x,,,exp {i(py"xy + -+ Py xn) }Gu(Xy, - .., Xy)

=Gp(py,- ., PN)R1)* 6P (p, + -+ + py). (2.5.6)

The momenta p; are to be regarded as flowing out of the Green’s functions.
Translation invariance of the theory implies the é-function for momentum
conservation that is explicitly factored out in the last line of (2.5.6). A
convenient notation (which we will use often) is to write

Gu(py,---sPy)=<O|TH(p,)...d(py)]|0>. (2.5.7)

Implicit in this formula is the definition that the integrals over x defining the
momentum-space field ¢(p) are all taken outside the time-ordering, as
stated in (2.5.6). We will use a tilde over the symbol for any function to
indicate the Fourier-transformed function.

Fourier transformation of the equation of motion (2.1.10) gives

—q*<0|Td(@)(p,)...d(py)|0>
+<0ITP'($)(q)(p)...d(py)I0>

=—i ; CO|TE(py)---$(p;- )PP, 1)- - $(Pw)|0> 21)*6(g + p)). (2.5.8)

2.6 Symmetries

We now turn to the consequences of symmetries. As we will see, there are
many interesting problems in renormalization theory that stem from the
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following question: If a classical field theory has certain symmetries, does
the symmetry survive after quantization? Generally, it is the need for
renormalization of the theory that makes this a non-trivial question.

The symmetry properties are expressed in terms of Green’s functions by
the Ward identities. (Historically the earliest example was found by Ward
(1950) in QED.) If the symmetry is not preserved by quantization there are
extra terms called anomalies. In many cases there are no anomalies, so we
will derive the Ward identities in this section ignoring the subtleties that in
some cases lead to anomalies. Discussion of anomalous cases is given in
Chapter 13.

Consider a theory of N fields which we collectively denote by a vector
¢ =(¢,-..,dy). Our discussion is general enough to include the case of
fields with spin. We consider a symmetry group of the action S[¢]. Thisisa
group of transformations on the classical fields

¢-F[p;0]=¢), (2.6.1)
which leaves the action invariant:
S[¢']=S[¢]. (2.6.2)

Here o = (w?) is a set of parameters of the group, which we assume here to
be a Lie group, i.e., the w’s take on a continuous set of values. We let w = 0
be the identity: F[¢;0] =¢. It is easiest to work with infinitesimal
transformations:

OF;

6¢i = waawa

[¢;0] o= 6, 0;. (2.6.3)
(A summation convention on « is understood.)

In the quantum theory the symmetry is implemented as a unitary
representation U(w) of the group on the Hilbert space of states such that

U)oU) ' = F[¢;w]. (2.6.4)
Since the representation is unitary, we may parametrize the group so that
U(w) = exp (iw*Q,), (2.6.5)

where the generators Q, are hermitian operators which represent the Lie
algebra of the group:

[Qe Q4] = ic,4,9,. (2.6.6)

The normalizations are such that the structure constants c,, are totally
antisymmetric. The infinitesimal transformations are then given by:

8,0:(x) =i[Q,, $i(x) ] (2.6.7)
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There are a number of special cases, each with its own special features:

(1) Global internal symmetry: A finite-dimensional Lie group acts on the
fields at each point of space-time, with the same transformation at each

point. Thus
S, = —i(t) 9, (2.6.8)
where the ¢, form a hermitian matrix representation of the Lie algebra:
[t t5] =ic,pt, (2.6.9)

Single-particle states carrying this representation are annihilated by ¢,.
The Lagrangian is invariant.

(2) Global space-time symmetry: The group effectively is a transformation
on space-time; the Poincaré group and its extensions are the usual
cases. For a Poincaré transformation x*— A%x"+ a*, we have the
corresponding transformation of the fields:

¢i(x) = ¢ (Ax + a)R(A). (2.6.10)

Here R is a finite-dimensional matrix representation of the Lorentz
group (never unitary if non-trivial), acting on the spin indices of ¢. The
Lagrangian is not invariant. It transforms as

Z[p,x]—> ZL[d,Ax +a],

so that the action S = [d*x.# isinvariant. Infinitesimal transformations
of ¢ involve the derivative of ¢.

(3) Global chiral symmetry: This looks like a global internal symmetry but
acts differently on the left- and right-handed parts of Dirac fields (which
we have yet to discuss). Anomalies are often present — see Chapter 13.

(4) Supersymmetry: This is a generalized type of symmetry where Bose and
Fermi fields are related (Fayet & Ferrara (1977)). The only case that we
will discuss is the BRS-invariance (Becchi, Rouet & Stora (1975)) of a
gauge theory.

(5) Gauge, or local, symmetry: Any of the above symmetries may be
extended to a symmetry whose parameters depend on x:w =a(x). In
quantum theories, these are not really implemented by unitary
transformations. Their treatment is rather special. The elementary
examples are general coordinate invariance in General Relativity, and
gauge invariance in electromagnetism.

The basic tool for discussing symmetries is Noether’s theorem, which
relates them to conservation laws. This theorem in its most straightforward
form applies only to symmetries of the first three types.
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For a global symmetry, Noether’s theorem asserts that a conserved
current j* exists for each generator of a symmetry. Let the Lagrangian have
the infinitesimal transformation

F->L+w,L=%+wdY], (2.6.11)
so that the action is invariant. Define
0¥
=3 0,00 ———— Y. 2.6.12
= 20045, 6 2612
Then the equations of motion imply conservation of j¥, i.e.,
ojt/ox* =0. (2.6.13)

The generators of the symmetry group are

Q,= J.d3xj3. (2.6.14)
The canonical commutation relations imply that

[ja?(x)9 ¢,(Y)] = - i6a¢i(x)5(3)(x - Y), (lf xO = ,VO),
[Q. :(0)] = —id,0:(») (2.6.15)

as required by (2.6.7).

We need to consider not only transformations that are symmetries of the
quantum theory, but also ‘broken symmetries’. There are several cases (not
mutually exclusive). Let us define them, since there is a certain amount of
confusion in the literature about the terminology:

(1) Explicit breaking: The classical action has a non-invariant term. If
0, =0,Yy+ A, then the Noether currents are not conserved:
0,j% = A,. Animportant case is where this term is small, so that it can be
treated as a perturbation.

(2) Anomalous breaking: Even though the classical action is invariant, the
quantum theory is not, and there is no conserved current. The classical
action is important for the quantum theory, since it appears in the
functional integral defining the theory. The cause of anomalous
breaking is generally an ultra-violet problem: g, j; # 0 in the UV cut-off
theory, and the non-conservation does not disappear when the cut-off is
removed. (Cases are conformal transformations and some chiral
theories.)

(3) Spontaneous breaking: The action is invariant and the currents are
conserved (in the quantum theory), but the vacuum is not invariant
under the transformations.

Whether or not a symmetry is broken either spontaneously or anom-
alously is a dynamical question. That is, one must solve the theory, at least
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partially, to find the answer. Frequently, perturbation theory is adequate to
do this and lowest order or next-to-lowest order calculations suffice.
Renormalization is an integral part of treating anomalous breaking (see
Chapter 13), while renormalization-group methods are sometimes neces-
sary in treating spontaneously broken symmetry (Coleman & Weinberg
(1973)).

The case of spontaneous symmetry breaking that is not visible in
perturbation theory is often termed dynamical (Jackiw & Johnson (1973),
Cornwall & Norton (1973), and Gross (1976)). Anomalous breaking is
sometimes called spontaneous, but this is a bad terminology, because it
gives two very different phenomena the same name.

2.7 Ward identities

Ward identities express in terms of Green’s functions the consequences of a
symmetry (whether or not it is broken). One derivation applies the equation
of motion (2.1.10) to the divergence of a Green’s function of the current j*.
There are two terms: one in which the current is differentiated, and one in
which the 6-functions defining the time-ordered product are differentiated.
Thus a Ward identity expresses not only conservation of its current but also
the commutation relation (2.6.15), which is equivalent to the transfor-
mation law. The Ward identities are central to a discussion of the
renormalization of a theory with symmetries, expecially if spontaneously
broken.
Our derivation of Ward identities begins by making the following change
of variable:
A (x)—> A;(x) + fH(x)0,4;(x) (2.7.1)

in the functional integral for the generating functional Z[J]. Here 6,4, is, as
before, the variation of the field 4; under a symmetry transformation, and
f*(x) is a set of arbitrary complex-valued functions that vanish rapidly as
x— 0. We get

Z[J] = J[dA] exp {iS[A +%0,A] + Ji(4, +f%5,4)}. (272

(Here we assumed that the measure is invariant under the change of
variables (2.7.1).) The terms in (2.7.2) that are linear in f* give

0= J [dAexp (iS + J J-A>{ — OS[A + f5,A1/8£40) + '8, 4,)}

= j[dA] exp <iS + JJ 'A> {0,8..,(v) +1J'6,A,(y) }- (2.7.3)

Here j# , is the Noether current in the classical theory.
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The Ward identities follow by functionally differentiating with respect to
the sources J(x). Thus one differentiation gives

0
o O Tjz(»)$i(x)|0> = —i6(x — y)<0[3,4,()[0),  (2.74)

while a double differentiation gives

567 CO| T (w,(x)[0>

= —10“(w — )<0|T4,¢,(»)$;(x)[0>
—10W(x — y)<0| T ¢,(w)d,¢,(»)]0>. (2.75)
Note that, just as in our derivation of the equation of motion for Green’s
functions in Section 2.5, the derivative d/0y* is outside the time-ordering.
The general case is:

d T
@7<0!Tfa(y)il;11 b |X)|0>

N
=—i) 0 —x)<0[T,0, 0[] ¢,(x)]0. (2.7.6)
j=1 i#j
Important consequences of these Ward identities are obtained by
integrating over all y (with y° fixed). The spatial derivatives give a surface
term, which vanishes, so that we have, for example,

0 .
fd3ym<0| Tj(0$:(x)]0) = —i5(x® — y°)<0[3,¢:(x)|0>.

The spatial integral of j° is just the charge Q°. The time derivative acts either
on the charge or on the §-functions defining the time-ordering; so we find
that

<0|TdQ,/dt¢,(x)|0) + <O|[Q,, $:(x)]|0>6(x® — y°)
= —i6(x° — 3°)<0]3,4,(»)]0>. 2.7.7)
In this equation and its generalizations from (2.7.6), we may choose the
times of the fields ¢,(x;) not to coincide with y°. Therefore an arbitrary
Green’s function of dQ,/dt is zero, so that the operator dQ,/dt is zero. The
remaining part of (2.7.7) therefore gives:

<0|[Q,, $:(x)]|0> = —i{0[3,¢,(y)[0>. (27.8)
From (2.7.8) and its generalizations with more fields, we find that the Q,’s
have the correct commutation relations with the elementary fields ¢, to be

the generators of the symmetry group.
Finally, another specialization of (2.7.6) is to integrate it over all y* and to
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drop the resulting surface term. The result is that

N
0=} <0|T8,¢,,(x) [] $n(x)[0>
j=1 i¥j

N
=6,<0|T lj[1 b, (x)[0). (2.7.9)

All the above equations are true for the case of a completely unbroken
symmetry. The derivation breaks down at the first step if we have
anomalous breaking. (In Chapter 13 we will discuss the anomaly terms that
must then be inserted in the Ward identities to make them correct.) For an
explicitly broken symmetry, where 0-j = A # 0, we must add a term

N
0| TA, () [T ¢, (x)|0> (2.7.10)
i=1

to the right-hand side of (2.7.6).

In the case of a spontaneously broken theory the basic Ward identities
(2.7.4)—(2.7.6) remain true — we still have an exact symmetry. But the
integrated Ward identities (2.7.7) and (2.7.9) are no longer true. Equation
(2.7.9) must be false if the vacuum is not invariant, and the derivation fails
because the surface term is not zero. This is caused by the existence of zero-
mass particles. These Nambu—Goldstone bosons (Goldstone, Salam &
Weinberg (1962)) are characteristic of theories with a spontaneously
broken symmetry.

2.8 Perturbation theory

As an example, consider again ¢* theory, with classical Lagrangian
F =Z(04)*/2 —mEA?/2 — ggA*/4\. (2.8.1)
We will expand the Green’s functions in powers of the renormalized

coupling g, for small g. To expand the functional-integral formula (2.2.2) in
powers of g, we write

=L+ %, (2.8.2)
where %, is the free Lagrangian:
Zo=(04)*/2 —m?*4?)2, (2.8.3)

and % is the interaction Lagrangian:
Py = —gA*/4! +(Z — 1)(0A)*/2 — (mj — m?)A?/2 — (gg — g)A*/4\.
(2.8.4)
We will expand the renormalization counterterms, Z — 1, m3 — m?, and
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gg — g,in powers of g,so that all of the terms in %, have at least one power of
g. The series expansion of the Green’s functions is then obtained from (2.2.2)
as:

Gr(xy,Xp,...5Xy)

5, m) [[a1a0x)-- s [aty0) [ expiis,La)
5, @on) [[ad1] (a0 [ enpiis,La)

(2.8.5)

Here
So[A] = |d*y L, = |d*N0A4%/2 — m*4?)2)
is the free action.
Each of the terms in the series is a Green’s function in the free-field theory

(aside from a common normalization), so (2.8.5) is equivalent to the Gell-
Mann-Low (1951) formula:

Gy(xy,...,xy)

,.;o(i"/n !)( I1 J‘d4yj><0| Top(x)).. .q&,,-(x,\,)jlz—[1 RAVAI

j=1

5 (i”/n!)( 1 j d4y,~><0| TTI )10
n=0

i=1 j=1

(2.8.6)

Here ¢ is a free quantum field of mass m. It is the field generated from the
free Lagrangian %, =(0¢g)?/2 — m*¢}/2. Then % is the quantum in-
teraction Lagrangian, ¥ — .%,, which is a function of the free field ¢.

To compute the integrals in (2.8.5) it suffices to compute the generating
functional of free-field Green’s functions:

J[dA]exp(iSo[A] + fJA)

Z,[J]=
j[dA]eXp(iSo[A])

(2.8.7)

This is done by completing the square, i.c., by making the following change
of variable:

A(x)—> A(x) + Jd“yGF(x = JQ). (2.8.8)

Here, Gg(x) is the Feynman propagator satisfying
(O + MY)Ge(x) = — 16¥(x), (2.8.9)
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and a boundary condition that, after rotating to Euclidean space by

x® = —it, Gg(x)—>0 as x— co. Thus
dk i
= Hex . 2.8.1
Gr(x) (2n)4e E_—mitie (2.8.10)

The result is that
Z,[J] ——exp{ fd“xd“y](x)GF(x y)J(y)} (2.8.11)

Green’s functions of free fields are obtained by differentiating with respect

to J; for example
2

= Gg(x — y). (2.8.12)

We can now derive the well-known Feynman rules for the interacting
theory from (2.8.6). These can be given either in momentum or coordinate
space. In either case the Green’s function Gy, is written as a sum over all
possible topologically distinct Feynman graphs. Each graph I consists of a
number of vertices joined by lines. It has N ‘external vertices’, one for each
¢(x;), with one line attached, and some number, n, of interaction vertices.
The interaction vertices are of several types, corresponding to the terms in
the interaction Lagrangian (2.8.4). The vertex for the A% interaction has four
lines attached and the vertices for the 942 and A4? interactions have two
lines attached. The value of the graph, denoted I(I), is the integral over the
position y; of the n interaction vertices. The integrand is a product of
factors:

(1) Gg(w — z)for each line, where w and z are the positions of the vertices at
its end.

(2) A combinatorial factor 1/S(I").

(3) —igjp for each A* interaction.

(4) —i(mj — m?) for each A? interaction.

o) —i(Z- 1)62/6w“6w for each (94)? mteractxon the derivatives with
respect to w act on one of the propagators attached to the vertex.

For each Feynman graph a number of equal contributions arise in
expanding (2.8.5). If I' has no symmetries and if it has no counterterm
vertices, then this number is n!(4!)" so that the explicit n! in (2.8.5) and the 4!
in each interaction are cancelled. Graphs with symmetries have a number of
contributions smaller by a factor of the symmetry number S(I'). (For
example, the self-energy graph Fig. 2.8.1 has S =6.) The combinatorial
factor is then the inverse of S(I').
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- q

Fig. 2.8.1. A graph with symmetry fac- Fig. 2.8.2. A graph with a vacuum
tor S=6. bubble.

The denominator of (2.8.5) is the sum of all graphs with no external lines.
The result is to cancel all graphs in the numerator that have disconnected
vacuum bubbles (like Fig. 2.8.2.).

In momentum space each line is assigned a (directed) momentum k. The
Feynman rules are:

(1) A factor i/[(2n)*(k*> — m* + i¢)] for a line with momentum k.

(2) A factor (2m)* times a momentum conservation J-function for each
vertex (external or interaction).

(3) An integral over the momentum of every line.

(4) A combinatorial factor 1/S(I).

(5) —igp for each 4* interaction.

(6) —i(m — m?) for each 42 interaction.

(7) i(Z — 1)p? for each (94)? interaction, where p is the momentum flowing
on one of the propagators attached to the vertex.

The perturbation series in (2.8.5) need not be convergent, but only
asymptotic. Let Gy , be the sum up to order g” of the perturbation series for
the Green’s function G. Then it is asymptotic to Gy if for any n the error
satisfies

|Gy — Gy | =0(g""") (2.8.13)
as g — 0. In general, perturbation theory is asymptotic but not convergent.
This is rigorously known (Glimm & Jaffe (1981)) for the ¢* theory in the

cases that the space-time dimension is d =0, 1, 2, 3. (d = O is the case of the
ordinary integral

deexp( —m2x?%/2 — gx*/4)),

while d =1 is the quantum mechanics of the anharmonic oscillator.)
Physically, the reason for non-convergence is that when g < 0 the energy is
unbounded below and so the vacuum-state continued from g>0 is
unstable. (Dyson (1952) first observed this phenomenon in quantum
electrodynamics.)
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In later chapters we will assume (2.8.13). When we compute large-
momentum behavior, it will be important to understand the maximum
possible validity and accuracy of the calculations if the perturbation theory
is asymptotic but not convergent.

2.9 Spontaneously broken symmetry

Consider the ¢* interaction. If m? is positive and g is small, we have a theory
of particles of mass m slightly perturbed by the interaction. This interaction
is basically a repulsive d-function potential, as can be seen by examining the
Hamiltonian in the non-relativistic approximation. There is a symmetry
¢——¢.

But if m? is negative this interpretation is incorrect. The true situation can
be discovered by noticing that the functional integral (in Euclidean space) is
dominated by classical fields with the lowest Euclidean action, which is

Seaald] = |d*x[ —(04)?/2 + m*4%/2 + g4*/4!]. 29.1)

(Remember that (94) = — (04/dt)> — VA? is negative.) If m?>> 0, then
the minimum action field is 4 = 0. But, if m? < 0, then there are two minima ;

these are constant fields with P'(4)=0, ie, A=A, =./(—6m?/g) and
A=A_= — /(- 6m?*g).

We choose to impose the boundary condition A(x) - 4, as x — o in the
functional integral. (The condition 4 — A4 _ gives equivalent physics,
because of the 4 — — 4 symmetry of the action.) Then field configurations
with A4 close to 4, will dominate. We may understand this by observing
that field configurations with large regions where 4 isnotcloseto 4, or 4 _
will give small contributions to the Euclidean functional integral (2.2.8)
because their action Sg,, is so big. Indeed, a constant field with 4 not equal
to A, or A _ has infinitely more action than one with 4 = 4, or 4A_, and its
contribution to the integral is zero. One’s first inclination then is that the
only configurations that contribute have 4 >4, or A > A_ as x— .
However, other configurations contribute, because there are many of
them — one has to integrate over all possible fluctuations. However, one can
argue — even rigorously (Glimm & Jaffe (1981) — that in general A4 will be
closeto A, orto A_. A typical configuration of the classical field A4(x) will
be close to one of these values over almost all of space-time.

Given our choice of boundary condition 4 — A4, , even more is true: a
typical configuration is close to 4 = 4, almost everywhere, rather than to
either 4_ or A, .Thereason is that if it had a large region with A(x) close to
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A=A + + + +
AN
N\
d>1 d=1

Fig. 2.9.1. Illustrating transitions between regions with fields close to different
minima of the potential

A_ (Fig. 2.9.1), then there would be a contribution to the action pro-
portional to the size of the boundary between the regions of positive A(x)
and of negative 4(x). Only if the space-time dimension is d = 1 will we have
a finite contribution from the boundary. This special case is quantum
mechanics of a particle in a potential with two wells. The particle can tunnel
between the two wells.

In the case we have discussed, of a discrete rather than of a continuous
symmetry, the argument that A4 is close to 4, almost everywhere for the
important configurations is correct in all space-time dimensions greater
than one. The quantum field therefore has a vacuum expectation value close
toA,:

<0|p(x)|0) = Wf[dA]A(x)e“sm ~4A,.

In the case of a continuous symmetry, there is a continuous series of
minima of the potential. A field configuration can interpolate between
different minima without going over a big hump in the potential. The only
penalty comes from the gradient terms in the action. This suppresses
configurations that do not stay close to one minimum, but only in more
than two space-time dimensions. In one space-time dimension there is no
spontaneous breaking of a continuous symmetry (Mermin & Wagner
(1966), Hohenberg (1967), and Coleman (1973)).

Perturbation theory can be considered as a saddle point expansion about
the minimum of the action. We write 4(x) = 4'(x) + v where v = A4 .. Now
we treat A'(x) as the independent variable. We have

L =(0A4")2/2—M?*4"%/2 —gvA’3/3! —gA'*/4! + C. (29.2)
Here C = —m?v?/2 — gv*/4!, and M? = gv?/2 + m?* = — 2m? > 0. We now
have a theory of particles of mass M with both an 4"* and an 4'*

interaction. The symmetry is hidden; its only obvious manifestation is in
the relation between the 4’3 coupling and the mass and A’* terms:

gv = M(3g)'/%. (29.3)
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We will show later that renormalization counterterms are correctly given
by continuing in m? from positive m?. The vacuum expectation value of ¢
has corrections which can be computed in perturbation theory

<0|¢|0> =v+<0|¢’|0>
=v+0(g'?). (29.4)

Exactly similar methods can be applied if there is a continuous symmetry.
Then the Goldstone theorem tells us that there will be a massless scalar
particle for each broken generator.

2.10 Fermions

The field theories obtained by functional integration as in Section 2.2
are all theories of bosons. This follows from the symmetry of the Green’s
functions under exchange of fields (e.g, <O|T¢(x)¢(y)|0> =
{0|T¢(y)¢(x)|0>). In turn, this symmetry property follows from the
functional-integral formula (2.2.2) because the integration variables (the
values of the classical field 4(x)) commute with each other.

To get a theory with quantized fields, it is necessary to define something
like an integral over anticommuting variables. A rather small number of
properties of integration are needed to derive the equations of motion for
Green’s functions. Requiring these properties determines the integration
operation uniquely (Itzykson & Zuber (1980)).

As an example, consider the following Lagrangian for a free Dirac field:

£ =Jig — M. (2.10.1)

Here y is a four-dimensional column vector and {y a row vector, while
¢ =y"0,. The generating functional of Green’s functions is written as:

Znil=N j [dy d]exp (i f &+ f v+ J ./7n>. (2.102)

The fields and the sources 7(x) and 77(x) take their values in the fermionic
sector of a Grassmann algebra. In the lattice approximation the definition
of the integration in (2.10.2) is really algebraic (Itzykson & Zuber (1980)).
Green’s functions are defined by differentiating with respect to the sources.
One important difference between ordinary integration and Grassmann
integration will be important in treating gauge theories. The simplest case
of this difference is in the integral over two variables x and x of exp (ixax),
where a is a real number. For ordinary real variables the integral is

de dxel** =27 J dxé(xa) = 2m/a. (2.10.3)
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For Grassmann variables we get
J dxdxe'™* =ia. (2.10.4)

The overall normalization is irrelevant for our applications, for it is always
cancelled by the overall normalization factor in the functional integral.
What matters is that the a-dependence of (2.10.4) is inverse to that in
(2.10.3).

2.11 Gauge theories

A gauge symmetry is an invariance under a group G where the group
transformation is different at each space-time point. The earliest examples
were General Relativity (where G is GL(4), the group of linear transfor-
mations of the coordinate system), and electrodynamics (where G is the
group of phase rotations). Yang & Mills (1954) and Shaw (1955) generalized
the idea to a general group. Beg & Sirlin (1982) and Buras (1981) explain
some of the uses of gauge theories as theories of physics.
Let G be a simple group and let a matter field y transform as

Y (x) > exp (— igw*(x)e )y (x) = Ule(x)) ™ ' (x). (2.11.1)
Thefield ¢ is a column vector of components, and the hermitian matrices ¢,
form a representation of the group, with structure constants c,;, defined by

[t t5] =icygt,. 2.11.2)
The matrices U(w) form a representation of the group.

In order that the action be gauge invariant, we need a .covariant
derivative:

Dy = (0, +igA ). (2.113)

Here we have introduced the gauge potential A . It is a vector under
Lorentz transformation. As far as its gauge symmetry properties are
concerned, it can be written as a matrix A or in terms of components 4;:

A=Y A, (2.11.4)

It transforms under the gauge group as:
A, (x) = Ule(x) " '[A,(x) —ig™'0,]U(@(x)). (2.11.5)
To build an action, we need the field-strength tensor
Fuv = auAv - avAu + ig[Au’Av]’
Fi, = 0,A7 — 0,42 — gc,g,A8A4, (2.11.6)

which transforms as F - U " !FU.
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A gauge-invariant Lagrangian with spin § matter fields is

Liny = = (Fo, )} /4 + YD — M)y
= —trF, F*/2 + (i — M)y, (2.11.7)

where we assumed the conventional normalization of the t,’s, viz,
tr t,t; = 6,5/2. In an exactly similar way, an action can be set up using scalar
fields. If there are matter fields in several irreducible representations a term
for each is needed in #. The transformation (2.11.5) ensures that the
coupling g is the same for all matter fields if the group is non-abelian.
The form of the infinitesimal transformations is needed:
50)'/’ == igwa a'//a
8.9 =igw™yt,,
0,45 = 0,0 + gc,p 0P A,
0,F5, = gc g, 0°F?,. (2.11.8)
If the group is not simple, then it is the product of several simple groups,
e.g, SUR)®SU(2). For each there is a gauge field and an independent
coupling.

2.12 Quantizing gauge theories

A gauge theory such as the one defined by the Lagrangian (2.11.7) can be
solved by the functional integral. Thus, as an example, we can write for the
fermion propagator.

O] TY (W ()|0> = # g, J[dA] (dydy ]y (W () exp <i J—i” inv) :

(2.12.1)
In fact, a lattice approximation to the functional integral forms the basis of
Monte-Carlo calculations (Creutz (1983) and Creutz & Moriarty (1982)).
The only trouble with (2.12.1) is that it is exactly zero. To see this we observe
that, given any field configuration, we can make a gauge transformation on
it,asin (2.11.1) and (2.11.5). The new field configuration has the same action
as the old field. Thus the only dependence on the gauge transformation is in
the explicit y(x)§/(y). Now the gauge transformation is independent at each
space-time point. So (2.12.1) contains a factor

( [1 de(z))U“(x) ®U(y)

points z

= (number)( f dU(x)U(x)™! )(jd Uy)U( y)), (2.12.2)
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which is zero. (Note that the propagator is a matrix in the representation
space of the gauge group.)

The vanishing of (2.12.1) is not a fundamental problem, for we may
choose only to work with Green’s functions of gauge-invariant operators
(e.g, Yy, F s, F**, the Wilson loop (Wilson (1974) and Kogut (1983))). But
the vanishing is a disaster for formulating perturbation theory; for among
the basic objects needed to write the Feynman rules are the propagators for
the elementary fields. An elegant solution to this problem was given by
Faddeev & Popov (1967). The integral over all gauge fields is written as the
product of the integral over fields satisfying some given gauge condition
(such as 0-4* = 0) and of the integral over all gauge transformations. Any
field configuration can be obtained by gauge transforming some con-
figuration that satisfies the gauge condition. For a gauge-invariant Green’s
function, the integral over gauge transformations amounts to an overall
factor which cancels an inverse factor in the normalization. So the integral
over gauge transformations can be consistently omitted.

The new integral over fields with the gauge-fixing condition imposed also
provides a solution to the theory. But the gauge-variant Green’s functions
like (2.12.1) no longer vanish. It is necessary, moreover, to find the correct
measure for the integral; this was the key point of the work of Faddeev and
Popov.

These authors also constructed a slightly different formulation; it is this
formulation that is most often used, and that we will review now. A detailed
treatment and further references are to be found in Itzykson & Zuber (1980).
Here we will merely summarize the argument and derive the Ward
identities in the form that we will use them.

We will consider gauge conditions of the form F,[ 4, x] =f,(x). There is
one condition at each point of space-time and for each generator of the
group. The functional F, might be 9- 4% for example. The functions f,(x) are
any real valued functions of x.

Faddeev and Popov write an arbitrary Green’s function as

0)=AHg J [dA4][dy][d¥]X exp (iS;n,)A[4] [ ] 8(F, — 1,).

e (2.12.3)
Here S,,, is the gauge invariant action, and X is any product of fields. The
factor A[A] is a Jacobian that arises in transforming variables to the set of
fields that satisfy the gauge condition plus the set of gauge transformations.
The key result is that A[4] is a determinant, so that it can be written as

0|TX

A= J[dca] [de,]exp(iZ,.) (2.12.4)

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

2.12 Quantizing gauge theories 31

Here ¢, and ¢, are anticommuting scalar fields, called the Faddeev—Popov
ghosts. The so-called gauge-compensating Lagrangian is

Py =F6,F,[4,x], (2.12.5)

where 6_F, is the infinitesimal transformation of F, with w replaced by c.
For the case F,=0-4*

Ly =0"c(0,¢, + gc,g,cpA)) + divergence. (2.12.6)

We treat ¢ and ¢ as independent fields. They are not genuine physical fields,
as they do not obey the usual spin-statistics theorem.

A convenient form of solution to the theory is obtained by averaging over
all f,’s, with weight exp (— £~ ' [f2/2). This leaves gauge-invariant Green’s
functions unaltered, and gives the following formula:

O|TX|0y =N f [d fields] Xe'S (2.12.7)

with a different normalization. The integral is over all fields (4, ¥, ¥, c, é).
The action S contains three terms:

S= f XLy + Lo+ L) (2.12.8)

We have already defined the gauge-invariant Lagrangian by (2.11.7) and
&£, by (2.12.5). The gauge-fixing term is
Lo = —iF}/(20), (2.12.9)
where ¢ is an arbitrarily chosen parameter. (If desired, it may be absorbed
into a redefinition of F,.)
The advantage of the form (2.12.8) is that Green’s functions of the
elementary fields are defined as in a simple non-gauge theory. For a gauge-

invariant observable X the equations (2.12.3) and (2.12.7) define the same
objects as

O|TX[0Y =N, J [dAdydy]X exp (S,,,). (2.12.10)

If X is gauge variant, then all the definitions give different results, and
(2.12.7) depends on &. Quantities that depend on the choice of a gauge fixing
are called gauge dependent, of course. We see that gauge invariance of the
operators in a Green’s function implies gauge independence.

It is important to distinguish the concepts of gauge invariance and gauge
independence. Gauge invariance is a property of a classical quantity and is
invariance under gauge transformations. Gauge independence is a property
of a quantum quantity when quantization is done by fixing the gauge. It is
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independence of the method of gauge fixing. Gauge invariance implies
gauge independence, but only if the gauge fixing is done properly.

Gauge theories such as (2.11.7) have a dimensionless coupling if space-
time is four dimensional. General results, which we will treat in later
chapters, imply that the theories need renormalization. However these
same results imply that many more counterterms may be needed than are
available by renormalizing (2.11.7). In Chapter 12 we will prove that the
extra couplings are absent. The tools needed are the Ward identities for the
gauge symmetry. These we will prove in the next section. It is also necessary
to prove that the unphysical degrees of freedom represented, for example,
by the ghost fields c, and ¢, do not enter unitarity relations. This proof also
needs the gauge properties exhibited in the Ward identities (see Itzykson &
Zuber (1980)).

2.13 BRS invariance and Slavnov—Taylor identities

After gauge fixing, the gauge invariance of a gauge theory is no longer
manifest in the functional-integral solution. Slavnov (1972) and Taylor
(1971) were the first to derive the generalized Ward identities that carry the
consequences of gauge invariance. Their derivation was very much
simplified by Becchi, Rouet & Stora (1975) through the discovery of what is
now called the BRS symmetry of the action (2.12.8).

BRS symmetry is in fact a supersymmetry, that is, its transformations
involve parameters that take their values in a Grassmann algebra. Let 51 be
a fermionic Grassmann variable. Then the BRS transformation of a matter
or a gauge field is defined to be a gauge transformation with w* = ¢*6A. Thus

Ogrs¥ = —ig(c*OA)t Y = igt YA,
Sprst =ig¥t,c*o4,
OprsAp = (0, + gc,p,cP AL)OA. (2.13.1)
Observe that §4 is fermionic, so it anticommutes with fermion fields (c, ¢, y,
). The ghost fields transform as
OprsC” = —3GCyp,cPC70A,
OprsC, = F,04/€. (2.13.2)
(Note that ¢* and ¢, are not related by hermitian conjugation, contrary to
appearances.) Since %, , is invariant under gauge transformations, it is
BRS invariant. Hence

Oprs & = Opps( Lyt + Lyc)
= - (l/é)FaacélFa[A ,X] - (l/é)Faa'lécFa - EaaBRS(écFa)
=0. (2.13.3)
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In the second line we used %, = — ¢,0.F,, while to prove the last line zero
we anticommuted 6/ and c in the first two terms of the second line. In
addition we used the nilpotence of the BRS transformation:

2
<%) (¥ or § or A% or ¢*) =0,
A

Oers 36 =0 (2.13.4)
oA 7

which follows from anticommutativity of the ¢’s.
By applying the Noether theorem we find a conserved current:
Jhrs = g0y Lt — FD ¢ — (1/8)e- A*DHe
—4g(0"c,)cl e,y (2.13.5)
Although the BRS transformations involve Grassmann-valued para-
meters, the derivation of Ward identities given in Section 2.7 goes through
unchanged. For our purposes, we only need the integrated Ward identity
(2.7.9). A case of (2.7.9) applied to BRS invariance is called a Slavnov—
Taylor identity. A simple example is
0= dpps 0| TA5(x)c4()]0) /04
= = 0| T(9,¢, + gc,5,¢*A7)4(1|0>
+(1/8)<0| T Az(x)0- A*()|0>. (2.13.6)
We have defined the notation dg (qQuantity)/54 to mean that the 54 in the
BRS variation is commuted or anticommuted to the right and then deleted.
The most used cases of the Slavnov-Taylor identities are:
0 = 0gps<0|TXC,(x)[0> /6
= — (0| T(0ggs X/04)2,|0)> + (1/E)<O0|TX - 4%|0). (2.13.7)
Here X is a product of fields with total ghost number zero.
We will also need equations of motion. Let:

0% 0¥

v =ﬁ—aum=(im—/\/ﬂt//,
Ly =0(—iD—-M),
Lyp=—DF*— gUy e + (1/8)640- 4% + 9o (8P)c,,
L, = —0,D e,
L= =06 —9gc,,(0,65)A™. (2.13.8)

Then each of these is zero. Furthermore, for ¢ equal to any field in the
theory we have:

(O|TL4(x)X|0) =i{0|TSX/5¢(x)|0D, (2.13.9)
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where time derivatives in % are taken outside the time-ordering (as usual —
see Section 2.5).

2.14 Feynman rules for gauge theories

Feynman rules are given in Fig. 2.14.1 for the Lagrangian of (2.11.7), with
the gauge-fixing term F, = 0- A*. Note that these agree with the figures but
not the equations of Marciano & Pagels (1978). They are the rules for
quantum chromodynamics (QCD), the theory of strong interactions, if the
gauge group is SU(3). The fermions are the quarks and consist of several
triplets of SU(3), each with its own mass term. (In the conventional
terminology, the gauge field is called the gluon field and the gauge
symmetry is called the color symmetry of strong interactions. Each
irreducible representation in the quark field is called a flavor, and has a
label: u, d, s, c, b, etc.)

The same Lagrangian also describes quantum electrodynamics (QED) if
we change the gauge group to U(1). In that case there is but one gauge field
(the photon) and, since the group is abelian, the three- and four-point self-

1
w 14 ¢=I§—M+l£

p is PPy
Y RV VO .. (—g,,,+ z“p, (1—@))
p? +ie p*+ie
p )
c ___)_(_:- C = “S“’
p*+ie
—)—g—— = —igy"t,
o, U
Az A4
P ; = — g0, [ = 1 IGa, + (i — P + (P — 4,),2]
r
Al

a B .
A Ay = —ig?[CapeCysd i n = GG
+ Cayeclh(gx).guv - nggAu)
A" A; + cabcchc(gxxguv - gxuglv)]

Eu - )/—_ o =_gcnﬂypm
P p

A
Fig. 2.14.1. Feynman rules for the gauge theory defined by the Lagrangian (2.11.7).
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interactions of the gauge field vanish. Moreover, with the gauge fixing term
F[A] = 0- A there is no coupling to the ghost fields, so we may drop them
from consideration. The transformations on the matter fields are simple
phase rotations: i — €~ 4“y where q is the charge of the field (negative for
the electron field). The transformation of the gauge field is 4, > 4, + 0, .

2.15 Other symmetries of (2.11.7)

The Lagrangian (2.11.7) is gauge invariant. After gauge fixing we get
(2.12.8), which is not gauge invariant, but which has BRS symmetry. The
action (2.12.8) also is invariant under global gauge transformations — those
with constant w — because we chose the gauge fixing not to break this
symmetry.

There are also what in strong interactions are called flavor symmetries.
These are transformations that act identically on every member of an
irreducible representation of the gauge group. In this case they give
conservation of the number of each of the different flavors of quark. Other
flavor symmetries include the discrete symmetries of parity and time-
reversal invariance.

Charge-conjugation is also an invariance of (2.12.8), and its action on the
ghost fields is rather interesting. Let us define ¢, by the parity of the
representation matrices under transposition:

t,=¢,05(Y). (2.15.1)
In this and the following equations, the symbol (X) means that the

summation convention on repeated indices is suspended. The fermion and
gauge fields transform as usual:

At — Ate, (),

Y =1 y°y*) )", (2.15.2)
where 7, is a real matrix such that
fy =1ty 2.15.3)

The ghosts transform as:
- — &%, - — (2.15.4)
Consider the ¢* — ¢ — 47 and the A5 — A% — 4} Green’s functions. They
are invariant under global gauge transformations so only two couplings of
the gauge indices are possible: c,;, which is antisymmetric, and a symmetric

coupling which we can call d,;,. Charge-conjugation invariance prohibits
the symmetric coupling.
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2.16 Model field theories

Although the concepts of quantum field theory are very general, we have
reviewed them by examining mainly two specific models. The first was the
theory of a real scalar field (2.1.1), mostly with the ¢* interaction (2.2.1). The
second was a gauge theory (2.11.7) with matter described by some Dirac
fields. It should be clear that the general principles apply to any Lagrangian
Z. A field theory is specified by listing its elementary fields and giving a
formula for #. It is solved by a functional-integral representation of its
Green’s functions.

The aim of physics is to describe the real world. To the extent that a field-
theoretic description is the correct one, the fundamental problem in physics
is to find the correct field theory. In fact the Lagrangian (2.11.7) appears to
do this for strong and electromagnetic interactions if the gauge group and
matter fields are correctly chosen. Weak interactions can be included by the
Weinberg—Salam theory, and many speculations have been made about
extensions (see the proceedings of most recent conferences on high-energy
physics).

Our aim in this book would be badly served by only treating real
theories. One reason is that we wish to develop techniques and concepts
applicable to any field theory, for example not only to the many Grand
Unified Theories currently under discussion (see Langacker (1981) and
Ross (1981) for reviews), but also to the theories to be invented in the future.
As is usual in the subject, we will make use of field theories that are more
properly called models. The ¢* theory is an obvious case. Another
important reason for using models is to be able to discuss particular aspects
of the methods without having other complications to clutter up the
presentation. ’

Particular models will be introduced as needed. Some will recur often,
such as the ¢* theory and the simple gauge theory (2.11.7).

Another frequently used model is the ¢ interaction of a real scalar field:

L =(0¢)*/2 —m*p?/2 —gp3/3!. (2.16.1)
This is much more unphysical than the other models. It is not even
completely consistent. Because of the ¢* interaction, the energy is not
bounded below. This is manifest in the classical theory and true in the
quantum theory (Baym (1960)). Hence any state must catastrophically
decay. But the perturbation theory is well-defined, and somewhat simpler
than for the ¢* theory. So it proves very convenient to use the ¢ model in
treating the elements of the theory of renormalization within perturbation
theory.
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Another way of constructing models is to change the dimension, d, of
space-time from its physical value 4. One motivation for this is that the
renormalization problem becomes easier as d is reduced; the degree of
divergence of a Feynman graph decreases. As we will see in Chapter 4, it is
both useful and possible to treat d as a continuous variable, for the purpose
of computing the values of terms in the perturbation expansion.
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Basic examples

In the later chapters we will develop methods to treat large-momentum
behavior. The complete treatment becomes rather intricate at times, so this
chapter is devoted to exposing in their simplest form the issues we will be
discussing. We will do this by examining the self-energy graphin ¢> theory.
This will exhibit the basic phenomena which we will later be treating in
detail.

We will see that (in four-dimensional space-time) the graph is re-
normalized by a mass counterterm. Then the concept of ‘degree of
divergence’ will be introduced by varying d, the dimensionality of space-
time. This device will enable us to see how simple power-counting methods
determine what counterterms are needed. It will also introduce us to the
method of dimensional regularization.

The renormalization group will be introduced by examining the behavior
of the graph as its external momentum, p, is made large. By exploiting the
arbitrariness in the renormalization procedure, we can reduce the size of
higher-order contributions when p* is large.

3.1 One-loop self-energy in ¢°> theory
Consider the graph shown in Fig. 3.1.1 in the ¢3 theory of (2.16.1). We

define its contribution to the self-energy to be i times the value of the graph
with the external propagators removed:

a1 g’ 4 1
Z(p7) = 2(2n)4fd o s T ey e BERC A

The overall factor  is a symmetry factor.

k

|4
Fig. 3.1.1. One-loop self-energy graph in ¢* theory.
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3.1 One-loop self-energy in ¢* theory 39

When all components of k* get large, this integral diverges logarithmi-
cally. It is the simplest example of an ultra-violet divergence. As we will see,
the divergence can be cancelled by a mass counterterm. But to explain the
renormalization properly, we must discuss a number of other issues as well :

(1) The fact that if |k°| ~ |k|the divergence as k goes to infinity appears to
be much worse.

(2) A precise way of formulating the statement that the divergence is
cancelled by a mass counterterm.

(3) The arbitrariness inherent in the renormalization.

(4) The interpretation in coordinate space.

3.1.1 Wick rotation

The first of these problems is handled by recalling the Wick rotation into
Euclidean space that was used to define the functional integral. This
rotation determined the sign of the i¢ in the free propagator. The Wick
rotation involved starting with imaginary time ¢ = — it, then performing
the integral, and finally analytically continuing back to real time. In
momentum space, this forces us to work with k® = + iw, the opposite sign
appearing so that in the Fourier transformation e * is always a phase.

In the Euclidean formulation let us perform the k°-integral first. The pole
structure in the k°-plane is shown in Fig. 3.1.2, when p° is imaginary. In this
situation k? and (p + k)? are both negative, so that the integrand is positive
definite. Observe that the factor i coming from the Wick rotation combines
with the overall factor of i in (3.1.1) to make X, real. (We have d*k =
idewd3k.)

Now rotate p® back to a real value. If | p°|{ m then we have the situation
shownin Fig. 3.1.3: there is no obstruction to rotating the k° contour to run
along the real axis. It is only at this last step that there is a problem from the

A /kO
—po—Ep+k —p0+Ep+k
X X

e X X
—E Ey

Fig.3.1.2. The k°-plane when p° is  Fig 3.1.3. The k°-plane when p° is real,
imaginary. but |p°| is less than m.
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Fig. 3.1.4. The k°-plane when p° is real, but |p° is greater than m.

region of |k°| ~ |k|. To avoid the problem we merely have to define the
integral by rotating the k°-contour to run along the imaginary axis.

Now continue p° to the region |p°| > m. The case of negative p° is
illustrated in Fig. 3.1.4. Again we Wick-rotate to imaginary k°, but this time
we pick up a pole term. Now the pole term occurs only when (p°)? > m? +
(p+ k)* = E2,. Thus it contributes only in a finite region of k; the UV
divergence still comes from the integration over imaginary k°.

The moral of all this is that the UV divergence is essentially Euclidean,
i.e., we may regard k° as imaginary and k? <0, (p + k)> <0.

3.1.2 Lattice

We next need to quantify the divergence. The divergence comes from the
asymptotic large-k behavior of the integrand which is 1/(k?)?. Let us add
and subtract a term with this behavior:

s - ig? 4 1 B 1
' 32n (k2—m? +ig)[(p+ k> —m?+ie] (k* — 2 +ie)?

“ 1

¥ J d km}. (3.12)
The first integral is manifestly finite, for we have subtracted off the leading
asymptotic behavior of the integrand. To avoid introducing an extra
divergence at k? =0 we have subtracted 1/(k? — u?)? rather than 1/(k?)%.
Since we add this term back on, the value of y isirrelevant; X, is unchanged.
The second term, while divergent, is independent of p. This is the fact that
will enable us to cancel the divergence by a counterterm.

Of course we are manipulating divergent integrals, so that (3.1.2), as it
stands, makes no sense. We will remedy this defect by using the fact that the
theory is defined initially on a lattice. The propagators will then be different
functions of momentum. However, the structure of (3.1.2) will be unchanged
after imposing a cut-off, as we will now show.
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To define the functional integral we not only had to Wick rotate time, but
also had to put the theory on a space-time lattice, of spacing a. In the lattice
theory, let the free propagator of a particle of mass M be Sg(g; M, a). In the
limit ga — 0, this is just i/(g2 — M? + ig). But it is zero if ga > 1, since high-
momentum states do not exist on the lattice. (The reason is, of course, that
when one makes a Fourier transformation on a discrete space, one only uses
momentum modes with wave-lengths longer than a lattice spacing.) The
self-energy on the lattice is finite, and (3.1.2) now reads:

12

i
Z,(p,m;a)= 3§n4{fd4k[SF(k; m,a)Se(p + k;m,a) — Sp(k; u,a)*]

+ Jd4kSF(k;u, a)z}

= Zlfin(p, m, U, a) + Zldiv("n, M, a)' (31.3)

All the integrals are now convergent, so (3.1.3) is a correct version of (3.1.2).
As the lattice spacing goes to zero, the first integral approaches the first
convergent integral in (3.1.2). The second integral diverges, but is inde-
pendent of p. Thus (3.1.2) is not nonsensical, provided that the propagators
are implicitly replaced by lattice propagators wherever necessary.

3.1.3 Interpretation of divergence

No matter how it is manipulated, the self-energy diverges in the continuum
limit. The use of a lattice cut-off now enables us to quantify the divergence.
From (3.1.3)

21 32 Jd4kSF(k “,a) +21fm

2
—g 1 .
=_"_ dwd3k——————— + finite
32n* Lu; <i/a (w? + Kk + u?)?

2 a 3
= dk + finite
1 67‘[2 JO (k2 2)2
2
~16n?
Thus we can interpret the divergence as follows: Let X be (i times) the sum of

self-energy graphs. (As usual, the self-energy graphs are graphs for the
propagator that have the external lines amputated and that cannot be split

"9 I 1/a + finite asa—0. (3.1.4)
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Fig. 3.1.5. Summation of self-energy graphs into propagator.

into disconnected parts by cutting a single line.) Then the full propagator is
G,(p?) =i/(p> —m* — T + ie). (3.1.5)
This equation is illustrated in Fig. 3.1.5; the propagator is the sum of a
geometric series involving the self-energy. The actual mass m,,, of the
particle is determined by the pole position, p*> = m2,. Evidently m], is not
m? but m* + Z(p* = m%,,m*). In other words, the self-energy represents
the dynamical contribution to the mass coming from the interactions. The
divergence (3.1.4) is independent of p2, so it is precisely a contribution to the
mass. (We ignore higher orders for now.)
Traditionally, one observes that it is convenient to parametrize the
theory, not by the mass parameter m that cannot be observed directly but
by the physical mass m,. One writes the mass term in .Z as

—m¢*/2 = —ml ¢p?/2 —om>$*/2. (3.1.6)

The first term is left in the free Lagrangian, so that the free propagator is
i/(p? — mgh + ig). But the second term — called the mass counterterm — is
put into the interaction Lagrangian, and adjusted so that the full
propagator has a pole at p? = mgh. The counterterm exactly cancels the
dynamical contribution to the particle’s mass. This is the basic idea of
renormalization. It is physically irrelevant that m? happens to diverge.

In perturbation theory, m? is determined as a power series in g. To O(g?)
we have, in addition to Fig. 3.1.1, the graph of Fig. 3.1.6 corresponding to
the mass counterterm in (3.1.6). The self-energy to O(g?) with the new
parametrization is the sum of Figs.3.1.1 and 3.1.6. We call it the
renormalized self-energy:

Zr={Z,(* ;mﬁh,a) + 6m2}|a—'0
= Zmn(PZQmsh 1,0) + [5""2 + Eldiv]' (3.1.7)

AV
N

Fig. 3.1.6. Counterterm graph to the self-energy.
We adjust dm? first of all to cancel the divergence in X, 4;,, so that the term in

square brackets is finite as a—0. Then we adjust the finite part so that
om* + X g = — Zm.,(m,fh, m;h, ). (3.1.8)
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For the renormalized self-energy we find

s ig? a4k 1 _ 1
IR 3204 (K —ml +ig)[(p+k)* —md, +ie] (k*— u® +ie)?
— value at p* = m},. (3.1.9)

Note that the u-dependence cancels.
Equation (3.1.9) gives the value of the self-energy in the continuum theory
correct to O(g?).

3.1.4 Computation

One way to calculate X,; is to differentiate with respect to p2. (It is of
course a Lorentz scalar.) Integrating the result gives X,z ; the constant of
integration is fixed by the renormalization condition that Z,g(m?,) is zero.

We have:
_621R __1_)“__6_2
op? _2p2 op* 1R
. ,
= oo [d pp+ k) 3.1.10
_32”4P2fd k(kz"m2+i8)[(P+k)2—m2+is]2' G-1.10)

This is identical to what we would have obtained from the unrenormalized
expression (3.1.1) without regard to the fact that it is divergent. We could
have written it down directly without going through the long explanation
that we used. But then there would have been no defense to the argument
that we are manipulating meaningless quantities and that therefore
quantum field theory makes no sense.

Since (3.1.10) is finite it can be easily calculated by using a Feynman
parameter representation and then by shifting the k-integral:

0L, ig> [! p(p+k)
=———| d d*k :
op* 16n*p? ), xx [m2, — p*x — 2p-kx — k* —ie]?

_ g [ . p-[k +p(1—x)]
"~ 16n*p? Jodxxjd k m2, — p*x(1 — x) —k? —ig]?

=—g2fldx x(1 = x)

3207 |, [mZ —p*x(1—x)]
g2 0 1 5 5
=W5?U0dxln [m2, — p2x(1 —x)]}. (3.1.11)
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Using the condition X,z =0 at p> =m}, now gives

2 1 2 2
g myy — p x(1 —x)
Tr=——| dxln| 2"+ — | 3.1.12
IR 32n2_[0 xn[mgh(l—x+x2):| ( )

This integral can be worked out analytically.

3.2 Higher order

The graph of Fig. 3.1.1 is not the only divergent graph in the theory. In
Chapter 5 we will discuss the general theory of renormalization and we will
see how to extend the removal of divergences to all orders. In this section we
will only consider a class of graphs which have divergences generated
because Fig. 3.1.1 occurs as a subgraph. Examples are given in Fig. 3.2.1.

One property should be clear. This is that the divergences come from
subgraphs all of whose lines are part of a loop. A general way of
characterizing these subgraphs is to define the concept of a one-particle-
irreducible graph or subgraph. A one-particle-irreducible (1PI) graph is one
which is connected and cannot be made disconnected by cutting a single
line. A graph which is not 1PI is called one-particle-reducible (1PR). The
graphs in Fig. 3.2.1 are all one-particle-reducible, since they all have one or
more lines that when cut leave the graph in two disconnected pieces. The
self-energy subgraph of Fig. 3.1.1 consisting of the two lines in the loop is
1PI. This identical subgraph occurs several times in the graphs of Fig. 3.2.1.

We introduced a mass counterterm into the interaction, so that the

O —O0O—

(a)

(©
(@

Fig. 3.2.1. Graphs containing the one-loop self-energy as a subgraph.
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(@) ®)

(@
Fig. 3.2.2. Counterterm graphs to Fig. 3.2.1.

counterterm graph Fig. 3.1.6 cancels the divergence in Fig. 3.1.1. Clearly
the counterterm vertex can be used as an interaction anywhere in a graph.
Infact, all graphs containing it can be found as follows: (a) take a graph with
the loop of Fig. 3.1.1 occurring as subgraph one or more times, but with no
mass counterterm vertices; (b) replace one (or more) of the occurrences of
the loop by the counterterm. The terms generated from Figs. 3.2.1 (a)—(c)
are shown in Fig. 3.2.2.

Evidently, the sum of the original graph and its counterterm graph(s) is
just the original graph with every occurrence of the loop replaced by its
renormalized value —iX . Itis sensible to keep the counterterm associated
with the loop, thereby considering the loop plus the counterterm as a single
entity.

In the case of the graphs of Fig. 3.2.1 the result of this procedure is to
make the graphs finite. The generalization to an arbitrary graph will be
worked out in Chapter 5.

3.3 Degree of divergence

We saw how the Wick rotation ensured that the UV divergence of the one-
loop self-energy is a purely Euclidean problem. The divergence is from the
region |k*|— co, without any regard to direction. Thus, simple power-
counting determined that there is a logarithmic divergence. The power-
counting involves merely counting the powers of k in the integral for large k.
The divergence is logarithmic as the lattice spacing, a, goes to zero.
Power-counting in this fashion works for a general graph to determine
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what is called either the ‘overall degree of divergence’ or the ‘superficial
degree of divergence’. This we will discover in Chapter 5. There we will also
see how the value of the degree of divergence determines the particular
counterterm vertices needed for a theory. This will enable us to determine
whether or not a theory is renormalizable by invoking arguments revolving
around the dimension of the coupling.

In this section we will vary the dimensionality, d, of space-time in the
calculation of the self-energy graph, Fig. 3.1.1. We can then explore the
relation between the degree of divergence, as determined by power-
counting, and the momentum dependence of the counterterm.

The integral for Fig. 3.1.1 is now

)
1g 1
2,m?,d)= d%k . —. (331
Z,(p,m’.d) 2(21:)"J (k* —m? +ig)[(p + k)* — m* + ig] 3.3.1)
The space-time has one time dimension and d — 1 space dimensions. In the
Feynman rules the factors (2n)* get replaced by (27)%, since they arise from
the result

f dixei* = 2m)! 5D (k). (3.3.2)

The number of powers of k in the integral is now d — 4; we call this the
degree of divergence of the graph. If d is less than four, then the graph is
convergent. But whenever d is greater than or equal to four, the graph
diverges. Our discussion in the previous sections tells us we must try to
renormalize it by adding a counterterm.
Now, differentiating once with respect to p* gives convergence if d = 4:
9z, _—ig’ j g (p + K , (3.33)
op* (2ny (k* —m?)[(p + k) — m*]?
with the degree of divergence of the integral being reduced by one to d — 5.
If d =5 the integral diverges logarithmically. However one might surmise
that the divergence comes from the piece of the integrand proportional to k,
and that symmetrizing by k — — k would kill the divergence. This is in fact
true, but let us be more simple-minded.
Differentiating again with respect to p gives a result with degree of
divergence d — 6:

’%, _ ig? d‘,k{2(p +k)(p+k),—g,[(p+k?— mz]} (334)
optop* () (k? = m*)[(p+k)* —m?]?

To recover X, at d =5 we integrate twice. There are more constants of

integration that appear as an additive contribution of the form: 4 + B, p".
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However, we must require Lorentz invariance of X, so the B, term is
eliminated, and we are left with a mass term as the only counterterm. This is

the first and simplest example of the use of a symmetry argument to
determine the form that we will allow for a counterterm.

331 ¢3atd=6

Let us now go to d = 6. Differentiating X, three times gives a finite result
with degree of divergence d — 7. Integrating to obtain X, gives arbitrary
integration constants of the form 4 — Bp?, where again we have used
Lorentz invariance. If we went to the lattice we would find divergences
proportional to 1/a%, m*In(a) and p®In (a). The fact that these terms have
dimension 2 corresponds to the fact that the integral for £, has degree of
divergence 2. To make it finite we must not only use a mass counterterm but
also a counterterm proportional to p?; the total we will call 5m* — §Zp2.
This is generated by a counterterm

—om?p?/2 + 5Z(9¢)?/2 (3.3.5)
in the Lagrangian.

Evidently the value of the degree of divergence is reflected as the
maximum number of derivatives or powers of p in the counterterms.
Equally, it is reflected in the integration constants that appear when we
recover X, from the differentiated X,. These two phenomena happen for a
general graph, as we will see later. The method of proof will in fact be to
differentiate each graph enough times with respect to its external momenta
until it is finite.

The (0¢)? counterterm in (3.3.5) is of course an example of the wave-
function renormalization introduced in Section 2.3. We can interpret it
physically by examining the propagator. The propagator for the bare field
can be expressed in terms of the propagator of the renormalized field:

G0 =<0| T o(p)$0(0)|0>
=Z<0|T$(p)$(0)|0>
=iZ/(p* —ml, — L, — Om* + 6Zp* + ie)
=iZ/(p? — mg,, —Zr) (3.3.6)
Note the distinction between bare and renormalized fields. The residue of
the particle pole in the propagator of an interacting field is in general not
unity:
G0 =iR)/(p* — m2, + i) +finite, as p>—omp. (3.3.7)

Examination of its spectral representation demonstrates that 0 < R(0) < 1,
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because the field ¢, has canonical equal-time commutation relations. (The
proof is given, for example, in Section 16.4 of Bjorken & Drell (1966).)

Now we can always change the definition of ¢ = Z~'/*¢, by multiplying

Z by a finite factor. So it is possible to adjust Z so that the renormalized

propagator has a pole of unit residue at p? =m2,:

G, =1/(p* —m}, +ie) + finite, as p*>->m}. (3.3.8)

In this case we identify R, with Z. The renormalized self-energy satisfies

T R=0Z,/0p?=0 at p*=ml. (3.39)

When integrating to obtain X,; from the finite derivative of X,, this

condition enables the integration constants to be determined. It is called the
mass-shell renormalization condition.

3.3.2 Why may Z be zero and yet contain divergences?

As a property of the exact theory we know that 0 < Z < 1, if we adopt the
renormalization condition (3.3.9); Z is definitely finite. However its
perturbation expansion starts at 1 + g?[ClIn(a) + finite] + ---. (Here Cis a
constant.) This seems to be infinite as a— 0, rather than finite. We resolve
the contradiction by realizing that we should not expect higher-order terms
to be small if the one-loop correction is large. For example, we could have

the series
1 D
Z= [1 —g*[(C/D)In(a) + const.]] ’ (3.3.10)

where D is a positive number. Then Z —0 as a — 0 even through the one-
loop term goes to infinity. In any event we see that C must be positive
(otherwise if we fix a and let g— O there is a region with Z > 1).

It would appear impossible to derive a formula like (3.3.10) since it
involves summing all orders of perturbation theory. Moreover it involves
an analytic continuation from within its radius of convergence
|In(a)| < D/g?C to |In(a)| = co. This seems to make no sense at all since
perturbation series are in general asymptotic series rather than convergent
series. However, we will see in Chapter 7, on the renormalization group,
that we can find a systematic method of calculating Z and the other
renormalizations in the limit g —0. It relies on the so-called asymptotic
freedom of the theory. The behavior (3.3.10) will turn out to be essentially
correct, in asymptotically free theories.

No matter what the truth is, it should be clear that the divergences in
perturbation theory as a— 0 need not be reflected as divergences in the
exact theory, but only as singularities.
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3.3.3 Renormalizability and non-renormalizability

Suppose we now go to adimensiond > 6. For example, let us set d = 8. Then
the one-loop self-energy has a quartic divergence. The necessary counter-
terms contain up to four derivatives of the field:

—om*p?/2 — 6Z(0¢)*/2 + E(O ¢)*/2. (3.3.11)
The quartic term is not of the form of any term in the original Lagrangian,
so it cannot be obtained by renormalization of the Lagrangian. When this
situation occurs the theory is called non-renormalizable. Non-
renormalizability is a priori a good reason for dropping the theory from
consideration. There are possible ways to avoid this, but we will leave
discussion of this until later.

There is a simple argument that helps in the determination of whether or
not a theory is renormalizable. It links dimensional analysis and power
counting. Consider a one-particle-irreducible graph I'. Let its degree of
divergence be 8(I'), and let its mass dimension be d(I"). Now I'is the product
of a numerical factor, a set of couplings, and an integral. As we see from
(3.3.1) the degree of divergence is the dimension of the integral. Therefore, if
we let A(T") be the dimension of the couplings in I', we have

dI)=46)+ A). (3.3.12)
Now consider the counterterms to I'. These form a polynomial of degree
d(I') in the external momenta. For each term C in the polynomial, let §(C) be
the number of derivatives and let A(C) be the dimension of the coefficient, so
that its dimension is the same as I':

» HC)+ A(C)=d(). (3.3.13)
Now, the maximum number of derivatives in the counterterms is
o) =dI)—AT).

If the couplings have negative dimension, then 6(I") can be made arbitrarily
large by going to a graph of high enough order. In the absence of
miraculous cancellations this tells us to expect non-renormalizability. If the
couplings have zero or positive dimension, we have a finite number of
counterterm vertices, since — A(I') is bounded above by zero and d(T")
decreases as the number of external lines increases.

If the couplings never have negative dimension, we observe that the
coefficients of the counterterms satisfy

A(C)=d(T) - §(C)
>d(T) - 8(I)
=A(),
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so that these coefficients also have non-negative dimension. This, in the
simplest cases, is sufficient to ensure renormalizability.

For example, in the ¢> theory ¢ has dimension d/2 — 1. (Recall that ¥
has the dimension of an energy-density.) Then A(g) = 3 — d/2.So if d > 6 the
theory is non-renormalizable, as we saw by example. If d < 6, there are only
a finite number of possible counterterms, since these are restricted to have
coefficients of non-negative dimension.

3.4 Renormalization group

3.4.1 Arbitrariness in a renormalized graph

The infinities of a renormalizable theory amount to divergent dynamical
contributions that renormalize the parameters in the Lagrangian.
Traditionally one thinks of renormalization as the procedure of working
with measured quantities instead of the corresponding bare quantities. The
most obvious case is that of the mass m,;, of the particle corresponding to an
elementary field. However to take the traditional view is much too
restrictive.

This issue can be understood by looking at strong interactions. There we
have a theory, QCD, in which free particles corresponding to the
elementary fields do not appear to exist (pace LaRue, Phillips & Fairbank
(1981)). So arises the hypothesis of quark confinement — not proved from
QCD, so far — according to which quarks are never isolated particles. Even
s0, the theory has quark masses, which can be measured (up to considerable
uncertainties for the light quarks). But one cannot identify these masses
with the directly measurable masses of free quarks. One must only speak of
mass parameters, measured, in this case, rather indirectly.

There is no problem in taking this point of view. For example, we write
the ¢* Lagrangian as a basic Lagrangian plus a counterterm Lagrangian:
£ =00%2 —m?*p?/2 —gp3/3! — 8Z0¢p?/2 — Sm*Pp?/2 — Sgd3/3 .

(34.1)
But we avoid identifying the renormalized mass with the mass m,, of a
particle. Similarly we do not identify the renormalized coupling, g, with any
specific measured quantity, and we do not define Z by requiring that the
residue of the propagator’s pole be unity.

Consider the calculation of the one-loop self-energy at d =4. We can
choose 6Z = 0for this case; the only divergence is in m?. The renormalized
self-energy (3.1.7) is

Zr=Ziint (5’"2 + Zaiv)
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We must choose dm? to have a divergent part to cancel the divergence at
a=00fX,, . But the finite part of 5m? is not determined; the arbitrariness
is the same as that of the integration constant when obtaining X,; by
integrating 0%, /0p*.

At first sight it might appear that the arbitrariness ruins the theory unless
one pins down m to be the physical mass m,,. This is in fact not so; the
arbitrariness is more like the arbitrariness in choosing a coordinate system.
Suppose one first computes the propagator with the mass-shell condition
Zr(p? =m2,)=0. Then

Gz = i/[P2 - m,fh - Zmn(l’z) + Z:mn(l’z = mgh) + 0(94)], (3.4.20)
mg =gy — Z1 45, = Zygin(Mpn) + 0(g*). (3.4.2b)
One could also compute with a different finite part to dm?, with a result
G, =i/[p* —m* — Z i (p%,m*) + ¢>C + 0(g*)], (3.4.3a)
m=m? -2, —g>C+ 0(g*), (3.4.3b)

where C is any chosen number. The self-energy is now

ZR(p?,m*) =25, + g%C.

Evidently the two ways of renormalizing the theory give the same results if
we require that the bare mass m is the same in both of (3.4.2) and (3.4.3). In
the complete solution of the theory, say by the functional integral, it is only

m} that matters, not the partition into a renormalized mass squared m* and
a counterterm — X, . — g>C. Clearly we have

m? =mg +g*C — Z,g,(mp) + 0(g*), (344)

with the O(g*) terms depending on the renormalization of higher-order self-
energy graphs.

We come then to the central idea of the renormalization group. The
arbitrariness in the definition of X, is physically irrelevant, for a change in
the arbitrary constant C can be exactly compensated by a change in m%. A
change in C merely gives a different parametrization of the set of theories
that can be obtained by varying the mass parameter m. The renormali-
zation group is the set of transformations on the parametrizations of the
theory. The transformations are accomplished by moving parts of the terms
in % from the basic Lagrangian to the counterterm Lagrangian. In the case
of m it is a move from the free Lagrangian to the interaction Lagrangian.
This of course gives a rearrangement of the perturbation series, which is the
key to the many practical applications of the renormalization group.

It might be objected that

p2 - m2 - 2lfin(pz’rnz) +glc
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is not equal to
P’ - mﬁh - Zlfin(pz’ mﬁh) + Zmn(m,fh,mﬁh),

since the mass parameters in X, (p?) are different, whereas the theory
parametrized in either way is the same. But since m), — m? is O(g?) the
difference in the two expressions is in fact O(g*). Thus the rearrangement of
the perturbation series does not leave the p2-dependence of the coefficients
invariant. The O(g*) terms will cancel the difference (up to even higher-
order terms), etc.

The utility of the renormalization group is precisely in its ability to
reorganize the perturbation series. Since one effect of the interaction is to
induce dynamical contributions to the mass and couplings, it is evidently a
good idea to arrange that these contributions are small. The result is to
reduce the values of higher-order corrections and thus improve the
reliability of a perturbative calculation.

Now the effective size of the dynamical mass or coupling must be treated
as dependent on the situation under consideration. This can be seen by
examining X, given in (3.1.12) at large p?:

Z.r ~ (9%/327%)[In(— p?/m},) + constant + -+ ]. (3.4.5)
If|p? |is large enough this can be large. Since the graph occurs as a subgraph
of higher-order graphs, it is likely (and often is true) that higher-order
graphs are as important as low-order graphs at large enough p?. This
situation is undesirable and can be remedied by a renormalization-group
transformation.

We absorb the large part of X, into a redefinition of the renormalized
mass m?. We must examine higher-order graphs at large p? to demonstrate
that there are no further sources of large coefficients. We will do this
systematically in Chapter 7.

3.4.2 Renormalization prescriptions

There are infinitely many ways of resolving the ambiguity in constructing
the counterterms for a given theory, each of these ways corresponding to a
particular parametrization. It is essential that, whenever a particular
divergent graph occurs as a subgraph of a bigger graph, the ambiguity is
resolved in the same way at each occurrence, since the corresponding
counterterm vertex is generated by a single term in the Lagrangian. So to
perform concrete calculations one adopts some rule to resolve the
ambiguity. Such a rule is called a renormalization prescription or
renormalization scheme.
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Of the infinitely many possible renormalization prescriptions, a few have
become standard, because they are especially convenient either for practical
use or for theoretical considerations. In this section we will explain two of
the standard ones with the aid of the example of the one-loop graph
Fig. 3.1.1.

We have already encountered the mass-shell, or physical, scheme. The
renormalized mass is defined to be the physical mass, i.e., the position of the
propagator pole. Wave-function renormalization is fixed by requiring the
residue of the pole to be unity (see (3.3.9)). Couplings can be defined by
specifying the value of a suitable S-matrix element.

A possibility that is much used in discussions of renormalization theory is
the BPH or BPHZ scheme (Bogoliubov—Parasiuk—Hepp—Zimmermann),
otherwise known as zero-momentum subtraction. Let I" be a one-particle-
irreducible (1PI) graph that is divergent, i.., it has (') >0. The pre-
scription is that at zero external momentum its renormalized value R(T')
and its first 8(I") derivatives with respect to external momentum are zero.
The BPHZ scheme is to implement this by subtracting off the first §(I')
terms in the Taylor expansion of the integrand (Zimmermann (1970)), that
is, the renormalization is performed before the integration over loop
momenta. No explicit UV cut-off is needed. In this scheme the self-energy
already discussed is, at d =4,

(BPHZ) _ ig? 4 1 3 1
Zlk - 32n4Jd k{[(kz _ mz)((p + k)z _ mZ)] (kz _ mz)z }, (346)

while at d =6, we have:

Z(BPHZ) = igz d6k 1 —_ 1
1R 1287° k2 —m?)[(p+kP?—m?] (k* —m*+ie)?
2p-k [4p-k? — (k* —m*)p?]
(kz — m2)3 - (kz _ m2)4 . (347)

+

3.5 Dimensional regularization

In our initial treatment of UV divergences we used the lattice as a cut-off, or
regulator. However, what we are really interested in is the renormalized
theory with no cut-off. We could equally well use some other kind of
regulator. For example, a Pauli-Villars type of cut-off is achieved by a
higher derivative term in the Lagrangian. For example, from

P =04%)2 —m>4%)2 — [(O] + m>)A]2/2AM? — m?)
—gA?3/3! + counterterms (3.5.1)
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we obtain the free propagator (2.4.1). When the cut-off M goes to infinity,
the propagator is the ordinary one, but when p? is much bigger than M2, it
is smaller by a factor p?/M?2. Thus UV divergences are cut-off for the theory
in six or fewer space-time dimensions; the divergences reappear when we
take the limit M — co.

If we defined the theory by a functional integral the lattice would appear
as an intermediate step, but the a — 0 limit would give no divergences, if M is
finite. Although the Euclidean Green’s functions for the cut-off theory
(3.5.1) exist, the Minkowski space field theory is not physical. A symptom of
this is that the pole of the free propagator at p> = M? has the wrong sign of
residue; it implies a particle with negative metric.

A theory with no cut-off can be obtained by adding counterterms with
appropriate M-dependences to cancel the divergences and then taking the
M — oo limit. As an example we showed that counterterms cancelled the
divergences of the one-loop self-energy graph. Although we assumed a
lattice regulator, we used no properties of the lattice propagator that are
not true for the Pauli—Villars case. We assumed only that:

(1) Ifthe cut-offis taken away (i.e., M — oo or a — 0) with p and mfixed, then
the propagator goes to i/(p? —m?).

(2) If p*>— oo with fixed cut-off, then the propagator is sufficiently much
smaller than 1/p? that the graph is not UV divergent.

(3) In the Euclidean region there are no propagator poles.

In principle, any method of imposing a UV cut-off is good enough, but in
practice some methods are more convenient than others. For most
purposes dimensional regularization is the most convenient. The method
starts from the observation that UV divergences are eliminated by going to
a small enough space-time dimension d. We can use the space-time
dimension as a regulator provided we treat d as a continuous variable (so
that the cut-off can be removed by taking the limit d —4). This idea has a
long history, but its popularity roughly started after the papers by Wilson
(1973) in statistical mechanics and by 't Hooft & Veltman (1972a), Bollini &
Giambiagi (1972), Ashmore (1972), and Cicuta & Montaldi (1972) in field
theory (especially non-abelian gauge theories).

Since vector spaces of non-integer dimension do not exist as such, it is not
obvious that the concept has any consistency, let alone validity, even in a
purely formal sense. This we will remedy in the next chapter. For the present
we will assume uniqueness and existence, and apply standard manipu-
lations to the integral

‘ _ig? 1
Z, (% m*,d) = 2(2n)* ~[‘ddk(k2 —m? +ie)[(p + k)* — m* + ig] (3.52)
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until it is of a form where we can sensibly assign a value. We will (following
Wilson (1973)) express (3.5.2) in terms of a standard Gaussian integral:

Jd"k exp (k%) = ifdw fd"' kexp(— w? —k?). (3.5.3)

It is sensible to give this the value in%?, which is correct if d is an integer. In
the following calculation of the value of (3.5.2) with non-integer d, the
assumed properties of the integration are italicized. All the manipulations
are valid for any integer value of d for which the integral converges.

We use the Schwinger representation for each propagator:

1/(m? — k? —ig) = fwda exp[ —a(m? —k* —ig)]. (3.54)
0

Observe that because of the Wick rotation we treat k? as negative. Then we
exchange the order of integration to obtain

I = 20n )"J daJ dbfddkexp[—(a+b)m + bp? + 2bp-k + (a + b)k?].
(3.5.5)

We shift k* by an amount p“b/(a + b) and change variables to z=a + b,
x =a/z to get:

ig2 1 @©
Z,=——|d dzz |d% - 2 _p%x(1 - 2,
1 2(27[)‘1\]‘0 xjo zzf exp{ —z[m*> — p*x(1 — x)] + zk?}
After scaling k by a factor z!/2 we find that

21 2(2 )dJ de‘ dzz!~ d/ZeXp{—-z[m —p X(l—x)]} d"kexp(kz)
(3.5.6)

It is this stage which brings in the dimensionality d. We have now reduced
the d-dimensional integral to the form (3.5.3), which we defined to be in?>.
The z-integral in (3.5.6) gives a I'-function, so we finally obtain:

2

L= )a/zl“(2 d/2) J dx[m? —p*x(1 —x)]¥*7%  (3.5.7)

2(4n
This result i1s unique (except possibly for an overall normalization, which is
universal — the same for every d-dimensional integral). The divergences
now reside in the I'-function which has simple poles at d =4, 6, 8,.... The
residue of each pole is a polynomial in p of degree equal to the degree of
divergence.

One of the main advantages of dimensional regularization is immediately
apparent. Not only was the integral unchanged from its form in a theory in
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integer dimensional space-time with no cut-off, but the method of
calculation was unchanged. Use of the representation (3.5.4) is an efficient
way of obtaining a parametric representation like (3.5.7) for a Feynman
graph.

A second advantage that we will see later is that it preserves not only
Poincaré invariance in the regulated theory, but also gauge symmetries.
This was a main motivation for its use by ’t Hooft & Veltman (1972a) and
many others. Most methods of introducing a cut-off fail in this respect. (For
example, gauge invariance is preserved on the lattice but full Poincaré
invariance is lost.)

A third advantage — also of great importance in practice —is that a
continuous space-time dimension is also a gauge-invariant cut-off for infra-
red divergences in theories with massless fields (Gastmans & Meuldermans
(1973), Gastmans, Verwaest & Meuldermans (1976), and Marciano &
Sirlin (1975)). A trivial example, but without any gauge invariance, is given
by the ¢° self-energy with m=0 at d=2. It is

ig? 1
J_|q2 —
87[{[ (k* +ig)[(p + k)* + ie]
which is divergent at k =0 and at p= — k. The divergence is regulated by

increasing d. Care is required in using this method if UV divergences are
present in the same graph, for they are regulated by reducing d.

3.6 Minimal subtraction

3.6.1 Definition

From the unrenormalized self-energy (3.5.7) we compute the renormalized
self-energy X, at d = 4 by adding a mass counterterm ém?*(g,m?,d) and
then letting d — 4. Suppose we choose m to be the physical mass. Then
IR =Z,(p*ml,g,d) — Z,(m%y,ml,g,d)
= 2(;—73:,;(2 - d/Z)J‘;dx{ [m2, — p*x(1 — x)]¥*~2

—[ml(1 —x+x?)]272}. (3.6.1)
Now I'(z) has a pole at z=0:

I'(z)=1/z =y + 0(2), (3.6.2)
where y; =0.5772 ... is Euler’s constant. So at d =4

-y | ;dxln{_n;fgh(_l A e (3:63)

in agreement with our earlier calculation.
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Since the divergence in £, amounts to a simple pole at d =4, a rather
obvious way of renormalizing it is to define ém? to cancel just the
singularity, i.e., the pole ('t Hooft (1973)). This, of course, means that we are
changing our renormalization prescription. By referring back to (3.5.7), we
see that dm? in this scheme is:

om? =(g?*/327%)/(2 — d/2), (3.6.4)

from which we get X, by expanding X, in a power series in d — 4. We find

2 1 2 2
g m” —p°x(1 — x)
T = Etide{ln[—T] + yE}. (3.6.5)

Unfortunately this contains the logarithm of a dimensional quantity. The
reason is that in the expansion in powers of d — 4 we did not allow for the
fact that g has a dimension dependent on d. Therefore we implicitly
introduced a mass scale.

To make this scale explicit, we rewrite the coupling

g—u~%, (3.6.6)

where we have introduced a parameter u with the dimensions of mass,
called the unit of mass ('t Hooft (1973)). The redefined coupling g now has
fixed dimension equal to 1, and the renormalized self-energy becomes

2 1 2 2
g m°—p“x(l —x
TS = 392 Jl)dx{ln [—%] + yE}. (3.6.7)

We derived this by observing that
2-d/2 _ o(2-d/2)Inp
=1+Q2-d2)lnpu+32—-d/2*In’u+---.

This renormalization prescription, where counterterms are pure poles at
the physical value of d, is called minimal subtraction (MS).

The unit of mass u is entirely arbitrary. Thus the self-energy (3.6.7) now
depends on three parameters instead of two. However a change of u
amounts to a change of renormalization prescription, so the change can be

compensated, in this case, by a change in m. In effect minimal subtraction is
a one-parameter family of renormalization prescriptions.

u

362 d=6

We can also apply minimal subtraction to the six-dimensional theory.
There we define

ém? = poles at d =6,
dz=poles atd =6, (3.6.8)
8g = p3 4% (poles at d = 6).
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Note that the renormalized coupling is now dimensionless. Since
INz—1)=—=1/z+p—1+0(2) (3.6.9)

as z—0, we find that
2

==Y 3{(m2 = p/6)(ye = 1)

1287
de[m —p x(l—x]ln[m _—Z%(l— )]} (3.6.10)
0

and
9> m?
om? = P + 0(g*), (3.6.11)
g 1 .
67 = s+ 0. (3.6.12)

The counterterm dg for the coupling can also be calculated. From the graph
of Fig. 3.6.1, we find (Macfarlane & Woo (1974))

3

_ ,3-4d/2 9 5 1
dg =1 gt 0 (3.6.13)

Fig. 3.6.1. One-loop vertex graph in ¢ theory.

3.6.3 Renormalization group and minimal subtraction

When we discuss the renormalization group in Chapter 7, we will focus on
one particular subgroup. The transformations in this subgroup consist of
multiplying u by a factor and making compensating changes in the
renoimalized coupling and mass. As a group it is trivial — being a
representation of the group of positive real numbers under multiplication.
What is non-trivial is the way in which it is represented in relation to the
parametrization of the theory by a renormalized coupling and mass.

The renormalization group can be exploited in calculating high-energy
behavior. While a full treatment will be made in Chapter 7, the basic idea
can be seen by examining the one-loop self-energy. Let p? get large (with m
and p fixed), and consider the propagator defined using minimal sub-
traction at d = 6:

= . gz - pz 4
G, ~ 1/<pz{1 - [111(7) + const.] +0(g )}) (3.6.14)
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To be able to make use of a perturbation expansion we must keep higher-
order corrections small. But this is not so in (3.6.14) if p? is too large. The
large correction can be avoided by setting u? to be of order |p?|. The theory
is unchanged if we make suitable changes in g, in m, and in the scale of the
field. We will learn how to do this in Chapter 7, with the result that the large
corrections are effectively moved from higher-order terms in the per-
turbation series to the lowest-order graphs.

3.6.4 Massless theories

Let us return (for simplicity) to the self-energy of the four-dimensional
theory. Consider the limit m — 0. If we use mass-shell subtraction, we have
(3.6.3), which diverges as m2, —0.

The divergence is an artifact of the mass-shell scheme, for which

9

OMon = S an

1
r(2—d/2)mgh—4f dx(l — x4 x2)¥2-2

0

2
g 1 .
= W[Z —an In(mZ,) + finite (as mph—>0,d—>4)]. (3.6.15)
In addition to the pole needed to cancel the UV divergence, there is a
In (m2,) term.

Physically what happens is that in a massless theory there are long-range
forces. These mean that separated particles are never completely free of

each others’ influence. Thus, for example, the singularity in the propagator
is not a simple pole, for the self-energy (with MS subtraction) is, from (3.6.5),

g —p?

The mass-shell renormalization prescription relies on the assumption of a
simple propagator pole to generate counterterms, so it must fail. However,
the nature of the propagator’s singularity is an infra-red problem, so it is
irrelevant to the question of whether an ultra-violet divergence can be
renormalized. Some other renormalization scheme, like minimal sub-
traction, must be used in the massless theory.

3.7 Coordinate space

A good way to understand the infinite renormalizations is to work in
coordinate space, as was emphasized by Bogoliubov & Shirkov (1980). This
point of view is especially useful in treating field theories at finite
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temperature or on a curved space-time background, as we will see in
Chapter 11. There we will see why the counterterms are the same as at zero
temperature in flat space-time.

For most ordinary calculations, it is cumbersome to work in coordinate
space, because the propagator Sg(x) for a free massive field is a Bessel
function. In momentum space the propagator is simple: i/(p> — m? + ie).
However the asymptotic behavior of Sg(x) as x —0 is simple.

We have

rdrR-1 .
= m’u—z_—l + less singular as x — 0. (3.7.1)

The one-loop correction to the propagator G,(x,y) is

Gypo=— (g2/2)fd"zjd"wSF(x —2)Sp(z — w)*Sg(w — y)

= Jddzjd‘wSF(x —2)E,(z — w)Sp(w — ), (3.7.2)
where 3, (z — w) is the self-energy in coordinate space:
2.z —=w) = —(g%/2)Se(z — w)*. (3.7.3)

This is singular at z=w, and causes a logarithmic divergence in (3.7.2),
where we integrate over all zand w. The fact that the divergence is from the
region z ~ w means that it is in fact a §-function:

G,,= fd"zSF(x —2z)Sp(z—y)

. —-g%\ T@R2-17? .
{Jw~0ddw(32n4 )[ w2 } + finite. (3.7.4)

By Wick rotating the wC-integral and using the following result (next
chapter) for the d-dimensional integral of a Lorentz-invariant function

Jd‘wf(wz) = —i[2n%*/T'(d/2)] deww"‘ Lf(w?), (3.7.5)
0

we find
d i92 . .
Gap = |dzSe(x = DSk = Ve 7= @—a” finite, (3.7.6)
as d—4.
Evidently, the divergence is cancelled by adding a é-function to £, :
122
¥r= 95w - 2), 3.7.7)

Zi=2; - 1672(4 — d)
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which is exactly the mass counterterm computed earlier by momentum-
space methods.

The important point, which is in fact true for an arbitrary graph, is that
any UV divergence comes from a region in coordinate space where several
interactions occur very close to each other. The divergence can then be
cancelled by a counterterm which is a é-function in the positions of these
interactions. If the divergence is worse than logarithmic, then the counter-
term will include derivatives of the §-function. In any event the fact that it is
a J-function means that the counterterm can be included as a local
interaction in the action. The locality means that it is a product of fields at
the same point.

Since the singularity at x = 0 of the free propagator Sg(x) is independent
of the boundary conditions used to define it, we should expect, for example,
that the counterterms used in thermal field theory are the same as at zero
temperature. At non-zero temperature, the vacuum is replaced by a mixed
state, and the boundary conditions for Sg(x) change. The momentum-space
proof that the counterterms are temperature-independent is therefore made
difficult, but the coordinate-space proof is unchanged.
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Dimensional regularization

We have seen how convenient it is to regulate the UV divergences of
perturbation theory by continuation in the dimension of space-time. To
date, no-one has shown how to use the method in the complete theory. But
in perturbation theory, as we will now demonstrate, it is consistent and
well-defined. Now all results obtained by this method can be obtained by
other, more physical methods (say, a lattice regulator). But frequently much
more labor is involved. This is not a triviality, for in complicated situations,
especially in gauge theories, it enables us to handle the technicalities of
renormalization in a simple way.

The idea of dimensional continuation has been used for a long time in
statistical mechanics (see, for example, Fisher & Gaunt (1964)). It became
very prominent when Wilson & Fisher (1972) discovered the e-expansion
and applied it to field-theoretic methods in statistical mechanics (Wilson
(1973), Mack (1972), and Wilson & Kogut (1974)). In the e-expansion one
works in 4 — ¢ spatial dimensions, and expands in powers of ¢. At the same
time, in a purely field-theoretic context, a need arose to find a way of
regulating non-abelian gauge theories that preserved gauge invariance and
Poincaré invariance. This led to dimensional regularization ('t Hooft &
Veltman (1972a), Bollini & Giambiagi (1972), Cicuta & Montaldi (1972),
and Ashmore (1972)). Speer & Westwater (1971) had actually discovered
the method earlier, but their paper is considerably more abstract, and had
not attracted much attention.

Now vector spaces either have infinite dimension or a finite integer
dimension. So the concept of integration on a space of finite non-integer
dimension, d, cannot be taken completely literally. Either it is a set of purely
formal rules for obtaining answers or it is an operation that is not literally
integration in d dimensions, but only behaves in many respects as if it were
integration in d dimensions. It is not sufficient to treat it only as a set of
formal rules (even though that is what it becomes in practice), because one
must know that the rules are consistent with one another and with the
algebraic manipulations one carries out on integrals. To show that no
inconsistencies can arise, we must construct an explicit definition.

62
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There are three issues to address: (1) uniqueness, (2) existence, and (3)
properties. Uniqueness is necessary, to avoid the possibility of constructing
two definitions, each definition being self-consistent but giving different
results from the other definition. Existence, shown by construction of an
explicit definition, is necessary to prove that no inconsistencies arise. Once
having seen that integration in non-integer dimension can be defined, we
cannot just assume that all properties associated with ordinary integration
are true; indeed they need not be.

So we also have to prove those properties which we need and which are
true. We also must prove that the results agree with ordinary integration if d
is an integer.

These considerations are quite non-trivial, as can be seen by considering,
for example, the anomaly in the Ward identity for the axial current
¥, =¥y"ysy in the gauge model (2.11.7). If the fermion masses are zero,
then a naive application of the fermion equations of motion shows that the
current is conserved: 0,j5,=0. In fact, the current is not conserved, as
shown by Adler (1969, 1970) and Bell & Jackiw (1969). A counterterm can
be added to j{5,to make it conserved, but only at the expense of removing its
gauge invariance.

Among the objects to be extended to d dimensions are the Dirac matrices
(y* and v;). If we assumed the obvious generalization of their anticom-
mutation relations, then for all values of d we would have

{y", 7"} =2¢"1,
{vs,7"} =0, 4.0.1)
y52 =1.

But then we would be able to derive the false result that the anomaly for the
gauge-invariant axial current is zero. So there has to be an inconsistency
('t Hooft & Veltman (1972a)). More complicated problems in a similar vein
arise when treating supersymmetric theories (Jones & LeVeille (1982)).

In this chapter we will start by stating the axioms for d-dimensional
integration given by Wilson (1973). These are sufficient to prove unique-
ness. Our calculation of a one-loop graph in Section 3.5 was in fact a
realization of the uniqueness proof for one particular integral. Then we will
construct an explicit definition of d-dimensional integration. The vector
space on which we work is in fact infinite dimensional.

Unfortunately, the definition gives a divergent result in most cases, so we
will next have to find a powerful enough extension (Section 4.2). We then
prove some standard properties (Section 4.3). One particular result in-
volves finding a definition of the metric tensor on an infinite-dimensional
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space such that its trace is d rather than infinity.

Then we will be in a position to derive some useful formulae (Sections 4.4
and 4.5)for use in Feynman graph calculations. Finally we will show how to
define Dirac matrices; this is obviously important if we are to be able to
calculate consistently graphs containing the Adler—Bell-Jackiw anomaly.

The utility of a precise definition such as we give is that if inconsistencies
arise at some stage, then one can always go back to first principles to
discover the error.

4.1 Definition and axioms

Let d be a complex number. We wish to define an operation that we may
regard as integration over a d-dimensional space:

Jd"pf (p). 4.1.1)

Here f(p) is any given function of a vector p, which is in the d-dimensional
space. We will suppose that the space is Euclidean. (Minkowski space is
regarded as a one-dimensional time together with a (d — 1)-dimensional
Euclidean space.) Following Wilson (1973) we will give an explicit
definition in which the space is actually infinite dimensional; it is the
integration operation that gives the dimensionality. Making d a positive
integer n will effectively insert a -function in the integration that will force
all vectors involved in defining the function f(p) to lie in some n-
dimensional subspace.

What properties must we impose on a functional of f in order to regard it
as d-dimensional integration ? The following properties or axioms (due to
Wilson (1973)) are natural and are necessary in applications to Feynman
graphs:

(1) Linearity: For any complex numbers a and b

fd"p[af (p)+bg(p)]=a f d'pf(p)+ b f d’pg(p). 4.12)

(2) Scaling: For any number s

fd“pf(sp)=s‘“ fd“pf(p)- 4.13)

(3) Translation invariance: For any vector q

fd"l’f ®+9q= |dpf(p) (4.14)

We will also require rotational covariance of our results.
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Linearity is true of any integration, while translation and rotation
invariance are basic properties of a Euclidean space, and the scaling
property embodies the d-dimensionality.

Not only are the above three axioms necessary, but they also ensure that
integration is unique, aside from an overall normalization (Wilson (1973)).
In fact, they determine the usual integration measure in an integer-
dimensional space (again up to normalization). The proof is simple:

Use linearity to expand f(p) in terms of a set of basis functions. Choose a
basis such as the functions

fea@ =exp[ —s*(p+9q)?] (4.1.5)
Then the integral of a basis function can be written in terms of the integral of
one single function:

fd“pfx,‘, P=s "’Jd"p exp (— p?). (4.1.6)

The integral of this one function sets the normalization. It is natural to
require that the value be the usual one in integer dimensions and that we
can write

Jd"‘pd"zq exp(—p*—q?) = Jd"' *z2k exp (— k?). 4.1.7)
Thus the normalization is given by
Jd“p exp(—p?) = n¥2. 4.1.8)

An abstract uniqueness theorem is not sufficient for us. We also need an
explicit formula so that a d-dimensional integral can be written as a
sequence of ordinary integrals. This will be important in allowing us to
prove standard properties of the integration. In addition it ensures that
there exists a self-consistent definition. It is a priori possible that no
consistent definition exists; the uniqueness theorem only applies if the
integration operation exists.

A function f(p) that we integrate could in principle be any function of the
components of its vector argument. However, we do not, a priori, know the
meaning of the components of, say, a vector in 3.99 dimensions. We will
soon see that there are in fact infinitely many components. In practice, we
will work with rotationally covariant functions. So we will assume that f is
a tensor function of a finite set of vectors: p, q;, ..., qy say. For example, a
scalar function is a function only of scalar products

f=r*p4:,9,%...) 4.1.9)
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Thus f is in fact an ordinary function of scalar numbers, rather than some
more complicated kind of function. Of course the values of the scalar
products lie in restricted ranges. Thus:

q; =0,

. a0, <qlq;. (4.1.10)

A tensor function is obtained by writing explicit tensors in terms of the

vectors p,q,,. .., qy and of the metric tensor '/, with scalar coefficients. For
example, we might have

e, 9 =4'p'f.(p?,p-9.9%) + 01, (P*, P-4, 9%). (4.1.11)

Such functions are the most general that we need to consider. (We will see
later how to handle the antisymmetric tensor ¢ and the Dirac y-
matrices.)

To give a realization of the objects p,q,,..., we assume that they are
vectors in an ordinary vector space. The space must be infinite dimensional,
as we will show in a moment. So we define the vectors each to be an infinite
sequence of components, p=(p!,p?,...), just as we can define a three-
dimensional vector V as a sequence of three components (V'!, V2, V3). The
metric is given by:

KAUY

Pa=p'q +p°¢"+ .

The reason for the infinite dimensionality is that an integral with, say,
d = 3.99 can be used not only as a regulator for a physical theory in a space-
time of dimension d, = 4, but also as a regulator for a model theory in any
higher dimension, e.g.,d, =5or 6 or.... The vectors q,,q,,...in (4.1.9) can
be thought of as momenta of external particles, and our vector space must
be large enough to accommodate d,, linearly independent momenta. Since
d, is arbitrary, we are forced to infinite dimension.

To define the d-dimensional integral of a scalar function, we find a finite-
dimensional subspace containing all the q;s. Then we write p as a
component p; in this space and an orthogonal component p-:

pP=p; +p+r
J
Y ple;+pr. (4.1.12)

i=1

The ‘parallel space’, in which lie the q s, is spanned by an orthonormal basis
e; (with j=1,...,J). We define the integral over p to be the ordinary J-
dimensional integral over p, performed after integration in d — J dimen-
sions over p+:

f d’pf(p)= f dp'---dp’ [d""pT f(p). (4.1.13)
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Since f(p) does not depend on the direction of pr we now can define

Jd"i—"[h—f(l))=I<,1--JJ~ depﬁ‘“J_lf(p)‘ (4114)
(]

Here K, (with v=d—J) is effectively the area of the surface of a
hypersphere in v dimensions. The value of K, is obtained by considering the
special case where fis chosen to be a Gaussian — see (4.1.8) — with the result

B 272
YT T(v/2)

Hence we have a definition of d-dimensional integration in terms of
ordinary integration:

qd =Nz
Jd"pf(p)—l_((d J/Z)Jd p”f dp.p{™’~'f(p) (4.1.16)

We must check that the result is independent of the choice of the subspace of
the p;. We must extend the definition to handle the divergences at pr=0
when d is small, which we will do in Section 4.2. Then in Section 4.3 we will
prove important properties of our definition. But first there are a couple of
details to clear up.

The J-dimensional subspace of p;’s is chosen subject only to the
requirement that it include all q;’s. So it is possible to extend the space to
include extra dimensions. To show this has no effect on the value of the
integral we must prove

(4.1.15)

va dpp”“lg(p2)=f dka_lf dpipy " 2g(p? + k%) (4.117)
0 0

-
for any function, g, which depends on a scalar argument. This equation is
true since the right-hand side is
1

dpp”—lg(Pz)J dxxC"I2(1—x)7H2, (41.18)

0

2n(v—l)/2 o

Lv=1/2) o
where p? = xp? and k? =(1 — x)p>.

To show that different choices of the ‘parallel’ subspace have no effect on
the value of the integral, we merely extend both spaces to a common larger
space. The sole problem is that there may be a divergence in (4.1.18) at
x = 0; this we will cover by Section 4.2.

Up till now we have supposed f(p) is a scalar function. If it is a tensor
fi-(p), we work component-by-component. To define, say, the
component

Jd"pf (p),
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we take the parallel space to include the 1- and 2-directions and any vectors
q; on which f*/ depends. Then we proceed as before.
For example, suppose f/(p) = p'p’g(p?), where g is a scalar function. Then

Jf (p)dp = fdp‘dp2 Jd“”zlhp’ng[(p‘)2 +(p?)* +p3] =0,
while

J dpsf i (p?) =J dp, J d‘~'prpig(p} + )

2nd/2 0
- d d+1 2
ard /2)fo pp° " g(p)

1
=Ejd"png(p2)-
Generalizing this result, we see that
- &t
Jd"pp‘p’g(pz) = 7fd“png(p2).

More general cases are treated in Section 4.3.

4.2 Continuation to small <

The convergence of the definition (4.1.16) is d-dependent at p; =0 and
pr = oo. Itimproves at p; = co when d gets smaller, but it improves at p; =0
when d gets bigger. Even for a function that decreases exponentially at large
p, and that is analytic for finite p, the defining integral has a divergence if the
transverse space has a dimension d — J < 0; this is forced to happen if d is
negative or zero. So our first task in this section is to find an explicit formula
for the continuation of (4.1.16) to arbitrarily negative d. We will see that the
pr-integral has poles whenever (d — J)/21s zero or a negative integer, but that
these are cancelled by the zeros in 1/I'((d — J)/2).

We will then be able to adopt the resulting formula as a definition of the
d-dimensional integral of a function for which (4.1.16) converges for no
value of d. An examp'e of such a function is

1
@, +p’+(@+p)’+m*
The parallel space must be at least two-dimensional to accommodate q, and
q,, so we may set J =2. Then the transverse integral converges at pr =0

only if d > J =2, while the complete integral converges at p= co only
ifd<2.

f(p)=
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We will have a definition that defines Jd"pf (p) for all small enough

d. For larger values of d we define the integral by analytic continuation. In
general there will be ultra-violet poles at certain values of d — just as in the
Feynman graph we computed in Sections 3.5 and 3.6.

To explicitly define the continuation to small d, it is sufficient to consider
a function f(p?). Let us assume that f — 0 rapidly enough as p— oo that

fd"pf(p J dpp*~ ' (p?) 4.2.1)

F(d 12)

converges at p — oo for some positive value of d. We also assume that f(p?) is
analytic at p = 0. Then (4.2.1) converges and is analytic in d for some range
0 <Red < d,,. We define the integral for all other values of d by analytic
continuation in d. Explicit formulae for the continuation to smaller d’s are
constructed by adding and subtracting the leading behavior at p— 0. For
example, the following formula gives the integral in the range —2 < Red
<dpay:

Jd“ o= { J " dppt 1 (p?)
PIPI=Ta) ).
+ j:dpp“‘ @) -] +f (O)C“/d}. 4.2.2)

This is independent of the arbitrary constant C.
When — 2 < Re d <0 we may let C— oo to obtain

Jdd n= 2 (Cappirse—r0), @23
pf(p7) = F(d/2)J pp* Lf(p 2.
while at d = 0 the zero in 1/I'(d/2) is cancelled by the pole term to give

JdOpf () =/(0). (4.2.4)

We extend this procedure to continue to — 2] — 2 < Re d < — 2! for any
positive integer [:
d/2

2 <]
Jd"Pf ()= I-—(%E)L dpp* ' {f(p*) —f(0)— p*f'(0)—
= (PP,
J d™#pf(p?) =(—n) ") @.2.5)

This equation gives us the integral when — 2/ —2 <Re d < — 2!/ on the
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assumption that the original formula (4.2.1) converges when d is just greater
than zero. Suppose now that (4.2.1) diverges at p = oo for all positive values
of d, but that fis power behaved as p— co. Then it is sensible to adopt (4.2.5)
as the definition of the integral. This particular definition is very important
since we will use dimensional continuation to regulate Feynman graphs
that are ultra-violet divergent at d = 4. The definition (4.1.16) applied to a
Feynman graph frequently has a negative number d —4 of transverse
dimensions in order to ensure ultra-violet convergence of the complete
integral. Then we may apply the definition (4.2.5) to the p,-integral with d
replaced by d — J.

Another obstacle to continuation in d is sometimes that f(p?) is not
analytic at p? = 0 but has a power-law singularity there. We may generalize
the derivation of (4.2.5) to write down a formula for the continuation of the
integral.

An example of the use of (4.2.5) as a definition is given by choosing

f(*) =@p*+ 4)/(p* + B),

where 4 and B are numbers. The definition (4.2.1) diverges for all d, but with
I=1, (4.2.5) gives us a definition valid for —2<Re d <0:

d _ =" fco 2 a-2|PP+4 4
[ewsm= Caprp e 2]

The integral can be explicitly computed to give:

jd"l)(l’2 +A)/(p? + B) = (nB)*(4/B— DI'(1 — d/2),

which can be continued to all d.
Suppose f has a power-law singularity, as for example

1
S ooy
The definition (4.1.16) of the integral of this function converges if 2 <d < 4.
To continue it to lower d we must subtract the power behavior at p= —gq,

just as we did for singularities at p; =0, or at p=0in (4.2.2). Then we can
define the integral of say

p2

(p+@*@*+m?)’

One result of all these definitions is that the integral of a power of p is

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

4.2 Continuation to small d 71

Ze1ro:

jd“p(pz)“ =0 (4.2.6)

for any value of « (integer or not). It should not be thought that thereis any
choice in (4.2.6). It follows from (a) the explicit continuation of (4.1.16) to
small d, and (b) application of the continued formula as a definition of
[d’p(p?)*.

Consistency of the formalism also requires (4.2.6). For suppose that f(p)
= (p?)*/(p* + m?). Then when —2a— 2 <d < — 2a we have

f dpf(p?) = Jd"p[f (%) — (p*)*/m?].

If linearity is to be true then we have (4.2.6).

We could subtract out the singularity differently, by a function that is not
just a power of p. But then, for example, the simplification obtained in (4.2.2)
by taking C — co would no longer occur.

Observe that if in the first of our definitions (4.1.16), we take f to be a
positive-definite function, then the integral is positive. But when the integral
is continued away from the region where this definition converges, then the
subtraction terms mean that the integrand is no longer positive definite, so
that the integral need not be positive.

At the end of Section 4.1, we proved that the value of a d-dimensional
integral does not depend on how we split the integral into an ordinary
integral over some integer-dimensional ‘parallel space’ and a spherically
symmetric integral over the remaining dimensions. We let J be the
dimension of the parallel space. Then the proof consists of examining what
happens when J is increased by one. Ultimately we had to prove (4.1.17),
which is a property of ordinary integrals. We assumed d > J, so that there
were no subtraction terms. To generalize the result to the case that d — J is
not positive, we must prove that

o~ [J:2-dj2]
Kd—Jf dppd—.l—l[f(p2)_ Z f‘")(O)PZ"/n!J
0 n=0
=KH_1J dkf dep‘#""z[f(k2+p$)
- x 0
[(J+1—d)j2]
- X f‘"’(kz)pf”/n!]- 4.2.7)
n=0

Here the symbol [a] denotes the largest integer smaller than a. To prove the
equation we change variables on the right-hand side to x and p, where
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p? = xp”? and k* = (1 — x)p®. For the right-hand side we get

1 0
Kd—.l—lJ‘ dxx(d—.l—-3),i2(1 __x)—l/zj dppd—.l—l x

0 0
[(J+1-4d)/2]

X[f(pz)— y f‘"’((l—x)pz)x"pz"/n!]

n=0

1 0
=_;Kd—l—1f dxx(d—1—3)/2(1 _x)—l/z [ dpl(pZ)d/Z—J/Z—l x

0 J 0

/2 -dj2]
x{[ﬂp’)— ¥ f<">(0)p2"/n!}

n=0
[J+1-d)/2]

- 3 [f‘”’((l—x)pz)

n=0

2n [(J-d)/2]

; Q_ x)j—nxnp2j
—_ ,g,, £9(0) ——n!(n—j)! ]}

x"p
n!

(4.2.8)

Here we have added and subtracted

[(J-d)/2]
Y SO0pnL,
n=0

so that the integral over p? of p?~/~2 times each square bracket term is
convergent. After scaling p? by (1 — x), we get:

1 ©
%Kd—l—lf dxx(d-]—3)/2(1 _ x)—l/ZJ dp2(p2)d/2-—.l/2—1 x
0

o

n=0
[(J +1~-d)/2) x"(l _ x)J/Z -d/2 —-np2n

[J/2-d/2}
X{[f(pz)— > f‘"’(O)pz"’n!]

n=0 n!
o -5 oo 2 )
n p?) — - .
L 0%
Integration by parts in the p-integral gives

1
K,,_,_IJ dx x@=7=3V2(1 — x)= 112 x

0
(W+1-ay2) (A +2—dp)!
— ne1{ __ J/2—d/2—n
* [1 L Xi-» n(L+ /2 —dj2— n).':|
© [J/2-d/2]
X J dppt~’~t [f - Y f ‘”’(0)p2"/n!]-
0 n=0
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An integration by parts on the x-integral is used to show that it equals
r1/2r[d-J—-1/2]/I[(d—J)/2], from which the required result
follows.

4.3 Properties

Property 1. Axioms: The definitions (4.1.16) and (4.2.5) satisfy Wilson’s
axioms (4.1.2), etc., for d-dimensional integration.

Proof. We reduced d-dimensional integration to ordinary integration so
linearity follows from linearity of ordinary integration. We must choose the
P, space to be large enough that it is the same for both functions f and g in
(4.1.2). Our explicit continuation (4.2.5) to arbitrary negative d ensures that
reducing the dimension of the transverse space is no problem.

Scaling and rotation covariance are explicit properties of all our
definitions.

Translation invariance is valid for ordinary integration, so it follows from
definition (4.1.16) provided the p;, space is big enough to include the vector q
used in the axiom (4.1.4).

PlOpeI ty 2.
jdl (p ) d/2 d+2a—2pl (a t d/z)l (ﬁ o4 d/z)

Proof . Immediate from (4.2.5). Note that this implies that the integral of a
power of p? is zero, since I'(f) ~ 1/B as B—0.

4.3.1)

Property 2a.

J d‘p(p?)*=0. (4.3.1a)
Proof. Already done.
Property 3.
2 fatpf(pan..) = [0S pg, ) @32)
aq P/ (P:q,...)= Paq P.q, . 3.
Proof. Contract with a vector q which projects out the derivative with
respect to the component of q in the dq direction. Then make the parallel

space (of p;’s) big enough to include 4q and use (4.3.2) on ordinary integrals.
This is true for all 4q.
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Property 4.
6”(5,.j =d. (4.3.3)

Proof and definition of ;. Now 6" is defined to be the component form of
a contravariant tensor with §' = 1 if i = j and zero otherwise. The obvious
definition of the covariant tensor §;; is as the inverse matrix, i.e., the same
thing. This gives 6"/9,; = co. However in an infinite-dimensional space,
there is space for a different definition.

A contravariant tensor may be defined by specifying its components. But
a covariant tensor w is fundamentally a linear function acting on covariant
tensors: w(T).We can write o(T)= w,;;T* only if the sum converges.

We need the covariant  (which we symbolize by ¢;;) to be rotation
invariant, and to give 8(T)= T whenever the sum exists. We would also like
contraction with §;; to commute with integration. For example

0y f dpp'p’f(p?) = 6,; j dpsiip? f (p?)/d
and (4.34)
0y f dpp'p’ f(p*) = J dpp? f(p?).

Since we have an infinite sum, we cannot immediately apply linearity to
prove this equation.
Let us define

oM = dl;glz/2) d"pizj Tippd(p* —1). 4.3.5)
Whenever ) T% converges, this definition gives
oT)=Y Tk
But if the sum diverges, then it is possible to get a finite value for &(T). In
particular,
dT'(d)2)

8(6) =

TCd/Z ddeZ(s—(pZ - 1) = da

as required. The definition is rotationally invariant. Commutation of
contraction with ¢;; and integration will now be a consequence of
commutativity of two integrals — which we will prove later.

Property 5. Integration by parts:

Jd"p of (p)/op' = 0. (4.3.6)
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Proof. Work component-by-component. Contract with an arbitrary
vector k:

d
dnli__
fd pk ap"f'

Then, to define this integral, we must put k in the parallel space, and we can
use the proof of (4.3.6) for ordinary integration in the space parallel to k.

Property 6. To define integration over two (or more) variables:
fd“pd“kf (p.k;q;,...qy)

we must choose to calculate one integral then the other, according to the
rules already stated.
For this definition to be sensible we need the result to be independent of

the order of integration:

Jd"p ~I‘d"k f= Jd"k fd"p f. 4.3.7)

We could also allow the dimensions of the p- and k-integrals to be
different. Then exchange of order of integration [d’pf{d*k— [d*k{d%.
is allowed only if d =d’, or if f is independent of p-k.

Proof. 1t is sufficient to consider the case that there are no q;’s, so that
S=f(p*.p'k,k?. (If there are q;s, then we take out a finite-dimensional
integral for both k and p which spans all q;’s and then we apply the theorem
to the remaining dimensions.)

The left-hand side of (4.3.7) is

4nd—l/2 w0 x £
d—17,d—-2 2 2 2
r(d/z)r((d_ 1)/2)f0 dpJ'_ xdkl Jo dkTp kT f(p 9k1p’k1 + kT)’
(4.3.7L)

while the right-hand side is

4nt 12 ” * ” d-21d—1¢(12 | 2 2
r(d/z)l—-((d_l)/z)fo kov_oodle‘o depT k f(pl+pT9p1k’k )
@4.3.7R)

Here k, is the component of k parallel to p, while p, is the component of p
parallel to k. Change variables to, say, p% k2 and z=p-k/(pk)=

P/ (p? + p?)=k,//(k} + k%), with the result that both (4.3.7L) and
(4.3.7R) are equal to

4nd=112 ® _ J‘co . fl i
—————— | dpp? | dkkiU|  dz(l — 23932 f(p2, pkz, k).
r@ar@-v2l, 7l _ da(l =2V pha, )
43.70)
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The theorem is thus proved in the case that (4.3.7L) and (4.3.7R) are both
convergent. Note that it is not a trivial consequence of the corresponding
result for integer-dimensional integration.

If the dimensions of the integrations are not the same, then let the k
integral have dimension d’. The left-hand side gives

4n(d+ d—-1)/2 o i1 © d -1 1 d 2)("' 3)/2f
; dpp?~ kk*~ Z(1 — z3)@ =32 f
M@ =1 |, 977 j o J L

which in general is not the same as the corresponding expression for the
right-hand side. But if f is independent of z, then the z-integral can be
computed explicitly. The result is

4n(d+d’)/2 ©

———— | dpp*! " dk k(2 2)
r@Rrap) ), °F fo dkk®~ 1 f(p* k*)

4.3.8)

A problem is that if d is not positive, we must make subtractions as in
(4.2.5). These are clearly asymmetric between the two orders (4.3.7L) and
(4.3.7R) of performing the original integral (with now d’ = d); in practice, d
will be the number of dimensions transverse to the external vectors
q;,...,qy. Inapplications to Feynman graphs d will therefore be negative in
order to regulate UV divergences. So we must use (4.2.5) to define the
integrals. Then (4.3.7) does not give (4.3.7L), (4.3.7R) and (4.3.7C).

We solve this problem by defining an auxiliary integral with a
convergence factor, say

Jd"'kd“pf (*k?) =

I(@,d)= f dp f d?kf (p,k)exp[ — a(p? + k?)]. 4.3.9)

Assume f is power-behaved at infinity. Then for all d, (4.3.7L or R) is UV
convergent. Moreover, if d>1 then both (4.3.7L) and (4.3.7R) are IR
convergent without subtractions. The function I(q, d) is analytic in a and d.
Continue down to small enough d that (4.3.7) is UV convergent. Then
I(a,d) is given both by (4.3.7L) and (4.3.7R) with f replaced by
fexp[ —a(p? + k?)], and with subtractions made. Now set a = 0 to prove
the theorem (4.3.7).

Property 7.

f d’k f d¥pf(p* +k?) = |d**¥qf (q?). (4.3.10)

Proof. Since f is independent of p-k, the previous theorem shows that the
left-hand side is independent of the order of integration, even if the
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dimensions of the p- and k-integrals are different. Then use (4.3.9) and
change variables to g = (p? + k?)'/? and x = p?/q>.

Property 8.
) ) 0 if t is odd
dpit, .. pit 2 - > ?
fd prt PP {T“'“"A,[g], if ¢ is even, (43.11)
with
Ti]...ig — [6i1i26i314, e Q- =it + -
+ all permutations of the i’s]/t!, 4.3.12)
and
_T@2TE2+1/2) (0 5n s
2nPT(t/2 +1/2) [
i LUC ST TSR 4.3.13)

T TA/2QTd2+1t/2) ),

Proof. If t is odd, antisymmetry of the integrand under p — — p makes
the integral over the ‘parallel’ space zero.

Antisymmetry under reversal of one component of p, symmetry under
permutations of the i’s, and rotation invariance give the general form
(4.3.11) and (4.3.12). Computation of one component (say, i; =i, ="""=
i, = 1) then gives (4.3.13).

Examples.
jddppipig(llz) = (1/d)o" Jddpng(llz), (4.3.14)
L 5ij5kl+5ik6jl+5ilajk .
jd"pp‘p’p"p’g(pz)=( dd+2) ) dp|p|*g(p?). (4.3.15)

Property 9. Consider an integral

Ip,,...,p)) = 'f dkf(K,p,,...,p,) (4.3.16)

whichis UV convergent by power-counting at d = 4; that is f = O(1/k** %) as
k goes to infinity in any direction, for some positive number a. Then the
integral is analytic in d and in the parameters p,, when d is close to four, if the
integrand is analytic. If the p,’s lie in the first four dimensions, then the
integral at d =4 has the same value as the ordinary four-dimensional
integral of f.
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Example Suppose f has the form
f=F(K,py,....p,exp(— Ak? + 2Ak-p), 4.3.17)

where for any vector v we let v be its projection onto the first four
dimensions and let ¥ be its projection onto the remaining dimensions. Then
we let T be the ordinary four-dimensional integral of f. By use of our
definitions of d-dimensional integration, we have

I=J.d"kf
= TJdHRexp( — Ak? + 2Ap-k)

= I(n/4)"*~ 2 exp (4°). (4.3.18)
This is manifestly analytic in d and p. If we set d = 4, the integral becomes
I = Texp(4p?).

Notice that there is no restriction on p, even though p=0 in four
dimensions. However, if we let d >4 and p— 0, the limit is smooth.

Proof of Property 9. The proof is easily made by examining the definition
of the d-dimensional integral in terms of ordinary integrals. As usual we
divide the space into a finite-dimensional parallel space big enough to
contain p,,...,p;, and into a transverse space containing the remaining
dimensions. It is convenient to choose the parallel space to have an odd
number 2N + 1 of dimensions. Then:

I Jw dkye | gy (7 gy
- f_m WF@ 2= N ), ST -

N-2

x[F(kl,kz,...,kZNH,k%)— y F<">(k1,...,k2,v+1,0)ki"/n!]. 4.3.19)
n=0

Here we have used F to denote f considered as a function of the first 2N + 1
components of k and of k2. Since f is an analytic function of k, it can be
expanded in powers of k2.

Asrequired by the definition, we have subtracted offa power series in k%, to
give convergence at k; = 0. We use F™ to denote the nth derivative of F with
respect to k2. The integrand of the k2 integral behaves as k%~ 5, so we have
convergence at kr =0 if d > 3. Since f is analytic, there are no other
singularities at finite k, and the only other possible source of a divergence is
from large k. The subtractions do not introduce a divergence provided that
d < 5. Moreover, we have assumed that f= O(1/k**“) as k— oo, so that
there are no other large k divergences when d is close to four. Hence (4.3.19)
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converges and is analytic in a neighborhood of d =4.

Now the integral will depend on the p;’s only through the Lorentz scalars
P.'P, (With 1 <a < b < J). To determine this dependence, it is sufficient to
keep the p,’s within some fixed J-dimensional subspace. Since (4.3.19) is a
perfectly finite integral, it is an analytic function of the p,’s.

To determine the value of the integral when d = 4 and when the p;’s are in
the first four dimensions, we use the freedom to vary the dimension of the
‘parallel’ space in the definition (4.3.19). Let us now make it four
dimensional. We will obtain an integral of the form:

© 27‘[4/2 -2 @©

= — | dkki~3f 2) (4.3.20
I f dk,‘..dk4r(d/2_2) odklE fky, ko, kg kg, k2) ( )

if d>4. When we let d—4, the integral over k is singular at k =0; the
resulting divergence cancels the zero of the inverse I'-function to give

— ©

Id=4)= f dk, dk,dk,dk, f(k,, ky, ks, k,,0), 4.3.21)

as required.
We may alternatively continue from d < 4 using

2nd/2 -2 ©

T(d/2-2) 0dklzd_s[f(kp~'-,k4,’22)—f(kl,...,k4,0)],

4.3.22)

The singularity at k = 0 is cancelled, but as d — 4 we get a divergence at
k = oo which gives the same result (4.3.21).

Izjdkl...dk4

Comment In this proof we used the freedom to alter the dimension of the
parallel space. To show that the integral is well-behaved at d =4, it was
convenient to choose the parallel space to have an odd dimension. But to
compute the actual value at d = 4, it was convenient to choose the parallel
space to have an even dimension, specifically, four. It is instructive to see the
equivalence in a simple non-trivial case. (The general case was summarized
at the end of Section 4.2.)
Suppose 3 < d < 4. Then define

dj2-2

/4 ©
], =— dkl kz d/2—-3 2 3
'TT@2-2), (k272231 (kg kg ey kgy K2), (4.3.23)

I, = N dk —ﬂ wdkz(kz)“"”/z[f(k veer kg, k24 k2)
2 e Sr\(%(d__s)) 0 TVT 1 4 T
—f(kyso o ke k3] (4.3.24)
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Our definition of the d-dimensional integral of f tells us that

I= f dk, ...dk,I, = Jdkl...dk412, (4.3.25)

- 0
so we must prove that I, =1,.
To do this we change variables in I,, by setting k2 = xk? and k2=
(1 — x)k? to obtain:

I =—n(i ldx wd122(,22)d/2—3(1 _ x)—1/2xd/2—7/2 x
TT@2-52) ), Jo
X [f(kl,...,k4,E2)—f(kl,...,k4,l€2(1 "x))]

— n(d_S)/z 1d wdiz2i2d—6 1_ -1/2 ,d/2-7/2
= F(d/Z—S/Z)L *1, =07 )
x {[f k... kg k?) —f(ky,.... k4, 0)]
—[flkys-. kg K21 = x)) = fkys- . kg, 0)] ). (4.3.26)
In the last line we subtracted and added f(k,,...,k,,0), so that we can
integrate seperately each term in square brackets. In particular, we have

Idl?l?*-ﬁ[f(k,,...,k4,122(1 —x))—f(ky,..., kg, 0)]

= —x)Z-‘/ZdeZEd-ﬁ[f(kl,...,k4,122) —fky,.... ks, 0)].

Comparison with the definition (4.3.23) of I, shows that

Iz_n"/zl"(d/2—2) 1 _ _
I, Tap-sp ),

— X427 xpAA2], (4327)

The integral is in fact the analytic continuation from d > 5 of a beta-
function, so that it equals I'(d/2 — 5/2)I"(1/2)/T'(d/2 — 2). The required
result I, =1, follows.

Property 10. Multiple integrals are correct at d =4.
Consider the integral

Iy Py) = Jd"kl K Ky K Py By) (4.328)

This might represent a Feynman graph with N external lines and L loops.
Then the p,’s and k;’s represent momentum vectors. Suppose that at d =4
the integral is completely convergent — in particular that there are no ultra-
violet (k— o0) divergences or subdivergences. If we restrict the p,’s to the
first four dimensions and set d = 4, then I is the ordinary four-dimensional
integral of f.
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Proof. For each vector v, we define the projections v and v, onto the
physical and unphysical dimensions, as before. The result to be proved is
that if p, = p, for each of the p;’s then I defined as the limit as d » 4 of the
dimensionally regulated integral is identical to the ordinary integral. We
can split each integral over a k; into an ordinary four-dimensional integral
over k;and a (d — 4)-dimensional integral over k;. The result to be proved is
then that

limfd"“‘f(l o d Tk Ky, LK By D) = Ky, LKy By, BY)

(4.3.29)
asd—4.
This formula is proved by doing all but the integral over k,. Let the result
be I;,:
Iy (k)= jd““‘i(z..,d“‘4i(L f; (4.3.30)

its only dependence on k, is via its length. We then have that the left-hand
side of (4.3.29) is

Jd"“‘f(llm =1(0)= |d*~*k,...d* " *k, f(K;,kp,.... k1, Dy, ..., D),

by use of the Property 9. Notice that the dependence on k, is on its first four
dimensions. We can then repeat this process to show that

1(1,(0)=Jd"-“is...dd-4RLf(R1,R2,k3,.,.).

Another L— 2 repetitions give (4.3.29), from which the desired property
follows.

4.4 Formulae for Minkowski space

In this section we derive a collection of results that are useful for Feynman
graph calculations.

4.4.1 Schwinger parameters

To convert an arbitrary graph in d dimensions to a parametric integral, we
first rewrite each propagator using

1 1 (=
I SR ) )

Then we perform the momentum integrals. Since all Feynman graphs are of
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the form of a polynomial in momenta times a product of simple scalar
propagators, we only have to calculate d-dimensional integrals of the form:

1% #n(4, B) = fd“kk“' ...ktrexp[ —(— Ak —2B-k)]. (442)

Here A depends only on the parameters introduced by (4.4.1), while B*
depends on these parameters and also linearly on the other momenta (both
external and loop momenta).

By linearity we can find I, by differentiating I,:

"1
pmn = ] (‘2@3 ) Jd"kexp(Ak2+23-k). (4.4.3)
Hj

j=1
(This uses linearity of d-dimensional integration.) We find I, by using the
translation k* — k* — B*/A, the scaling k—»k 4~ '/2, and Wick rotation:

1,(4,B)= J~d"'kexp(Ak2 +2B-k)

=i(n/A)?exp(— B?/A). (4.4.4)
Thus

= fd“kk“exp(Ak’ +2B-k)
=i(n/A)"? exp( — B2/ A)(— B*/A), (4.4.5)
= f d?kkk” exp(Ak? + 2B-k)
= i(n/A)"?exp(— B?/A)(B*B'/A* —1g"/4),  (44.6)
= j d% k*k#k” exp (Ak? + 2B-k)

- B*B*B* _ (B*g" + B*g" + B'g™)
A3 + 242

- i(n/A)d/Ze-W[ } 4.4.7)

I = Jddkk"k"k/‘k" exp (4k*+2B-k)

B*B*B“B* (B*B*g"* + five similar)

44 243
(g**g** + two similar)]

= i(m/A)32 ¢=B/A [

s (4.4.8)

Each of the loop-momentum integrals is performed in this way. At each
stage the momenta only appear quadratically and linearly in the exponent.
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4.4.2 Feynman parameters

It is also common to use
1
1(AB) = J dx/[Ax + B(1 — x)]? (4.4.9)
(4]

and its generalizations:
1 _F(a+/3+--~8)
A*B?---E*  T()['(B)---T(e)

1
xf dxdy---dzé(l—x—y—--2) x
0

xa—lyﬁ—l,,,ze—l
“(Ax+ By + - Ezf P

. (4.4.10)

Here A, B,...,E represent the denominators of the propagators of a
Feynman graph. The resulting momentum integrals have the form

B kl‘l...kﬂn 4411
B M — . T
T Jdk[—k2—2p~k+C]“ @a1h
Application of (4.4.1) and the results (4.4.4)-(4.4.8), etc., gives
Jo= Jd"k/( —k*=2pk+C)
=in?*(C + p»*?~*T'(a — d/2)/T(a), (4.4.12)
Jh = j‘d"k k*/(—k?> —2p-k + CF
=in"*(C + p?"*~*(— p[(a — d/2)/T(a), (44.13)

= Jd”’k k*k*)( — k2 — 2p-k + C)*

— ind/Z(C + p2)d/2—a X
x [[(a — d/2)p*p® — T(o — 1 — d/2)g"(C + p)2)/T(w). (4.4.14)

4.5 Dirac matrices
' The Dirac matrices satisfy the following properties:

(1) Anticommutation relation:
{y*, 9"} =29""1. 4.5.1)
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(2) Hermiticity:

, y oifu=0,
=y, = 452
C { - ifux>1. 452)

When we use dimensional regularization, the Lorentz indices range over an
infinite set of values, so we need infinite-dimensional matrices to represent
the algebra (4.5.1). We will also need a trace operation:

tr 1 =7£(d),

so that the representation behaves as if its dimension were f(d). We must
require f(d,) to be the usual value at the physical space-time dimension,
d =d,,. Usually this means f(4)=4.

The trace is a linear operation on the matrices which we will define later.
In an even integer dimension d = 2w, the standard representation of the y*’s
has dimension 2°. However, it is not necessary to choose f(d) =242 The
variation f(d) — f(d,)is only relevant for a divergent graph, so, by Chapter
7,any change in f (d) amounts to a renormalization-group transformation.
It is usually convenient to set f(d) = f(d,) for all d.

To set up a formalism for dimensionally regularized y-matrices, we must
treat the following issues:

(1) We must exhibit a representation of the anticommutation relations;
this will ensure consistency.

(2) The formulae for the trace of an arbitrary product of y*’s must be
derived.

(3) While a knowledge of the y*’s alone is sufficient for QCD and QED, we
must show how to define a y5 so that we can treat chiral symmetries.
This will also give us a definition of the antisymmetric tensor ¢, ;..

The following construction gives a representation:

Let w be a positive integer, and suppose inductively that we have
defined a 2 dimensional representation yj, of the algebra (4.5.1) for
0 < u < 2w — 1. We define the infinite dimensional y* for 0 < u < 2w — 1 by
having a sequence of y/,’s down the diagonal, and zeros everywhere else:

7{0)) 0
o I (4.5.3)

We will construct the next higher representation y, , ;, of dimension 2¢**,

with0 < u < 2w + 1. In order that (4.5.3) apply independently of w, we must
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choose

p (Ve O if0<pu<2w-—1

Yw+1) <0 Vo fOo<pu<2w-1.
This satisfies the anticommutation relations (4.5.1) and the hermiticity
relation (4.5.2), provided that 0 < u, v <2w — 1. Our task then is to find

Viw+1) for p=2w and 2w + 1.
Notice that the induction starts with w = 1. We can define

1 0 01
v("l,=<0 _]>, v(‘1)=<_1 o)' @.5.4)

Given the 2“-dimensional representation y{,, we define another matrix

Yor =177 Vi - 4.5.5)
Observe that
Moy =Twp Ten=1  {Fwp Ty} =0 4.5.6)

Also, when at w = 2, we have y = y., in the usual notation for Dirac matrices

at d = 4. We define
Ve 1)=( 0 ?(w))
w + A >
—Jw O

20+ 1 __ O i);(w)
Yoy = (if(w, 0 ) 4.5.7)
It is easy to check that (4.5.1) and (4.5.2) are satisfied for 0<p,
v<2w+ 1.

We now have an explicit representation of the Dirac matrices for any w,
and for the infinite-dimensional case, because of (4.5.3).

Standard manipulations involving the anticommutation relations are
valid independently of d. Two useful results are:

Py =3yl =gil =dl, 4.5.8)
YV = 29,07 — VY0,
=(2—d)y,. 4.5.9)

We also need traces of y-matrices, in graphs with fermion loops. The trace of
a matrix is linear:

tr(a4 + bB)=atr(A) + btr(B), (4.5.10)
and is cyclic:
tr(AB) =tr (BA). (4.5.11)

Here 4 and B are any product of y-matrices, and a and b are any numbers.
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These properties, together with the value of tr 1, define the trace of any
linear combination of products of y-matrices.
For example,
tr(y*y") =tr(y’y*) (cyclicity)
=tr(— y*y*+ 2¢*'1) (anticommutation)
= —tr(y"") +2¢g**tr 1 (linearity),

so we have the usual result

tr(y*y") =g*"tr 1. (4.5.12)

Similarly
tr (yp*pp%) = (g**g"* — g**g* + g**g*¥)tr 1. (4.5.13)
The trace of the product of an odd number of y-matrices is zero. For
example
dtry* =tr(y*yy%

= —tr(yy*y,) + 2try*

= —tr (30" +2try%,
so try* =0.

It should be possible to make a more constructive definition of the trace,
along the lines of (4.3.5). It is necessary to check consistency. We can find a
formula for the trace of any number of y-matrices — generalizing (4.5.13). It
is true for any finite-dimensional representation, yf;,, so it agrees with the
algebraic properties. Linearity defines the trace of more general products.
We must also check that contracting with g, commutes with the trace. This
can be checked directly.

A possible explicit definition of the trace of a matrix with components
M,. j is

N

tr M;; = (tr 1) lim L > M, (4.5.14)
N-wo N j=1

This definition exploits the fact that each matrix y* is an infinite set of copies

of a finite-dimensional y},, strung along the diagonal. Since the y*’s are

independent of d, the only possible d-dependence is in the choice of the

value of tr 1.

4.6 Vs and Exipv

In four dimensions, y;=iy%'y%*y* and e,,,, is a totally antisymmetric

Lorentz-invariant tensor with ¢, ,,; = 1. We need y;, for example, to define
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KAuv

the axial current y“ysyy. The e-tensor comes in because ys=
ig ;Y 7 y"y"/4!, and we have the trace formula:

tr Sy ytyryY = ig v tr 1 = — g, tr 1.

The appropriate definition changes when we go to two dimensions:
Instead of y5 we have §;, = y°y', and instead of ¢, ,,,, we have ¢,,, for which
€01 =1= —¢0, €90 = &; =0.

To continue dimensionally, we might expect y, to satisfy

{yS’ '}’u} = 09

just as in four dimensions. But then, as we will see in Chapter 13, the only
consistent result for y, is that it has zero trace when multiplied by any string
of y*s. Thus we do not have a regularization involving the usual y,.

A consistent definition is obtained by writing

Y’ =1y% 192y =iyphyRye, /41, 4.6.1)

1if (kAuv) is an even permutation of (0123),
&z = 4 — 1 if (kApv) is an odd permutation of (0123),  (4.6.2)
0 otherwise.

This definition is not Lorentz invariant on the full space, but only on the
first four dimensions. We have

{77} =0, if u=0,1,2,3,
[7s.7*] =0, otherwise,
) =1, yi=ys. (4.6.3)

The lack of full Lorentz invariance is a nuisance, but it does give the correct
axial anomaly ('t Hooft & Veltman (1972a)).
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Renormalization

In this chapter we come to the general theory of renormalization. The basic
difficulty is that a graph may not only possess an overall divergence. It may
have in addition many subdivergences which can be nested or can overlap
in very complicated ways. Most of our effort must go to disentangling these
complications.

We will begin by investigating some simple graphs. These will show us
how to set up the formalism in the general case. The ultimate result is the
forest formula of Zimmermann (1969). Contrary to its reputation, this is not
an esoteric procedure, designed for pedantically rigorous treatments.
Rather, the forest formula is merely a general way of writingdown what is in
fact the natural and obvious way of extracting the divergences from any
integral. Its power is demonstrated by the ease of treating overlapping
divergences, the handling of which is normally considered the béte noire of
renormalization theory.

The forest formula is applied to individual Feynman graphs. It extracts
the finite part of a graph by subtracting its overall divergence and its
subdivergences. We will, of course, need to show that the subtractions can
be implemented as actual counterterms in the Lagrangian. We will also
show that the counterterms are local, i.e., polynomial in momentum.

An important advantage of using the forest formula to obtain the finite
part of each graph, rather than working directly with counterterms in the
Lagrangian, is that the procedure applies to more general situations. As we
will see in Chapter 6, it will enable us to renormalize composite operators. A
more important case is the computation of asymptotic behavior as external
momenta of a Green’s function get large. For this case, the forest formula
permits a good derivation of Wilson’s operator-product expansion, which
we will discuss in Chapter 10.

Let the value of a Feynman graph be written as:

U(G)(pl,...,pN)=Jd‘k,...d“kLI(pl,...,pN;kl,...kL). (5.0.1)

Here p,,...,py are the external momenta, and k,,...,k; are the loop
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momenta. Renormalization is removal of that part of the large-k behavior
that causes divergences. Moreover, the very same techniques can be used to
extract the behavior for large p — as we will see when we treat the operator
product expansion in Chapter 10.

Although Weinberg’s (1960) theorem tells us the power-counting applic-
able to either kind of asymptotic behavior, it does not tell us how to
organize it. In particular it was only much later that Wilson (1969)
formulated his operator product expansion, which is the important tool in
computing asymptotic behavior, for example in deep-inelastic scattering —
see Chapter 14. Many generalizations have been made — see Mueller (1981)
for a review. These are phenomenologically very important, and the
method by which they are proved is close to that for Wilson’s expansion.

5.1 Divergences and subdivergences

The idea of renormalization theory is that ultra-violet divergences of a
field theory are to be cancelled by renormalizations of the parameters of the
theory. We propose to prove this in perturbation theory. The use of
perturbation theory implies that we expand the counterterms in the action
in powers of the renormalized coupling, g, thereby generating extra graphs
with these counterterms as some of the vertices. To avoid superfluous
technicalities, we will consider the case of ¢* theory in six-dimensional
space-time.

A very efficient way to understand renormalization was discovered by
Bogoliubov & Shirkov (1955, 1956, 1980) and Bogoliubov & Parasiuk
(1957), and we shall follow their approach. The first step is to decompose the
Lagrangian as follows:

=YL+ L+ L. (5.1.1)

Here £, is the free Lagrangian used to generate the free propagator
i/(p? — m? + i¢) in perturbation theory:

Lo=(C¢)?/2 —m*p?)2, (5.1.2)

with m being the renormalized mass. The rest of the Lagrangian, ¥, =

&, + & istheinteraction,and consistsof two terms. Thefirst, which we will
call the basic interaction, is

Ly=—g¢*/3, (5.1.3)

where g is the renormalized coupling. The second term, #,, we will call the
counterterm Lagrangian.
Consider graphs generated by the basic interaction. These have UV
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divergences which are to be cancelled by graphs with some of their
interaction vertices taken from the counterterm Lagrangian

L =0Z(0d)*/2 — dm*p?/2 — bg>/3! — Shé. (5.1.4)

(The term linear in ¢ is needed to cancel tadpole graphs — see Figs. 5.1.4 and
5.1.5 below.) In order to give meaning to 6Z, m?, 8g, and 6h, we must
impose an ultra-violet cut-off. We will use dimensional regularization in the
following sections.

The key to the method that we use is to realize that each of the three terms
in the counterterm Lagrangian should not be considered as a single
quantity. Rather it is to be considered as a sum of terms, each of them
cancelling the overall divergence in one particular graph generated by the
basic interaction. For example, the self-energy graph, Fig. 3.1.1, gives a
contribution §,Z to 6Z, and a term §,m? to dm*. Our calculation of this
graph led to (3.5.7), so with minimal subtraction we have

6,Z= gz/[384n3(d -6],
o,m?* =g*m?*/[64n>(d — 6)].} (5.15)
Then

0Z= Y 066Z=06,Z+ ",
graphs G
with similar formulae for the other counterterms.

We saw the utility of this idea by examining graphs like those in Fig. 3.2.1
and Fig. 3.2.2. Graphs like Fig. 3.2.2 contain vertices corresponding to the
counterterm §,m* (and §,Z). Such graphs are all generated by taking
graphs like Fig. 3.2.1 with no counterterms and finding where Fig. 3.1.1
occurs as a subgraph. Substitution of the counterterm for one or more of
these subgraphs gives the graphs with counterterm vertices.

This leads to the idea that we consider by itself the renormalization of a
single graph generated from the basic Lagrangian. We add to it a set of
counterterm graphs to give a finite result. Only as a separate step do we
recognize that the counterterm vertices are, in fact, generated from a piece
of an interaction Lagrangian.

The graph-by-graph method is probably the most powerful approach to
understanding not only the problem of ultra-violet divergences but also
many other problems in asymptotic behavior. Even so, it is not at all trivial
to ensure that the renormalization program can be carried out. The essential
steps are:

(1) To find the regions in the space of loop momenta of a graph that give
ultra-violet divergences.
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(2) To show how to generate a series of counterterm graphs for a given
basic graph.

(3) To show that the counterterm vertices are local (i.e., polynomial in
momenta).

(4) To find the conditions under which the counterterm vertices amount
only to renormalizations of the parameters of the Lagrangian.

The complications in carrying out this program arise when one treats the
case of the divergence of a graph which has a divergent subgraph. To
understand why there is a difficulty, we will examine the graphs of order g*

for the full propagator — Figs. 5.1.1-5.1.3.

—O0—0O0—+—0O——+ O+ —%—%—
1 1 11
(a) ) (@ @)

Fig. 5.1.1. A two-loop graph for the propagator in ¢> theory, together with its
counterterm graphs.

1
k
+ +
T
(a) (b) (©

Fig. 5.1.2. A two-loop graph for the propagator in ¢> theory, together with its
counterterm graphs.

DO O
3 4
k1 ! k
(a) ®) (© )
Fig. 5.1.3. A two-loop graph for the propagator in ¢> theory, together with its
counterterm graphs.

We ignore the graphs with tadpoles, such as Fig. 5.1.4. These are
divergent and need a counterterm dh¢. We can use a renormalization
condition that {0|¢|0) vanishes. Then the total of the tadpole graphs is
zero (e.g., Fig. 5.1.5), so we omit any graphs containing them.

Let us return to the sets of graphs listed in Figs. 5.1.1-5.1.3. In each set
there is one basic graph and a set of counterterm graphs. Ultra-violet

1

Fig. 5.14. A tadpole graph, together with its counterterm.
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0|4|0> = +
Oplo=—) + — +
+—OD + _O1+f@+_46
5
‘<Z + ——< + —{
5
_<5
5

Fig. 5.1.5. Graphs to O(g?) for <0[$[0).

+
+

divergences involve a loop momentum that gets large, so the divergences
are always confined to one-particle-irreducible subgraphs. The simplest
case is Fig. 5.1.1, where the basic graph has two insertions of the one-loop
self-energy. It is made finite by adding the graphs with one or both of the self-
energy subgraphs replaced by a counterterm. (We use a cross to denote a
countertermina graph,and weuse thelabel ‘1’for the counterterm of the one-
loop self-energy.) v

InFig. 5.1.2, the basic graph is more complicated. We will treat it in detail
in Section 5.2, and we merely summarize the results here. It has two UV
divergences. The first comes from letting both loop momenta k and / go to
infinity; we call this the overall divergence. But there is also a divergence
where the momentum in the outer loop stays finite. This is an example of a
subdivergence. Its existence, as we will see, implies that there is a term
proportional to p?In (p?) in the divergence of the basic self-energy graph.
This cannot be cancelled by any local counterterm. However there is also a
graph with a counterterm to the subgraph. This graph is Fig. 5.1.2(b). After
we add the two graphs, the non-local divergence cancels. The overall
divergence in the result is then cancelled by a local counterterm, for which
we use the label 2°. We implement this as a counterterm in the action by
inserting terms 8, Z and §,m? into the complete counterterms 6Z and dm?.

The pattern is simple. We consider as a single finite entity one basic graph
together with counterterms for its subdivergences and for the overall
divergence.

Another case is shown in Fig. 5.1.3. There are two subdivergences, each
corresponding to a vertex subgraph. The one-loop vertex is logarithmically
divergent and is made finite by renormalizing the coupling (Fig. 3.6.1).
Since the two divergent subgraphs overlap, the counterterm graphs are
generated by replacing one but not both of the vertex graphs by its
counterterm. The overall divergence is then local and is cancelled by
counterterms 6,Z and §,m>.

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

5.2 Two-loop self-energy in (¢%)s 93

Our first task in Section 5.2 will be to verify the above statements. To
generalize the argument we will then observe that power-counting as in
Section 3.3 determines the strength of the overall divergence. To prove that
the presence of subdivergences does not affect the form of the overall
counterterm, we will differentiate with respect to external momenta to
remove the overall divergence. Then we will be able to construct an
inductive proof that if subdivergences have been cancelled by counterterms
then the overall divergence is local and its strength is determined by simple
power-counting.

We will also show how to disentangle the combinatoric problems when
subdivergences are nested. Finally, we will discuss Weinberg’s theorem.
This theorem tells us exactly which regions of momentum we must
consider. In practice one is very simple-minded about locating UV
divergences. For example, we stated that the regions giving divergences for
Fig. 5.1.2are:(a) k and I going to infinity together, and (b) l going to infinity,
with k fixed. In each region, all the momenta get large in a particular 1PI
subgraph that is divergent by power-counting. Weinberg’s theorem tells us
that these are the only regions we have to consider explicitly. In the case of
Fig. 5.1.2 there is another region that is important, where ! goes to infinity
with k also going to infinity, but much more slowly. This region interpolates
between the other two, but in fact does not need to be treated as a separate
case.

5.2 Two-loop self-energy in (¢>),

In this section we will explain the properties of overall divergences and
subdivergences by computing the two-loop self-energy graphs, Figs 5.1.2
and 5.1.3, in @* theory at space-time dimension d = 6. We will again use
dimensional regularization, and will need the values of the one-loop
counterterms in order to cancel subdivergences.

The one-loop self-energy was considered in Section 3.6.2, where we found
that the counterterms needed were given by (5.1.5). We can also compute
the one-loop vertex graph, Fig. 3.6.1, with the resulting counterterm being

(cf, (3.6.13))

339 =142 [[64n°(d — 6)]. (52.1)
It is worth noting that this implies a value for the one-loop term in the bare
coupling:

go=[u’""2g + 559+ 0(g°)] 27"
=gu’~"*{1+39°/[647°(d — 6)] + O(g*)}. (5:22)
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5.2.1 Fig.5.1.2

In order to be able to compute Fig. 5.1.2 in closed form we work with the
massless theory. The value of the graph is then
4 12-2d
—g K
220" omp
! (5.2.3)
[(p+ k) +ie](k? +ie)*(X +ig[(k— > +ie]”

The inner loop is easily computed in terms of I'-functions:

X %Jd"kd"l

1
Jdd’,z(—kl_—,)—z =in"?T'(2 - d/2) j dx[ - k2x(1 — x)]422

12
=in¥’T(2 - d/z)ll‘f(/dz——_zl))—( —K¥272 (524
We now have
ig® rd/2 -1y
T, = 5}‘;?(16”3 T Mt WV IS d/z)Lr(/d___z_))_
1
x Jdak( e (5.2.5)

The denominators can be combined by a Feynman parameter:
1 _T(5-4d)2) ld X342

= . 5.2.6
A*"?B T@-4d/2)}, x[Ax+B(1—x)]5""/2 6.26)
after which the k-integral can be performed. The result is
2 252 2\d-6
(LY (=P
2= <64n3) 2 <4nu2> 8
Ir2—d/2)T(5—-d)I(@d/2—-1)’rd-4)
I'd—2)I'4—d/2)r'(3d/2-5)
gz 2p2/ pz -6
= - — - —d)K(d). 527
( 64,:3) > ( 4nﬂz> r2-d/2T( - DK@ (52.7)

The overall ultra-violet divergence is contained in the factor I'(S — d).
Observe that the argument of this I'-function is exactly minus half times the
degree of divergence. The subdivergence is contained in the factor
I'(2 — d/2); this is the same as we calculated in Chapter 3.

Before we discuss further the UV divergences we should observe that
there are also infra-red divergences. These come from the existence of long-
range forces in a theory with massless fields. In momentum space, they
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appear as divergences when some momenta go to zero. For example, if
d <2 the integral over the momentum through any propagator has a
divergence at zero momentum:

J d’q/q* ~ constant/(d — 2) at d close to 2.
q~0

This accounts for the factor I'(d/2 —1)3. When d <4 there is also a
divergence at k=0 with / and p fixed. Our only concern is with UV
problems, so we ignore the IR divergence. If we used a massive field, the IR
divergences would go away, but we would not have an explicit formula for
I

Now let us expand X, in powers of d — 6 to exhibit its divergences, and
its dependence on p?:

g% \?*p? 1 1 —p?
22“_<64n3> %{(d—&z +d_6|:ln<47w2)+constant:’+

2 2

+—§ln2<4— p2> + constant ln( p2 > + constant + O(d — 6)}.
U 4nu

(5.2.8)

The double pole at d = 6 and the double logarithm in the finite part are both
reflections of the fact of having a subdivergence. The p-dependence is a
power of p? times a polynomial in In( — p?). This is a characteristic feature
of massless theories.

The simple pole has a coefficient that is not polynomial in p.
Consequently, it cannot be cancelled by any local counterterm. It is easy to
see that this is caused by the presence of the subdivergence. The
subdivergence comes from the region where the loop momentum of the
inner loop goes to infinity while the momentum k in the outer loop remains
finite. Integrating over finite k gives a logarithm of p times the divergent part
of the inner loop. We have already introduced into the Lagrangian a
counterterm for the inner loop, so that there is a graph, Fig. 5.1.2(b), in
which this counterterm appears in such a way as to cancel the
subdivergence.

Therefore the sum of Figs. 5.1.2(a) and (b) should have no subdivergence,
but only an overall divergence. This can be cancelled by a local counterterm
(i.e., a polynomial in p). We will prove this in Section 5.2.2 by differentiating
three times with respect to the external momentum p*; this gives a result
which has negative degree of divergence, i.e., there is no overall divergence.
Since the subdivergence is cancelled, there is no subdivergence whatever, so
the counterterm must be quadratic in p. We represent this by Fig. 5.1.2(c).
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In Section 5.2.2 we will make explicit this proof of locality of the
counterterms.
Here we will verify the above statements by explicit calculations. In our
case that m =0, the value of Fig. 5.1.2(b) is
2,6-d 2
. gu k
T,,=—16,Z d‘k
2b 1 (zn)d J (k2)2(p+k)2

=< g )2(—p’\r(2—d/2)l‘(d/2—1)2 A
647> 6 )] (d-6Id-2) (47:;12)

_( 9 VP -2 1 _p?
_<647t3> 36 (d—6)2+d_6 —In ani? + constant

2

— 2
—%lnz(—IJz) + constant In (_p_) + constant + O(d— 6)}.

o 4y’
(5.2.9)
The non-local divergence disappears when we add this graph to X, , with
the result
2 2,2
g p -1 constant
+3p=—] =
2t 2o (641:3) 36 {(d —6F T -9

2 2

+4In? (4;52 ) + constant In (4_“22> + constant + O(d — 6)}.

(5.2.10)

The non-local divergence has cancelled, as promised. However, the double
pole and, in the finite part, the double logarithm have not cancelled, even
though it is evident from our calculation that they are associated with the
subdivergence nested inside the overall divergence. This is a general
phenomenon. Indeed we will see in Chapter 7, where we discuss the
renormalization group, that the coefficients of the double pole and of the
double logarithm could have been predicted from the one-loop counter-
terms without any explicit two-loop calculations.

Since the non-local divergences have now cancelled, the overall diver-
gence can be cancelled by choosing a wave-function counterterm

g> V1 ( -1 constant
5,2 = - . 52.11
2 (641:3) 36{(d 67 T -9 } (5.2.11)

Then we obtain at d = 6 a finite result, which we term the renormalized
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value of Fig. 5.1.2:

I =20, + 2, + (2, = —P%0,2)

2 \2,2 — p2 —p2
= (#) % {f}lnz <4n;€2) + constant In (ZTZ’) + constant}.

(5.2.12)

5.2.2 Differentiation with respect to external momenta

We saw that the graph Fig. 5.1.2 has an overall divergence which is local,
but that it is local only after we have subtracted the subdivergence. In
general we will need to show that the counterterm of a 1PI graph is a
polynomial in its external momenta with degree equal to the degree of
divergence. Our argument (following Caswell & Kennedy (1982)) depends
on differentiating with respect to external momenta.

In this subsection we will apply the argument to Fig. 5.1.2, emphasizing
its generality. Then in the next subsection we will apply it to Fig. 5.1.3. Even
though that graph has an overlapping divergence, traditionally considered
a hard problem, we will see that our method works as easily for this graph as
for Fig. 5.1.2.

We first differentiate Fig. 5.1.2(a) three times with respect to p#, to make
its degree of divergence negative. We represent the result pictorially by
Fig. 5.2.1, where each dot indicates one differentiation with respect to p.
Similarly, differentiating Fig. 5.1.2(b) three times gives Fig. 5.2.2. Now
Fig. 5.2.2 cancels the subdivergence in Fig. 5.2.1, and there is no overall
divergence, so their sum is finite. Thus the third derivative of the sum of
Figs. 5.1.2(a) and (b) is finite. So the overall counterterm is quadratic in p.
Lorentz invariance forces it to be of the form A(d)p? + B(d).

We glibly asserted that Fig. 5.2.1 plus Fig. 5.2.2 is finite. This statement is
not as obvious as it seems. Let us prove it. We Wick-rotate the integrations
over kand /in Fig. 5.2.1, and consider regions of the integral that might give
a UV divergence. If k and I go to infinity at the same rate, then there is no

Fig. 5.2.1. Result of differentiating Fig. 5.2.2. Result of differentiating
Fig. 5.1.2(a) three times with respect to  Fig. 5.1.2(b) three times with respect to
its external momentum. its external momentum.
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divergence, because the degree of divergence is negative. If / goes to infinity
with k fixed, there is a divergence, but it is cancelled by the counterterm
graph, Fig. 5.2.2.

The remaining significant possibility is that both k and / go to infinity, but
that k is much less than [. The ratios of different components of either one of
k or [ are finite, so we may summarize the order of magnitude of the
contribution from this region as:

ﬁnitef dkk=* f dll. (5.2.13)
1>k

This gives a divergent contribution, if / is of order k*’2. We must add
Fig. 5.2.2, which, as we will show, cancels this new divergence. Observe that
the counterterm was arranged to cancel the divergence when I goes to
infinity with k fixed, rather than when k is large, as we now have.

Let us expand the inner loop of Fig. 5.2.1 in powers of k when | > k, up to
its degree of divergence, which is quadratic. The coefficients of these powers
are integrals over all [, restricted to | > k. The divergences in the coefficients
are cancelled by Fig. 5.2.2, and we have the following estimates of the sizes
of the coefficients:

o

coefficient of k° = finite {J dll— divergence}

k

Lq) k
= finite {J dil— divergence} + ﬁniteJ dil
1 1
= 0(k?),
coefficient of k! = O(k),
coefficient of k? = finite { j dij1 — divergence}

k
= O(In(k)). (5.2.14)

The sum of Figs. 5.2.1 and 5.2.2 in the region k — co, with [ possibly much
bigger than k, is then of order

fwdkk‘zln (k). (5.2.15)

The power of k is the same as is given by the overall degree of divergence,
but there is an extra logarithm. We get a finite result, as claimed. The higher-
than-quadratic terms in the expansion of the loop in powers of k give no
divergence at all. :
What has happened? The divergence for | >k >1 could only occur
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because the interior loop was itself divergent. The fact that we sent k to
infinity merely suppressed this divergence somewhat. Suppose we neglect k
in the integral for the inside loop. Then the counterterm is in effect the
negative of the integral over [ of the loop from finite I to infinity. But in the
region we are considering for Fig. 5.2.1, we are restricting [ to be much
bigger than k, which is itself getting large. So if we neglect k in the loop, then
we are left with

finite +J d! (integrand of loop with k neglected).  (5.2.16)
1<k

Furthermore, we expand the loop in powers of k, to uncover the sub-leading
divergences. Each extra explicit power of k in the expansion compensates
for the lowering of the divergence. The quadratic term multiplies {dl/], so
giving an extra logarithm (but not a power).

The key step in the proof is to perform the integral with the larger
momentum !/ first. We have shown that, for the purpose of determining
whether or not a divergence occurs, we need only consider as distinct
regions: (1) k, [ - oo at the same rate, and (2) | - oo with k finite. (We might
also try k — co with Ifinite, but the subgraph with the lines carrying the loop
momentum k has negative degree of divergence, so we get no divergence
from that region.) The region k, [ — oo, with k <[ is schizoid: it can be
considered as essentially part of either of the two regions (1) and (2) that we

. have just defined. As region (2), the divergence is cancelled by a counterterm
when [ - oo, with k large but fixed. As region (1), the final integral over k is
finite, and the only sign of this intermediate case is the extra logarithm in the
integrand.

5.2.3 Fig.5.1.3

We conclude this section by considering the example of Fig. 5.1.3. Atd =6
the graph (a) has an overall quadratic divergence. It also has a logarithmic
subdivergence when either of the loop momenta k or [ gets large. The
subdivergences are cancelled by vertex corrections, which are shown in
graphs (b) and (c). We must prove that the overall counterterm (d) is
quadratic in p.

Conventionally, this graph is regarded as a difficulty in the theory of
renormalization, for it contains an overlapping divergence. That is to say,
one of the lines is common to both subdivergences. This is seen as a problem
(Bjorken & Drell (1966)) if one tries to write the graph as an insertion of a
renormalized vertex, Fig. 5.2.3, in the one-loop self-energy. The graph (b)
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Fig. 5.2.4. Result of differentiating Fig. 5.1.3 three times with respect to its external
momentum.

for the counterterm to one of the subdivergences is not of this form. The
corresponding difficulty does not happen in our first example, Fig. 5.1.2.

However, our trick of differentiating three times with respect to p works
as well for Fig. 5.1.3 as it did for Fig. 5.1.2. For the sum of (a), (b), and (c), we
find Fig. 5.2.4. The point is that differentiating either of the subgraphs
makes it convergent, while the counterterms for the subdivergences are
independent of momenta. We get terms (a) and (b), which have re-
normalized subgraphs, and graphs (¢) and (d), which have no sub-
divergences at all. None of the graphs has an overall divergence. The
calculation of the overall counterterms is left as an exercise for the reader.
The correct result is (Macfarlane & Woo (1974)):

(9 V1 1 11
5“2—(64713) [_6(d—6)2 +§(d-—6)]’

> 111
s =<W> mz[_(d_6)2 “é(d—é):l’ (52.17)

if we use minimal subtraction.
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5.3 Renormalization of Feynman graphs

We have seen that, in order to construct a sensible (i.e., local) counterterm
fora(1PI) Feynman graph,one mustfirst subtract off its subdivergences. This
is natural since the subtractions for subdivergences are automatically
generated from having the counterterms be definite pieces of the interaction
Lagrangian. Without subtraction of the subdivergences, the divergence of a
graph need not be local. It may even have a power of momentum greater
than the degree of divergence ; an obvious case of this is a graph that is finite
according to naive power-counting but that has a subdivergence.

It is therefore useful to devise a procedure for starting with a basic
Feynman graph G, constructing a set of counterterm graphs, and thereby
obtaining a finite renormalized value R(G):

R(G) = U(G) + S(G). (5.3.1)

Here U(G) is the ‘unrenormalized’ value of the basic graph (which diverges
as the UV cut-off is removed), and S(G) is the subtraction — the sum of the
counterterm graphs.

The strategy we use to construct S(G) is very general. It applies to the
asymptotic behavior of any integral as one or more parameters approach a
limiting value. In field theory it can be applied not only to the re-
normalization problem but also to the calculation of the asymptotic
behavior of a Green’s function as some but not all of its external momenta
get large. (A standard example which we will treat in Chapter 10 is the
operator product expansion of Wilson (1969)).

The procedure that we use for renormalization was first developed by
Bogoliubov and Parasiuk (see Bogoliubov & Shirkov (1980)), with
corrections due to Hepp (1966). Their construction was recursive and has
the acronym BPH. Zimmermann (1969) showed how to solve the
recursion — the result being called the forest formula. All these authors used
zero-momentum subtractions. Zimmermann (1970, 1973a) showed more-
over that there is then no need to use an explicit UV cut-off. He applied
the algorithm for computing R(G) directly to the integrand rather than to
the integral; this formulation has the title BPHZ. It is not necessary to use
zero-momentum subtractions. For example Speer (1974), Collins (1975b),
Breitenlohner & Maison (1977a, b, c) showed how to make the same ideas
work using minimal subtraction.

Our treatment will aim at showing the underlying simplicity of the
methods and their power to demystify renormalization theory. We will see
that the methods do not depend on use of a particular renormalization
prescription, even though we will often use minimal subtraction.
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We will examine the structure of the subtractions for a graph G. (A graph
we define by specifying its set of vertices and lines, each line joining two
vertices and each vertex attached to at least one line.) We write the graph’s
unrenormalized value as

Ug@y-.. o) = |d%,...d% I5(pys- . Pyiky k). (53.2)

Here we let L be the number of loops and N be the number of vertices. The
external momenta at the vertices are p,. In a Feynman graph for a Green’s
function there is an external momentum at the vertices for the external
fields, but at an interaction vertex, we have p; =0.

5.3.1 One-particle-irreducible graph with no subdivergences

The simplest case is a one-particle-irreducible (1PI) graph with no
subdivergences. Then the only possible divergence is an overall divergence
where the momenta on all the lines get large simultaneously. We may
renormalize the graph by subtracting an overall counterterm:

R(G) = U(G) — T-U(G). (5.3.3)

Here T denotes some operation that extracts the divergence of U(G). It
implements whatever renormalization prescription that we choose to use.
For example, we might use minimal subtraction. In that case T takes the
Laurent expansion of U(G) about d = d,;, and picks out the pole terms. (We
let the physical space-time dimension be d,; i.e., d, = 4 for thereal world, or
d, = 6 for the ¢* model we used in the previous sections.) We will use either
of two notations for the action of T on an unrenormalized object: T°U(G)
or T(G). Both will mean the same.

We could use zero-momentum subtractions. In that case T picks out the
terms up to order &(G) in the Taylor expansion of U(G) about zero
momentum. Here 6(G) is, as usual, the degree of divergence. There are many
other possibilities. In our work, we will use the minimal subtraction scheme.

Then, for example, the one-loop self energy in (¢°3) gives

] E ddk #G—d
2 Jeny? (k* —m?)[(p+ k) — m’]

= pole part of {1287:3 I'2—-d/2) x
1 m2_p2x(1 —X) d/2—3 5 5
XJ‘de[—TM?—— [m — D x(l—x)]}
_ g* (p*6—m?)
“eT A= (5.34)
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The one-loop vertex, Fig. 3.6.1, gives

3 a4k #9—311/2
§ {g Lz’t)" (U =m)[(p+ 0 =m?][(p + g + k) — mzl}

I {0 s
= t -z —
pole part o { 7 ( /2) x
1 1-x 22 (2 2 o d/2 -3
XJ dxj dy[m q°xy (px+(p2+q) (1 —x y)] }
0 0 4mp
3,3-d/2
— 9K
et (5.3.5)

Observe that in this last case we define the pole to come with a factor
u®~ %2 This is an example of a general rule that one must define the pole
part of U(G) to have the same dimension as U(G), for all d.

5.3.2 General case

In general we not only have to handle the case of an overall divergence, but
also the case that subdivergences are nested within the overall divergences.
Another case is exemplified by the propagator with two self-energy
insertions (Fig. 5.1.1), where within one graph there are two subgraphs
which can diverge independently.

As we saw from examples, we must subtract off subdivergences before
finding the overall divergence. In view of the complications when the
subdivergences themselves have subdivergences, etc. (ad nauseam), we must
be extremely precise as to what is to be done. This is what we will now do. It
is helpful to have a specific non-trivial example in mind, to make sense of the
mathematics. Such examples are treated in subsection 5.3.3 and in
Section 5.4. The reader should try to read these sections concurrently with
the general treatment in this section.

First, let us define a specific divergence as being the divergence occurring
when the loop momenta on a certain set of lines get big, with the momenta
on other lines and the external momenta staying finite. Whether or not a
given set of lines has a divergence associated with it is determined by power-
counting. A divergence is thus associated with a certain subgraph. (At this
stage, we do not require that the subgraph be connected.)

If a graph G diverges when all its lines get large loop momenta, it is said to
have an overall divergence. A one-particle-reducible graph (like any of
Fig. 3.2.1) cannot have an overall divergence — some lines are not a part of
any loop. All other divergences involve a smaller subset of the lines. They, of
course, are called subdivergences. Every subdivergence of a graph is the
overall divergence of one of its subgraphs.
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Observe that Fig. 5.1.1(a) has no overall divergence, but has three
subdivergences. These come from the regions in the integration over loop
momenta where: (1) the left-hand loop has large momentum, (2) the right-
hand loop has large momentum, and (3) both loops have large momenta.

To renormalize a graph G we assume that we know how to renormalize
its subdivergences, and we then let R(G) be the unrenormalized value of G
with subtractions made to cancel the subdivergences. Then the only
remaining divergence that is possible is an overall divergence. So we define
an overall counterterm:

C(G)= — T°R(G) (5.3.6)
by applying to R(G) the same subtraction operator T as we discussed

earlier; if there is no overall divergence (e.g., if G is one-particle-reducible)
then C(G) is zero. In any event the renormalized value of G is defined as
R(G) = R(G) + C(G). (5.3.7)
The definitions (5.3.6) and (5.3.7) give us R(G) provided that we know how
to subtract subdivergences. This is essentially a matter of renormalizing
smaller graphs; we will construct R(G) in a moment. Once we have done
this, we will have a recursive definition of R(G): successive application of
(5.3.7) to smaller and smaller subgraphs ultimately brings us to graphs with
no subdivergences. These we know how to renormalize. ’
Now let us define R(G), which is to be U(G) with subdivergences
subtracted. For the case of a graph with no subdivergences we must define

R(G)=U(G) (if G has no subdivergences). (5.3.8a)
For a larger graph we define
R(G)=U(G)+ ¥ C/0G) (5.3.8b)
r$G6

We sum over all subgraphs y of G, other than G itself, as indicated by the
notation y E G. The other new notation C,(G) means that we replace the
subgraph y by its overall counterterm, as defined by (5.3.6), i.e.,

}. (5.39)

— ToR(y),  if y has an overall divergence
k)= ’
"=l0 if y has no overall divergence

To make a simple formula, we write the sum as being over all y’s rather than
only over divergent y’s; then the C,(G) is zero if y is not overall divergent. We
could of course restrict the sum only to those subgraphs that have an
overall divergence.

One tricky point in the above equations arises in defining C(y) for a
disconnected subgraph y. An example is the subgraph of Fig. 5.1.1(a)
consisting of the two self-energy loops. We will discuss this next.
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5.3.3 Application of general formulae

Equations (5.3.6) to (5.3.9) give a definition of R(G). Let us see how they
apply to simple examples. For a 1PI graph with no subdivergences they just
reproduce R(G) = U(G)— T-U(G).

Next consider a graph like Fig. 3.2.1(a) or (c), whose only divergence is a
subgraph with no further subdivergences. Then there is no overall
divergence, so by (5.3.7)

R(G) = R(G). (5.3.10)
There is only one subdivergence, so (5.3.8) collapses to give
R(G)=U(G) + C(G), (5.3.11)

where y is the divergent subgraph. Here C(G) is the full graph with y
replaced by — ToU(y). We reproduce the obvious result. There is one
counterterm graph like Fig. 3.2.2(a) or (c).

We now look at a graph with two or more divergent subgraphs which do
not intersect and which have no subdivergences. It is sufficient to consider G
to be Fig. 5.1.1(a). There is no overall divergence, so again R(G) = R(G). Let
y, and y, be the self-energy bubbles. Then the subdivergences correspond to
the three subgraphs y,, y,, and y, Uy,. (Here y, Uy, means, as usual, the
union of y, and y,.) So

R(G)=R(G)=U(G) + C,(G+C(G)+C G). (5.3.12)

1o 2
Yiu 72
Evidently C, (G) is just U(G) with y, replaced by its counterterm,
— T-U(y,); and similarly for y,. But what is C, ., 0)?

It corresponds to a subtraction for y, Uy, for the region where all loop
momenta are large. But we must subtract from it the counterterms for the
regions where only one momentum is large:

C(y1Vy,)= = To[U(y)U(y,) + Cy)U(y,) + U(y,)Cl(y,) ] (5.3.13)
Here we used the fact that y, Uy, is disconnected, so that
Uy, uy2) = U@y )U(,). (53.14)

To work out (5.3.13), we must define T when acting on a disconnected graph
to act independently on its components. Thus:

To [U(V1)U(V2)] = [TO U()’1)] [TO U(Vz)] = C(y,)C(y,), (5.3.15)
To[Cly)U(y) ] =[T-Cly) [T U(y,) ] = — C(y)Clys),  (5.3.16)

etc.
We used the property that To U(y,) = — C(y,). Furthermore, T-[ T-U(y,)] =
T-U(y,), ie., the pole part of a pole part is itself. We therefore find
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that
Cly,vyy) = [T" U()’1)] [TO U(Vz)]a (5.3.17)

so that we reproduce the counterterm graph Fig. 5.1.1(d).
The above procedure generalizes to an arbitrary graph. It may appear
excessively complicated, but it allows the smoothest way of defining R(G).
Finally, we observe that our definitions (5.3.6)—(5.3.10) exactly reproduce
our results for the two-loop graphs like Figs. 5.1.2 and 5.1.3.

5.3.4 Summary

In this section we have proved very little. We have set up a series of
definitions that state exactly what we mean by the renormalization of a
Feynman graph. The notation we have introduced will be important in
making proofs. What we will need to prove is that the overall counterterms
are local and of a degree in momentum given by naive power-counting. We
will also show how to solve the recursion to find an explicit formula due to
Zimmermann (1969).

5.4 Three-loop example

The three-loop self energy graph of Fig. 5.4.1 in ¢ theory in six dimensions
is an example of a graph with nested and multiply overlapping divergences.
We call it G. Its divergent subgraphs are:

7, = {lines carrying loop momentum k},

y, = {lines carrying loop momentum g},

y, = {lines carrying loop momenta k and/or [},

v, = {lines carrying loop momenta q and/or I},

Vs =712 (5.4.1)
The first four of these are connected 1PI vertex graphs; the last is a set of
two unconnected vertex graphs. According to our definitions of Section 5.3
we have

R(G)= R(G) + C(G)

= R(G) - T-[R(G)]. (5.4.2)
d
M -k d
p q-1
p+k p+gq
p+1

Fig. 5.4.1. Three-loop self-energy graph in ¢* theory.
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This equation states that we first subtract subdivergences to obtain R(G),
and then take off the overall divergence.

To define R(G) we subtract subdivergences:
5
RG) =G+ ) C,(0)
i=1

~G+YG| (5.4.3)

7= C)

We represent this as Fig. 5.4.2. The notation with the vertical bar in
this equation denotes that we take G and replace y; by the corresponding
counterterm C(y;). In the figure, the labels 1,...,4 signify which of the
subgraphs y,,...,7, has been replaced by its counterterm.

O

D
O A

Fig. 5.4.2. Subtraction of subdivergences of Fig. 5.4.1.

Only y, and y, have no further subdivergences, so C(y,) and C(y,) are the
ordinary one-loop counterterms. But we have still to define C(y;) for i = 3,4,
S:

Cra)= = To[y3 = ¥3ly,=100d

Clys)=—To[y,— 74|v1—~T(7z)]’ '

Clys)=—To[yy2— T(r1)v; — 11 T(5)] _
=[-Te)I[-TG)] (544

The overall result is obtained by combining (5.4.2)—(5.4.4). If we represent
the effect of applying T to a 1PI graph by enclosing it in a box, we can write
R(G) as shown in Fig. 5.4.3. There are sixteen terms in all. The first eight
represent U(G) minus its subdivergences, and the last eight form the
subtraction for the overall divergence. The expansion of R(G) represented in
Fig. 5.4.3 is an example of the forest formula, to be discussed in the next
section.

As we saw by examining two-loop graphs, the overall counterterm for a
graph is non-local unless we first subtract off subdivergences. Otherwise
there would be divergent contributions from where some but not all
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: {Previous} E
— 1

i (8 graphs) |

b e — .

Fig. 5.4.3. Renormalization of Fig. 54.1.

subgraphs have large loop momenta. There would also be divergent
contributions from the region where all loop momenta get large but at
different rates. We can check from Fig. 5.4.3 that none of these problems
occur for R(G). Let us do this explicitly.

Let us show that the overall counterterm for G is local. We differentiate
R(G) three times with respect to the external momentum p and show that
the result is finite. Given the momentum routing of Fig. 5.4.1, there are three
lines to differentiate: p + k, p + I, p + q. Here we have used the momentum
carried by the line as a label for the line. Differentiating the original graph
gives ten terms, where the three derivatives are applied to any combination
of the three lines. One term is where we differentiate p + k three times (Fig.
5.4.4). Although there is then no overall divergence, there remain sub-
divergences, so we must examine the corresponding differentiations applied
to the counterterm graphs (b)—(h). We must regard the derivatives as acting
on these graphs before divergences are computed (by the operation
symbolized by the box).

The differentiation makes the subgraphs y, and y, completely finite, by
removing both their overall divergence and y,’s only subdivergence. Hence

-0-

Fig. 5.4.4. One of the terms obtained by differentiating Fig. 5.4.1 three times with
respect to its external momentum.

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

5.5 Forest formula 109

the counterterm graphs (b), (d), (), and (h) are zero after differentiation. This
leaves graphs (c), (f), and (g). These cancel the subdivergences of (a) coming
from the subgraphs y, and y,, which are unaffected by the differentiation.

We may examine the other nine terms in §3R(G)/dp> similarly, and we
find that in fact 8*R(G)/dp? is finite, as claimed.

5.5 Forest formula

5.5.1 Formula

Zimmermann (1969, 1970) gave an explicit solution of the recursive
definition of the renormalized value R(G) of a graph G. The general idea can
be gleaned from the example we examined in the previous section. There the
recursion generated a series of sixteen terms. One was the original graph,
and the others had the subtraction operation T applied one or more times.
For example, in graph (e) we first replace the left-most loop y, by T(y,), with
aresult we can write as T, (G). We then take the subgraph equivalent to y;,
viz. T,, (y;), and replace it by the result of acting with T. This gives graph (e).
The sum of the two graphs (d) and (e) is used as the subtraction for the
subdivergences of G associated with y,.

Each of the sixteen terms is pictured as the original graph with some
number of connected 1Pl subgraphs enclosed in boxes to indicate
application of T to the subgraph. Each term can be specified by giving its set
of boxed subgraphs. Each such set is called a forest. The subgraphs which
form a particular forest are either disjoint or nested : they are said to be non-
overlapping. The set of all possible forests for G is called #(G).

There are sixteen forests occurring in Fig. 5.4.3. The first eight are (in
set theory notation):

(a) the empty set &,
®) {:},

© {7},

@ {rs},

(e) {'}’1,'}’3}’

() {74}

@ {7274}

(h) {Yn)’z}-

These do not contain the whole graph; they are called the normal forests.
The other eight forests in Fig. 5.4.3 consist of one of the above eight forests
to which is added as another element the complete graph G. A forest of G
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containing G is called a full forest. The distinction between normal and full
forests is that the normal forests subtract off the subdivergences, and the full
forests combine to subtract the overall divergence.

Not all forests occur in Fig. 5.4.3; for example, the forest

U = {subgraph consisting of lines carrying loop momentum [}

does not appear. Such forests contain at least one overall convergent
subgraph as an element.

Inspection of Fig. 5.4.3 shows that

RG)= Y [I(-T)G. (5.5.1)

Ue#(G) yeU

Here the sum is over all forests U of G. The operator T, replaces y by T(y).
Note that for nested y’s the T,’s should be applied inside to outside.
Equation (5.5.1) is called the forest formula; it is due to Zimmermann
(1969). Suppose we compute R(G) for an arbitrary graph G by using (5.5.1).
Then, as we will prove shortly, the result is the same as if we used the
recursive definition of R(G) given in Section 5.3.

It is convenient to let the sum over forests be over all forests rather than
only over those consisting of subgraphs that are superficially divergent; the
extra forests give a zero contribution. The reason for doing this is that we
will sometimes wish to change the definition of T so that we make
subtractions for some convergent graphs, as well as for divergent graphs.
For example, such a redefinition will be the key to proving the operator
product expansion in Chapter 10.

We now have both a recursive and a non-recursive definition for the
renormalization of a Feynman graph. It will prove very useful to have both
definitions available. Different proofs will need different forms of the
definition. In particular, proofs by induction on the number of loops of a
graph will naturally use the recursive definition.

5.5.2 Proof

The proof of the forest formula is elementary, but somewhat involved. We
first use (5.5.1), and the following equations:

R(G)= Z H (—T)-G; (5.5.2)
UeZ(G) yeU
— T,<R(G), if G is 1PI,
C(G) =< [1[C(H)], if G is a disjoint union of 1PI ys,» (5.5.3)
0 otherwise,
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as definitions of R(G), R(G), and C(G). Here # (G)is the set of normal forests
of G (i.e., those that do not contain G). These definitions are correct for the
graph Fig. 5.4.1, as can be seen by inspection of Fig. 5.4.3.

Since the recursive definitions uniquely give R(G), R(G), and C(G) in
terms of the operation T, it suffices to show that (5.5.1)(5.5.3) satisfy the
recursion relations (5.3.6)-(5.3.9). Notice first that (5.3.6) and (5.3.9) are
really the same, except for being applied to different graphs.

If R(G) given by (5.5.2) is correct, and if subgraphs are correctly
renormalized, then (5.5.3) is equivalent to our original definition (5.3.6) of
C(G). Moreover, suppose that G is connected and one-particle-irreducible.
Now each forest of G is either a normal forest, that is, a forest of which G is
not an element, or it is a normal forest to which is adjoined G. Then the
formula (5.3.7) for R(G) is a direct consequence of (5.5.1)—(5.5.3) for such a
graph. If G is not a union of 1PI graphs, then there is no overall divergence,
and again (5.3.7) holds.

So it remains to prove the following:

(1) R(G)is correct when G is a disjoint union of more than one 1PI graph.
(Note that this case occurs in renormalizing the graph of Fig. 3.2.1(b), as
we saw in Section 5.3.)

(2) R(G) is correct, i.e., it satisfies (5.3.8), for a general graph.

If G is a disjoint union of 1PI graphs v,, then each forest is a union of
forests, one for each component. Then R(G) = [ ] R(y;), as we should expect.

The problem is that this is not manifestly true in the recursive definition,
where we make an overall subtraction for G. We dealt with this problem
between (5.3.11) and (5.3.17).

Our proof of (5.3.8) is by induction on the size of G. Now a one-loop 1PI
graph has no non-trivial subgraphs, so its only normal forest is the empty
set. Then formula (5.5.2) collapses to R(G) = U(G), just as it should. This
enables us to start the induction.

It remains to prove (5.3.8b). For this, observe that each forest U has a
unique set of biggest subgraphs M,,...,M;. Each M, is contained in no
bigger subgraph in U, and each ye U is contained in some M;. The existence
and uniqueness of this set of M’s is seen by considering pairs y;, y, of
elements of U. Since y;, and 7y, are non-overlapping, there are three
possibilities:

(1) y; = v, in which case remove y, from further consideration.
(2) yx = 7; in which case remove y, from further consideration.
(3) y;:ny. =, in which case leave both in.
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Repeat until no further eliminations are possible; then the result is the set of
M.

The forest U is the union of a full forest, one for each M;. We can write our
definition (5.5.2) of R(G) as

RG=G+ Y {ll[(—TMi) Yoo oYX
My,.... M, Li=1

UieF(M1)  UpeF(M,)

X[ I1T1,)- 11 (—Th)]G}. (5.5.4)

y1eU;y yn€Un
Here the first term comes from the case in (5.5.2) that U = ¥, and the sum in
the second term is over non-empty sets of disjoint 1PI graphs M, excepting
the case that M;=G. By setting y=M, u...UM, and using (5.5.3) to
determine C(M, u...uM,), we find (5.3.8b).

5.6 Relation to &

We have seen how to renormalize an individual Feynman graph by making
a series of subtractions. The motivation for doing this came from
consideration of examples in which the subtractions were generated by
counterterms in the interaction Lagrangian. We will now show that this is
true to all orders. We will assume the natural result (to be proved later) that
the polynomial degree of the overall counterterm of a graph is given by its
degree of divergence, just as for low-order graphs.

First, we must make precise the result that we will prove. For each 1PI
graph G, we have constructed its overall counterterm C(G). Since this is a
polynomial in the external momenta of G, it can be written as the vertex
derived from an interaction term D(G)/N(G) in the Lagrangian .. Here
N(G)is a symmetry factor of the same sort as the 3! that appears with the ¢*
interaction term in .. Each power of a momentum entering D(G)
corresponds to i times a derivative of the corresponding field. If G is an n-
point graph and each of its external lines corresponds to the same type of
field, then N(G) is n!. If there are a number of different fields and n, is the
number of lines of type i entering G then

NG)= Hni . (5.6.1)

For each graph for a Green’s function, the forest formula gives a set of
graphs with counterterms. We will demonstrate that the set of counterterm
graphs is generated from the counterterm vertices in the interaction

Lagrangian.
Consider ¢3 theory. As before, we write the Lagrangian as:

L=Lo+ Lo+ Lu=Lo+ 2, (5.6.2)
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The free Lagrangian
Fo=(00)*/2 —m*¢?/2 (5.6.3)

generates the propagator, while the interaction %, consists of two terms,
%, and Z .. The basic interaction is

Ly=—gu>~?¢%3, (5.64)
and %, is the counterterm Lagrangian used to cancel the ultra-violet
divergences:

Z =Y DG)/N(G). (5.6.5)
G

Here the sum is over all 1PI graphs. Those that have no overall divergence
generate no counterterm; for these D(G) = 0. Each 1PI graph that has an
overall divergence generates a term in (5.6.5). The formulae (5.6.2) and
(5.6.5) apply in any theory.

Since (5.6.5) applies to any theory, it applies in particular to ¢? in higher
than six dimensions. Thus it enables us to renormalize a non-
renormalizable theory. But the sum must include counterterms D(G) with
an arbitrarily large number of powers of momentum and with an arbitrarily
large number of external lines for G. Itis only in six or fewer dimensions that
the counterterms have the same form as terms in the basic ¢* Lagrangian
Lo+ Ly.

Now that we have developed a convenient notation, the most difficult
part of the proof is to ensure that the combinatorial factors come out right.
We will prove that the Lagrangian defined by (5.6.2) and (5.6.5) gives the
same renormalized Green’s functions as those generated by our recursive
definition in Section 5.3 (and therefore the identically same Green’s
functions as given in Section 5.5 by the forest formula). The proof will be
given for ¢3 theory in six or fewer dimensions, but it easily generalizes.

Consider the full N-point Green’s function Gy at order g*. It is sufficient
to work only with connected graphs. If the theory is renormalizable (as we
will prove in Section 5.7), then the sum of counterterms has the form:

L., = 5Z(34)?/2 — Sm2$2/2 — 5g®/3 1. (5.6.6)
with (by (5.6.5))
—0Z= ) [Coefficient of —ip? in C(G)],

2-point G
—-om*= Y  [Coefficient of ip° in C(G)],
2-point G
-é= Y CG)i (5.6.7)
3-pointG

We ignore the tadpoles, yet again. The term of order g* in the perturbation
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expansion of Gy has vertices generated by the different terms in ¥, + Z,.
There will be graphs with all of their vertices being the basic interaction .%,,.
Let the set of these be called B. The other graphs will contain one or more of
the counterterm vertices generated by (5.6.6). Each counterterm can then be
decomposed into a sum of terms by applying (5.6.7) at each counterterm
vertex. Each term has each of the counterterm vertices replaced by the
overall divergence of some graph. Then in the result, each term T
corresponds to a unique basic graph b(T)eB.
So we have

GN=Z<G+ Y T). (5.6.8)

G uT)=G

On the other hand, we have constructed the renormalization of each of the
graphs G by writing

R(G) =G+ Y C/[G) (5.6.9)

ysG

Each of the terms T in (5.6.8) is constructed by replacing each of a set of one
or more disjoint 1PI subgraphs y,,...,y; by its counterterm given by
iD, (G). On identifying y in (5.6.9) with y, Uy, - Uy;, we expect that

G,= Y R(G). (5.6.10)
G

This result would be obvious, were it not that the symmetry factors do not
manifestly match up.

The problem is illustrated by Fig. 5.6.1. There the basic graph is (a), and
the complete set of subtractions needed to renormalize it consists of (b)—(e).
Now the symmetry factor for (a) is 1/8: There is a factor 1/2 for each self-
energy graph and an overall 1/2 for the top—bottom symmetry of the whole
graph. Each of the subtractions (b) and (c) has a symmetry factor 1/4, since
the remaining factor 1/2 goes into the counterterm for the self-energy. Both

graphs (b) and (c) are equal.

(a) ()

) @
Fig. 5.6.1. Renormalization of a graph, to illustrate symmetry factors.
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Considered as Feynman graphs, these are the same graph, but with
symmetry factor 1/2. So they give one term with factor 1/2 in (5.6.8) (derived
from the Lagrangian), while in (5.6.9) (from the recursion formula) there
are two equal terms with factor 1/4. The end result is the same. We must
consider (b) and (c) as distinct graphs when defining R(G), since they
correspond to different regions of loop-momentum space — we must take
each momentum variable to be distinguishable.

To construct a general proof is tedious. The symmetry factor of a graph G
is 1/N(G), where N(G) is the dimension of the graph’s symmetry group. So
we write

G =G/N(G), (5.6.11)
where the overbar indicates computation ignoring all symmetry factors.
Similarly we define C(G) by

C(G) = C(G)/N(G). (5.6.12)
Now the renormalized value of a graph G is
R(G)=G+ ) C/(G)

ysG

1
N(G)[G+ Yc (G):I

l_[ .
vt (v ) o

C,(G) | (5.6.13)

nN

In the last line we have observed that y is a disjoint union of 1PI graphs y,,
7,,.... Moreover, we have explicitly indicated the symmetry factors 1/N, =
1/N(y,) for each y; which is replaced by its overall counterterm. For a
given subgraph y = U y, the symmetry groups of the y,’s are a commuting set
of subgroups of the symmetry group of G. Therefore the quantity
N(G)/[] N; must be an integer.

Next, consider the Green’s functions generated by the Lagrangian (5.6.2),
as in (5.6.8),

5.6.14
N(G ) y(G)} (5.6.14)

Here we have observed that each graph containing one or more counter-
terms is generated from a basic graph by replacing some 1PI subgraphs
715---,7; by counterterms. We write y as the union of the y;’s. Then we let G/y
be the graph resulting from substituting counterterms for the y,;’s. By the

6= 2{5ig 0+

ysG
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definition of the counterterm Lagrangian, the result is the same as C,(G),
aside from symmetry factors. The prime on the ) ' indicates that only y’s
giving distinct Feynman graphs are considered. (Thus, for example,
Figs. 5.6.1(b) and (c) are not counted separately.) Thus, if we define

K(G,y) =[number of graphs y’ for which G/y = G/y'],
then we must prove that

K(G,y) = MG)

[l_l Ni][N(G/V)].

It is easiest to couch this final step in the language of group theory. The
denominator of the right-hand side of (5.6.15) is the product of dimensions
of commuting subgroups of the symmetry group of G. (Note that, for
example, two ¢ counterterms generated by different self-energy subgraphs
are counted as different.) These subgraphs generate another subgroup, of
which the set of cosets in the symmetry group of G has exactly the
dimension of the right-hand side of (5.6.15). But, concretely, each coset
corresponds to one of the graphs counted by K(G, ).

(5.6.15)

5.7 Renormalizability

5.7.1 Renormalizability and non-renormalizability

In this section we explain the properties of renormalizability, non-
renormalizability, and super-renormalizability of a field theory. We do this
first for every order of perturbation theory, and then we consider to what
extent the properties are true beyond perturbation theory, for the complete
theory. The method in perturbation theory is power-counting and dimen-
sional analysis.

Consider first ¢> theory in a space-time of integer dimension d,,. We have
seen how to renormalize it to get finite Green’s functions by adding
counterterms (5.6.5) to the Lagrangian. Each counterterm is a polynomial
in the field ¢ and its derivatives. The theory is called renormalizable if the
only counterterms needed are proportional to the terms (9¢)?, ¢2, and ¢°
present in the original Lagrangian %, + .%,. This is equivalent to saying
that the Lagrangian has the form

& =(00)* /12— mid5/2 — gobo/3, (5.7.1)

where the barefield ¢, is Z'/?¢. The bare mass m,, the bare coupling g,, and
the field-strength renormalization Z each have singular behavior as the
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ultra-violet regulator is removed. A linear term Jh¢ is needed as well. We
may regard it as being present in the original Lagrangian. In any event it is
only a single extra coupling. It can be ignored if we impose the
renormalization condition that {0|¢|0) =0 to determine 6h, and if we
ignore tadpole graphs.

We generalize to an arbitrary theory by calling a theory renormalizable if
the Green’s functions of its elementary fields can be made finite by rescaling
the fields (in a cut-off dependent way) and by making some suitable cut-off
dependent change in the couplings and masses.

In perturbation theory we determine whether or not we have re-
normalizability by examining the possible values of the degree of diver-
gence &(G) for the 1PI graphs. For every graph G a counterterm is needed if
6(G) =0. As we will prove in Section 5.8 the counterterm C(G) is a
polynomial of degree §(G) in the external momenta, and provided we use a
scheme like dimensional regularization that preserves Poincare invariance,
the counterterms are Poincare invariant.

Let us now determine whether or not ¢* theory in d space-time
dimensions is renormalizable. In d space-time dimensions the N-point 1PI
graphs have dimension (in momentum space)

d(Gy)= N +d — Ndj2.
Then (by (3.3.12)) the degree of divergence of a graph for G, at order g* is
Gy)=d+ (1 —d/2)N + (d/2 - 3)P. (5.7.2)
Note that the minimum value of P to have a one-loop connected graph
is N:

Inspection of (5.7.2) shows that if d > 6 then, for any value of N, there can
be made N-point graphs with arbitrarily high degree of divergence by going
to large enough order in g. The theory is therefore not renormalizable if

d > 6, and the non-renormalizability is a direct consequence of the negative
dimension of g.

and tadpole graphs to 4 loops

Fig. 5.7.1. All the graphs with overall divergences in ¢ theory at those space-time
dimensions where it is super-renormalizable.
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If d = 6, only the one-, two-, and three-point functions are divergent, with
degree of divergence 4, 2, and 0, respectively. The permissible counterterms
are just terms of the form of those in ¥,+ .%,, so the theory is
renormalizable if d = 6. Moreover, there is a divergence in every order of g
(except for tree graphs, of course).

If d =3, 4, or 5, then only a finite set of graphs, illustrated in Fig. 5.7.1,
have overall divergences, and renormalization is needed only for the mass
and for the tadpole coupling. Again we have renormalizability.

5.7.2 Cosmological term

Strictly speaking, we should also consider Feynman graphs with no
external lines. These are the vacuum bubbles. They generate the energy
density of the vacuum, and normally are ignored. But in gravitational
physics, they cannot be ignored. Counterterms for such graphs (present in
¢> theory whenever d > 2) are proportional to the unit operator. They are a
renormalization of what in General Relativity is the cosmological constant.
A counterterm is even needed for free-field theory — where the divergence is
conventionally removed by normal-ordering (see, for example, Bjorken &
Drell (1966)). We see that normal-ordering is nothing but a primitive form
of renormalization.

5.7.3 Degrees of renormalizability
It is convenient to distinguish three types of renormalizable theory:

(1) Finite: no counterterms needed at all.

(2) Super-renormalizable: only a finite set of graphs need overall counter-
terms.

(3) Strictly renormalizable: infinitely many graphs need overall counter-
terms. (But note that they only renormalize a finite set of terms in the
basic Lagrangian, since we assumed renormalizability of the theory.)

Finiteness or super-renormalizability normally occur when all the coup-
lings in the basic Lagrangian have positive dimension.

Note that in a super-renormalizable theory, the number of divergent
basic graphs is infinite. For example, even if there is only one graph y with
an overall divergence, any graph containing y as a subgraph is divergent.
However all such graphs become finite after adding to 7 its counterterm, so
only one counterterm, C(y), appears in the Lagrangian.

Mathematical physicists (see Glimm & Jaffe (1981)) have investigated
renormalizability beyond perturbation theory. This is important, since
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perturbation series are in general asymptotic series rather than convergent
series. Thus one cannot simply sum the perturbation series to obtain the
complete theory. Even so, it has been proved for many super-
renormalizable theories that perturbation theory gives an exactly correct
account of the divergences. (A much investigated case is ¢* theory in two
and in three space-time dimensions.)

In a super-renormalizable theory, the series for a bare mass or coupling in
terms of the renormalizable quantities has a finite number of terms.
Therefore the series converges, and one only has to prove that (a)
perturbation theory is asymptotic to the true theory, and (b) there are no
terms like exp ( — 1/g) in the bare masses or couplings that are smaller than
any power of g. The rigorous proof amounts to showing that in summing
the perturbation series to a finite order, the error is correctly estimated by
the first term omitted. In particular, this applies to the existence of any
possible ultra-violet divergence.

Rigorous proofs are not yet available for any strictly renormalizable
theory. One difficulty is obvious: the series for, say, the bare coupling, g, is
an infinite series, each term of which diverges as the UV cut-off is removed.
Since the series is presumably asymptotic rather than convergent, one
cannot directly obtain any information about renormalization in the full
theory: the error obtained in using a truncated form of the series is of the
order of the first term omitted, and that is always divergent.

It might even appear that perturbation theory has no light at all to shed
on the question of renormalizability of the full theory. This is in fact not so,
as we will see when we discuss the renormalization group in Chapter 7. If
the theory has the property called asymptotic freedom then a series of
suitable redefinitions of g allows short-distance phenomena to be computed
reliably. In particular the UV divergences can be computed in terms of
weak coupling series without divergent coefficients. It is sensible to
conjecture that a suitably refined analysis can be made to obtain rigorous
bounds of the errors so that the perturbative results correctly give the
divergences. Monte-Carlo studies of the functional integral (Creutz &
Moriarty (1982)) support this conjecture. In four dimensions, only certain
non-abelian gauge theories (including QCD) are asymptotically free (Gross
(1976)).

We will also see in Chapter 7 that in non-asymptotically free theories,
like ¢* and QED in four dimensions, perturbation theory cannot reliably
describe short-distance phenomena. There are, in fact, indications
(Symanzik (1982)) that the full ¢* theory is not renormalizable, contrary to
the situation order-by-order in perturbation theory.
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5.74 Non-renormalizability

For theories which are not renormalizable in perturbation theory, there are
many possibilities. Among them are the following:

(1) There is only a finite set of 1PI Green’s functions which have overall
divergences. A typical case is ¢> theory in six or fewer space-time

dimensions when the basic Lagrangian,

F =(0)*/2 — m*¢p?/2 — gop*/3!, (5.7.3)
has no term linear in ¢. The one-, two-, and three-point functions have
divergences, but there is no term h¢ whose coupling can be re-
normalized to cancel the divergence of the tadpole graphs. However,
addition of such a term generates a renormalizable theory. More
generally, suppose we have a finite set of overall-divergent Green’s
functions. A renormalizable theory is generated by adding a finite set of
extra interactions.

(2) There is an infinite set of Green’s functions with overall divergences.
However, for all but a finite set of the Green’s functions, the divergences
cancel after summing over all graphs of a given order. (There are no
known cases of this.)

(3) Asfor case 2, except that the divergences cancel only for the S-matrix,
rather than for all off-shell Green’s functions. An important case is a
spontaneously broken gauge theory, when it is quantized in its unitary
gauge. '

(4) The theory is made renormalizable by going beyond perturbation
theory in some systematic and sensible way. One case (as in the Gross—
Neveu (1974) model — see Gross (1976)) is of a theory that is strictly
renormalizable and asymptotically free for some dimension d = d,,, and
that is considered in some dimension d slightly greater than d,,.

(5) Asforcase 1,except that the extra terms make physical nonsense. A case
is the Yang—Mills theory with a mass term in Feynman gauge. Then the
extra terms destroy unitarity ('t Hooft (1971a)).

(6) None of the above.

Roughly speaking, there are no general rules. Each case must be handled
separately. Only for the last two cases (5 and 6) should a theory be called
non-renormalizable. A fundamental theory should be renormalizable, for
otherwise either physical quantities are actually infinite or they are finite,
but an infinite set of parameters is needed to specify the finite parts of the
counterterms.

Nevertheless, a statement that a particular theory is non-renormalizable
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is really a statement of ignorance: nobody has found a way to construct a
physically sensible version of the theory. (Cases 1 to S are where somebody
hasfound a way.) In practice, when a theory is labelled non-renormalizable,
what is usually meant is that the theory is not renormalizable order-by-
order in perturbation theory; such a statement can be proved by calculating
a finite number of graphs.

Within the usual functional-integral approach (with a lattice cut-off), not
only has the complete ¢* theory been proved renormalizable for d = 2 and
3, but it has been proved non-renormalizable for d > 4 (Aizenman (1981)).

5.7.5 Relation of renormalizability to dimension of coupling

To prove perturbative renormalizability of a theory of scalar fields, we
generalize the argument leading to (5.7.2). The argument will apply when no
coupling has negative dimension. Renormalizability will hold with possibly
the addition of extra interactions (like the h¢ term in ¢ theory) whose
coefficients have non-negative dimension. Our proof will easily generalize
to theories with fermion and gauge fields. The problems we will encounter
in gauge theories will all be to do with the question of whether these extra
terms are compatible with the gauge invariance. But we will leave these
questions to Chapter 12.
Let a general term in & or £, be written schematically as

(coupling f)(derivative)” (field)". (5.7.4)

The vertex generated by this term is one possible graph for the 1PI Green’s
function I'y with N external lines. Thus the dimension of I'y satisfies

dTy)=d(f)+ A. (5.7.5)

Since no coupling has negative dimension, the degree of divergence of any
graph for Iy is at most d(I"y), as we saw from examples in Section 3.3.3, and
as we will prove in Section 5.8. That is, the degree of divergence §(I"y)
satisfies

8(Ty) < d(Ty), (5.7.6)

with equality only for graphs all of whose couplings have zero dimension.
To renormalize the N-point graphs, we add counterterms of the form
(5.7.4) with at most §(I"y) derivatives. So the possible counterterms satisfy

d(f)=d(Ty)— A =28 y)— A >0. (5.7.7)

The last inequality follows since a counterterm with 4 derivatives is needed
only if the degree of divergence is at least 4. From (5.7.7) it follows that we
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need no couplings of negative dimension, given that none are present in the
original Lagrangian.

Some of the couplings generated as counterterms may not be present in
the original Lagrangian even if it contains no couplings of negative
dimension. But the number of new couplings needed is nevertheless finite,
because only a finite set of counterterms satisfy (5.7.7).

5.7.6 Non-renormalizable theories of physics

From the discussion above, it is natural to conclude that a theory of physics
should be renormalizable. In fact, the strong, electromagnetic, and weak
interactions appear to be described by a renormalizable theory. This theory
is a combination of quantum chromodynamics for strong interactions and
the Weinberg—Salam theory for weak interactions.

Around 1970 there was a revolution in the theory of weak interactions
when it was discovered that non-abelian gauge theories are renormalizable.
It is precisely one of these theories that was found to be necessary to
construct a renormalizable theory of weak interactions in agreement with
experiment. See Beg & Sirlin (1982) for a historical review.

Unfortunately, this progress has not extended to gravity. Einstein’s
theory of general relativity is non-renormalizable, after quantization, and
there is no very promising alternative. (This situation exists despite many
significant attempts to improve it - Hawking & Israel (1979).)

It is a mistake to suppose that non-renormalizable theories should be
banished from consideration. Remember that for many years weak
interactions were successfully calculated using the four-fermion’ theory,
which is non-renormalizable. For most purposes, weak interactions could
be adequately treated in the lowest order of perturbation theory, where no
renormalization is needed. But the non-renormalizability of higher-order
calculations raised the question of consistency of the theory: is it legitimate
to calculate even an approximation to a nonsensical (i.e., non-existent)
theory ? Will the results of calculations mean anything ? The same questions
arise in gravity. There, the classical theory of general relativity is very
successful, but the quantized theory is badly non-renormalizable.

We must therefore understand how and why we may use non-
renormalizable theories in physics.

Now, to perform consistent calculations in any theory which contains
ultra-violet divergences, we must impose an ultra-violet cut-off, M, of some
sort. In the case of a renormalizable theory we can take M to infinity and
obtain finite results that are insensitive to the cut-off. Another related
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property of a renormalizable theory is the decoupling theorem of
Appelquist and Carazzone, which we will discuss in Chapter 8. This
theorem applies to a renormalizable theory which contains fields whose
masses are much bigger than the energies of the scattering processes under
consideration. The theorem states that the heavy fields can be deleted with
only a small effect (suppressed by a power of the heavy mass) on cross-
sections, etc. The hallmark of a renormalizable theory is in fact that it is
complete in itself. It contains no direct indications of whether it is only part
of a larger and more complete theory.

These statements are false for a non-renormalizable theory. Consider the
old four-fermion theory of weak interactions. Its coupling is G ~107°
GeV 2. We cannot take the UV cut-off arbitrarily large, for an nth order
graph has a divergence of order 2n; it behaves like (M2G)" for large cut-off
M. Counterterms to make the graph finite need a correspondingly large
number of derivatives, but only a finite number of counterterms are
available. Hence we cannot take the cut-off to infinity, and if we want
insensitivity to the cut-off we must take M < G~ '/2. Moreover, the energy,
E, of the process under consideration must be much less than M, otherwise
the calculation is dominated by details of the cut-off procedure. In other
words, the four-fermion interaction is a good approximation to physics
only if E €< M <G~ "2, The minimum possible relative error of calculations
is of the order of the maximum of M%G and E?/M?.

Now, it is always possible in principle to do experiments at arbitrarily
high energy. So the applicability of four-fermion theory at low energies
implies that at energies rather below G~ /2 ~ 300 GeV there is new physics.
That is, the four-fermion theory becomes incorrect at that energy. The last
fifteen years of weak interaction physics confirms this. (See, for example,
Bjorken (1982))

For gravity, the corresponding energy scale is the Planck mass, of the
order of 10'° GeV. This is extremely far beyond the range of normal
accelerator experiments. Evidence for phenomena on such an energy scale
must come from much more esoteric observations. Examples might be
found in certain areas of the cosmology of the early universe, or from seeing
the decay of a proton (Langacker (1981)).

In any case, a non-renormalizable theory contains indications that it
cannot describe all phenomena. It contains the seeds of its own destruction
as a viable theory of a field of physics. So, given a successful non-
renormalizable theory, one must ask the following questions: (1) ‘Of which
more complete theory is it a part?’ (2) ‘How is it related to that theory? An
example is given by the relation between the Weinberg—Salam theory,
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T - X
Fig. 5.7.2. W-boson exchange gives an effective four-point interaction at low
energies.

which is renormalizable, and the four-fermion theory, which is not. The
four-fermion theory arises as an approximation to W-boson exchange at
low energy (Fig. 5.7.2). One replaces the propagator

i/(q* —m3),
for the W-boson, by
i/(—mi).
The graph is suppressed by factor of at least E2/m32, compared to photon
exchange. It gives an example of the decoupling theorem: the heavy
particles have small effects at low energies.

The only reason we can see such effects is the high degree of symmetry of
the strong and electromagnetic interactions. These interactions conserve P,
C, T, and the number of each flavor of quark and of each flavor of lepton.
Weak-interaction amplitudes are much smaller than strong-interaction or
electromagnetic amplitudes for similar processes, and are therefore nor-
mally invisible. But there are many processes that are completely forbidden
in the absence of weak interactions; for these, any weak-interaction cross-
section, no matter how small, is all there is.

So one important way in which a non-renormalizable theory arisesisasa
low-energy approximation to a renormalizable theory in a process that is
forbidden in the absence of the heavy fields. The heavy fields effectively give
a cut-off on the non-renormalizable theory. Then, for example, the four-
fermion coupling G is computable in terms of the underlying theory via a
formula like

G = constant g%/m2, + higher order corrections in g.

Here g is the dimensionsless coupling of the Weinberg—Salam theory. One
manifest characteristic of this non-renormalizable theory is the weakness of
its interactions. Also note that a higher power of G is a higher inverse power
of m},. We are taking the leading power of my, as m, gets large, so it is in
general incorrect to calculate in the non-renormalizable theory beyond
lowest order. Higher-order calculations must be done in the full theory.
A slightly different situation arises in gravity. There one must perform
calculations beyond tree approximation, since gravitationally bound states
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like the solar system are formed by multiple exchange of gravitons.
Counterterms are generated involving higher-derivative interactions (e.g.,
R?, R?,. etc.). The ambiguity in the finite parts of these counterterms gives
an uncertainty in the Green’s functions. However the uncertainty is a power
of momentum divided by some large mass scale, and is negligible for low-
momentum-transfer processes. In weak interactions, the size of the higher-
order corrections is of the same order of magnitude as the intrinsic error in
the calculations, but in gravity this is not so because of the zero mass of the
graviton.

Another difference is that gravity is actually the strongest of the four
fundamental interactions when considered on a large enough scale. In
contrast, on atomic or molecular scales, it is the other three interactions
that are by far the strongest. However, the strong and weak interactions
have a finite range, so that they are essentially zero outside the nucleus.
Particles can have both signs of electric charge, so that bulk matter, if
charged, tends to attract charge of the opposite sign to it. Bulk matter is
therefore generally neutral. But gravity couples to mass or energy, so it is
always attractive. Hence gravity wins out as the strongest interaction for
large enough assemblages of matter. However at nuclear and atomic scales,
it is negligible by a factor of about 10*° compared to the other interactions.

Let us summarize by restating the key conclusion about the distinction
between renormalizable and non-renormalizable theories. A non-
renormalizable theory considered at low energy gives some indications that
at high enough energies it must break down, and cannot be a complete
theory. A renormalizable theory gives no such indication.

5.8 Proof of locality of counterterms; Weinberg’s theorem

In our examples, we saw that the counterterm C(G) of a graph G is a
polynomial in its external momenta, of degree equal to its overall degree of
divergence 6(G). This is a general property, as we will now prove.

The original proof of this theorem and some related results is due to
Weinberg (1960); a simpler proof was given by Hahn & Zimmermann
(1968). It is useful to distinguish three results:

(1) Suppose that a 1PI graph G and all its 1PI subgraphs have negative
degree of divergence. Then the graph is finite. That the degrees of
divergence of the graph and subgraphs are negative means that there is
no divergence when all or some of the loop momenta go to infinity
together, with the other momenta finite. The problem is to eliminate the
possibility of a divergence from more exotic scalings.
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(2) Suppose that a 1PI graph G has negative degree of divergence, but that
it might have subdivergences. Then the graph is finite if we first subtract
off subdivergences. More simply, if 6(G) < 0 then R(G) is finite.

(3) If a 1PI graph G has degree of divergence §(G), then its overall
counterterm C(G) is polynomial in the external momenta of G of degree
4(G).

Property (1) is a trivial case of (2). We will reduce (3) to (2) by the same
differentiation method as we used in Section 5.2.2. The proofs will be by
induction. This naturally suggests that we use the recursive definition of the
renormalization R(G) of G.

One generalization is useful. It is that the renormalization prescription
may be chosen so that result (3) reads ('t Hooft (1973), Weinberg (1973), and
Collins (1974)):

‘(3')If a 1PI graph G has degree of divergence &(G), then its overall
counterterm C(G)is polynomial in the external momenta of G and in the
massive parameters in the Lagrangian. (The parameters in question are
the masses of fermions and the squared masses of bosons.) The
dimensions of the terms in the polynomial are at most §(G).

5.8.1 Degree of counterterms equals degree of divergence

We first prove Property (3), that the overall counterterm C(G) of a 1PI
graph is polynomial in the external momenta of degree §(G). We will do this
assuming Property (2), that a graph with its subdivergences subtracted is
finite if its degree of divergence is negative. Let G be a 1PI graph with degree
of divergence 8(G) > 0. We will consider R(G), which is G plus counterterms
for its subdivergences. Following Caswell & Kennedy (1982), let us
differentiate the graph 8(G) + 1 times with respect to external momenta.
This produces a result that has negative degree of divergence. We
differentiate not only the graph G, but also its various counterterm graphs
C,(G). The aim is to show that the result is actually convergent. To do this
we will show that the differentiated counterterm graphs are the correct
counterterm graphs for the differentiated original graph. This may sound
obvious, but there are some subtleties, so we will give the details.
Let the external momenta of G be p,,..., p,. Its renormalized value is
RG) =G+ ) C/(G)
YEG
= R(G) + C(G)
= R(G) - T; < R(G). (5.8.1)
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Let 0 denote differentiation with respect to one of the external momenta,
and let 0* denote any A-fold differentiation with respect to the external
momenta. The property to be shown is that 8*R(G) is finite if 1 > §(G). (It is
clear from naive power-counting that §(0*G) = é(G) — A.)

Suppose we ensure that differentiation commutes with the basic
subtraction operator T,. This amounts to imposing a very natural relation
between the finite parts of, for example, T,(0G) and T,(G). (The relation is
satisfied by the pole-part subtractions, but it is possible to choose exotic
renormalization prescriptions not satisfying the hypothesis.) Then for any
graph y we have

0C(y) = C(dy). (5.8.2)
It follows that, for the original graph, we have

0*R(G) = R(6*G). (5.8.3)

The point here is that a differentiation when acting on a graph gives a
number of terms, in each of which one of the propagators or vertices is
differentiated. It is a simple generalization of the argument given in
Sections 5.2.2 and 5.2.3 for specific graphs that the counterterms for
subgraphs of G are the correct ones after differentiation in (5.8.3).

Now R(0*G) is the sum of a graph 0*G that has negative degree of
divergence and the counterterm graphs for its subdivergences. Hence by
Property (2) it is finite, so that we may choose the subtraction operator T to
give zero. Therefore the counterterm in (5.8.1) for the undifferentiated graph
is polynomial of degree 4(G) in the external momenta.

The same argument (Collins (1974)) also shows that counterterms are
polynomials in mass. Here it is necessary to note that differentiation with
respect to m? does not automatically reduce the degree of divergence. This
only happens if counterterms for subdivergences are polynomial. If a
counterterm has a piece proportional to In(m?) then differentiating with
respect to m? leaves the degree of divergence unchanged. The proof merely
demonstrates that it is always possible to choose counterterms to be
polynomial in m?; it is not compulsory.

5.8.2 R(G) is finite if 6(G) is negative

It was evident in one-loop examples that a graph with degree of divergence
¢ is renormalized by a local counterterm of degree J in the external
momenta. To generalize the result to an arbitrary graph, we constructed a
renormalization procedure which involved computing the counterterm for
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a 1PI graph only after subtracting subdivergences. We differentiated the
graph 6 + 1 times with respect to its external momenta to prove its
counterterm to be local and of degree 6. This proof relied on assuming the
following statement:

If a graph has negative degree of divergence and has its subdivergences
subtracted according to therules, thenitisfinite. More briefly, if (") < 0
then R(I) is finite.

This statement sounds extremely plausible. It is nevertheless in need of
proof. We have to ensure that the subtraction procedure actually accom-
plishes its purpose of removing the subdivergences. (That is, there are no
spurious divergences induced by the procedure.) In addition, we normally
only consider the divergences as arising from regions in which some loop
momenta go to infinity, all at the same rate; this generates the usual power-
counting. It is necessary to eliminate more exotic possibilities.

The most important problem, which is the one we will examine, is to treat
the case that a collection of loop momenta go to infinity, but at different
rates. In Section 5.2.2, we examined the special case of Fig. 5.2.1. The
general case is very similar. Inductively, we assume that properties (1) to (3),
listed at the beginning of Section 5.8, are true for all smaller graphs than the
graph G under consideration. We consider regions of the integration over
loop momenta where all or some momenta go to infinity, not necessarily at
the same rate. We will eliminate them as possible sources of additional
divergences. If all the momenta go to infinity together, then the negative
overall degree of divergence means that there is no actual divergence from
this region.

If some momenta stay finite while the others go to infinity (not necessarily
at the same rate), then let y be the subgraph consisting of all those lines with
the large momenta. Our inductive hypothesis ensures that all the resulting
divergences are cancelled by counterterms for subgraphs.

The remaining case is that all of the loop momenta go to infinity, but
again not at the same rate. Let k denote the components of the smallest
momenta, and let / denote the rest. (Our notation is meant to copy that used
for Fig. 5.2.1, and so is the proof.) Let y be the subgraph consisting of all
those lines carrying the loop momenta [. It may be a single 1PI graph or a
disjoint union of 1PI subgraphs. Let these 1PI subgraphs be y,,...,y;.
Expand each subgraph in powers of its external momenta up to its degree of
divergence. The remainder for each subgraph is really a graph with negative
overall degree of divergence; the contribution vanishes as [ goes to infinity,
so we should have set | = O(k). The expanded terms contribute just as they
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did for Fig. 5.2.1. After subtraction of divergences we have a factor in the
integral over k corresponding to the dimension of the subgraph.

We gloss over here some of the important details, notably what happens
to the value of a general subgraph when some of its external momenta get
large. But the main lines of the argument should be apparent.

The structure of the proof is the same as in subsection 5.2.2 and the result
is the same.

5.8.3 Asymptotic behavior

Weinberg (1960) not only proved the convergence theorem stated above
with more complete rigor, but he also investigated what happens when
several of the external momenta p,, p,,...,p, of a graph y get large in the
Euclidean region. They are assumed all to be of an order Q, with the ratios
p!//Q fixed as Q — co0. None of the sums of subsets of p/Q vanish. Weinberg
then states how to find the asymptotic behavior:

(1) Consider any subgraph y connected to all the lines carrying the large
momenta. Let all the loop momenta of y be of order Q. Compute the
power of Q: Q%.

(2) Look at all such subgraphs. Let a, have a maximum value a.

(a) If there is a unique graph with this maximum power, then I' oc 0 as
Q— 0.

(b) 1f there are several subgraphs with a, = a, then let N be the number of
such subgraphs. The asymptotic behavior is:

I'=Q[A4,B,+ A,B,InQ+ A,B,(InQ)*+ - Ay_,By_,(InQ)" 1]
+0(Q°71). (5.84)

Here the A,’s are functions of those momenta that are fixed as Q — o
and the B;’s are functions of the finite quantities p//Q.

This theorem is needed inductively in the guts of the convergence theorem
proved in the last subsection. Its proof is similar.

It is not obvious that this part of Weinberg’s theorem is of much use for
physics, other than for its part in this convergence proof, since the
asymptotic behavior is of Euclidean momenta. However, in the deep-
inelastic scattering of a lepton on a hadron, there is a photon or a weak
interaction boson that is far off-shell. The momentum carried by the boson
is effectively Euclidean, and Weinberg’s theorem applies. We will see this in
Chapter 14. There are also generalizations to other intrinsically
Minkowskian situations (e.g. Amati, Petronzio & Veneziano (1978), Ellis et
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al. (1979), Libby & Sterman (1978), Mueller (1978, 1981), Stirling (1978), and
Buras (1981)). These are beyond the scope of the present book.

5.9 Oversubtractions

We showed how to renormalize a Feynman graph by making subtractions
for the divergent subgraphs and for the overall divergence of the graph. It is
possible, however, to make subtractions on graphs that are not divergent.
Subtractions can also be made with a higher degree polynomial in the
external momenta than called for by the degree of divergence. Either of
these cases is called oversubtraction. Now, the general form of the
renormalization, either by the recursive method or by the forest formula,
did not specify the exact form of the subtraction operator T. So
oversubtractions can be made without changing the general formalism.
There are two important uses for oversubtractions. The first is when we
wish to use ‘physical values’ of masses or couplings as the renormalized
parameters. We will discuss this in a moment. The second use is to construct
operator product expansions. There, subtractions are made not only to
cancel UV divergences but also to extract asymptotic behavior as some
external momenta get large. We will discuss this later in Chapter 10.

5.9.1 Mass-shell renormalization and oversubtraction

We have considered renormalization as the procedure of removing
divergences. Another point of view comes from the observation that one
cannot observe directly the mass and coupling parameters that appear as
coefficients in the Lagrangian. For example, consider a theory where each
field has a corresponding single-particle state. Then the masses that are
measured are those of the single particles, and it is often sensible to
parametrize the theory in terms of these masses. Similar remarks can be
applied to couplings. (Thus in QED one normally parametrizes the theory
by the electron’s mass and charge, defined by the long-range part of its
electric field.) It can also be convenient to rescale the fields so that each
propagator has a pole of unit residue.

In a simple renormalizable theory like ¢* in six dimensions the
renormalizations to accomplish such a mass-shell parametrization are
precisely those necessary to cancel the UV divergences. Thus we may define
the subtraction operator applied to a self-energy graph X(p?) to be

Tom °Z(p?) = Z(mgy) + (p? — mzp)Z'(mg,), (5.9.1)
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so that the inverse propagator satisfies

—i[p? = ml — X (P)]= —i(p> —m}) + O(p> —m})?, (59.2)
as p> - m’,. We use the subscript ‘ph’ to indicate renormalization according
to the mass-shell scheme.

Of course, mass-shell renormalization is only one out of many re-
normalization prescriptions that we may use to cancel UV divergences. But
we may also choose to renormalize in the absence of divergences. Consider,
as an example, ¢> theory again, but now in four dimensions. We may
continue to use (5.9.1) and (5.9.2) for the renormalization of the propagator
so we have a ‘physical’ parametrization. But all except the one-loop self-
energy graph have no divergence, so all the wave-function counterterms are
finite and all but one of the mass counterterms are finite. The combinatorics
of the renormalization procedure as described earlier all work unchanged.

5.9.2 Remarks

One important technical problem is to check that the oversubtracted and
the normally subtracted theories differ only by a reparametrization. This
can be done by the methods which we will describe in Sections 7.1 and 7.2.

In the previous subsection 59.1, we took the point of view that
renormalization is the process of reparametrizing the theory in terms of
‘physical’ quantities. It should be noted that this is not always a useful point
of view. In the first place, other renormalization prescriptions are more
convenient for handling certain types of calculation. In the second place,
there may be infra-red divergences that make the mass-shell structure of a
theory not what one would naively expect: thus in QED the electron’s
propagator does not have a simple pole. And, finally, in some theories there
are many more particles and couplings than independent parameters. This
is very common in gauge theories.

5.9.3 Oversubtraction on IPR graphs

The aim of oversubtraction, generally, is to impose some condition on
Green’s functions. So far, we have assumed the condition to be imposed on
the 1PI graphs, since those are the ones needing counterterms for
divergences. However, consider ¢* + ¢* theory:

L =(00)/2 —m*$?/2 —f$>/6 — g$*/24 + counterterms. (5.9.3)

Let us choose to renormalize at zero external momentum. Thus the self-
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AR

(a)
Fig. 5.9.1. Subtraction of one-particle-reducible subgraphs.

energy X and the three-point 1PI function I ;, satisfy
dx
(p*=0) dpz(p )

(2 =p3 = p?=0)=lowest order = —if. (5.9.4)

Following from our earlier work we might renormalize the four-point
function I, by requiring the sum of the 1PI graphs to be equal to their
lowest order value at zero external momentum. However it is also sensible
to impose instead the condition on the amputated four-point function I'{3).
These graphs are 1PI only in the four external lines. (We should amputate
the graphs since the counterterm vertex will have attached to it external
propagators.) Thus in addition to the three tree graphs of Fig. 5.9.1 (a)—(c),
we require the counterterm, Fig. 5.9.1(d):

Our general method of renormalization tells us that whenever we have a
basic graph containing one of the graphs (a), (b), or (¢) in Fig. 59.1 as a
subgraph, there will be counterterm graphs in which this subgraph is
replaced by the counterterm vertex (d). These counterterm graphs may be
divergent even when the basic graph is finite. An example is shown in
Fig. 5.9.2. In Fig. 5.9.2(a) if we impose the renormalization condition on the
1PI functions only the graph (b) occurs as counterterm;(a) plus (b) is finite. If
we impose the condition on amputated graphs we immediately meet graph
(c) where the line 4 is replaced by its 1/3 share of the counterterm Fig.
5.9.1(d).

But graph (c) has a divergence, so we must renormalize it by a three-point
counterterm to the subgraph consisting of the line 4 and the loop B. This is

A A
®

(@) (b)

(© (d)
Fig. 59.2. The subtractions of Fig. 59.1, inside a bigger graph.
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shown in graph (d). Note that the graph consisting of line 4 and loop B has
a subdivergence, but no overall divergence. Even so, the overall counter-
term in (d) is divergent.

It is not difficult to see that the extra counterterms needed to impose the
renormalization condition on the 1PR amputated graphs do not change
our results on renormalization. The instructions for renormalization in
Sections 5.3 and 5.5 can be used provided only that we replace the term ‘1PI
subgraph’ by ‘amputated subgraph’.

The use of subtractions on 1PR graphs is too baroque for normal use.
However it is a device that is useful for discussing the large mass expansion
and the operator-product expansion (Chapters 8 and 10).

5.10 Renormalization without regulators: the BPHZ scheme

In setting up the renormalization procedure in Sections 5.3 and 5.5 we were
careful not to use a specific definition of the subtraction operation. This was
to allow for the choice of one out of the infinitely many possible
renormalization prescriptions. An obvious one is the mass-shell sub-
traction procedure indicated in the last section. Another is the minimal
subtraction procedure to be defined precisely in Section 5.11; we have
already made much use of it. In this section we will explain the method of
Zimmermann (1969), in which the subtractions are applied directly to the
Feynman integrand, so that no regulator need be used.

The starting point is the method due to Bogoliubov & Parasiuk (1957)
and Hepp (1966), called the BPH scheme. They observed that the overall
counterterm for a graph I' is a polynomial of degree &(I'), its degree of
divergence. So they defined the subtraction operator T(I') to be the terms
up to order §(I') in the Taylor expansion of I' about zero external
momentum. For example, consider the one-loop self-energy graph
Fig. 3.1.1 in ¢ theory in six dimensions. After dimensional regularization
its unrenormalized value is

2

Z,(p?d) = 2an )m

——=I(2 - d/Z)J dx[m? — p*x(1 —x)]¥*~2.  (5.10.1)
The terms up to order p? in its Taylor expansion about p =0 are

2

T-X, =

- = 2 )d,zr(z df2) x

X J dxm®™4[1—(d/2 = 2)p*x(1 — x)/m*].  (5.10.2)
0
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The renormalized value of the graph is I', — T<I',. So at d =6 this is

g2

1
‘mfj [ dxtlm® = p*x(1 = 9)]in [1 = p*x(1 = x)/m*] + p*x(1 — x)}.

(5.10.3)

Zimmermann’s (1969) achievement was to realize that this construction
can be applied directly to the integrand. Subdivergences are subtracted with
the aid of his forest formula. Then the result is an integral which, according
to power-counting, has no UV divergences. The integral therefore has in
fact no divergences (Hahn & Zimmermann (1968), Zimmermann (1968)).
This method is called BPHZ renormalization.

In Section 3.4, we applied this method to the above graph, with the result
(3.4.7). It can be explicitly calculated by putting all the terms over acommon
denominator and then using standard parametric methods. The result
agrees with (5.10.3).

An example involving a subdivergence is given by Fig. 5.10.1 for ¢* in
four dimensions. Let the renormalized integral be

143
9 fd“kd“l](pl, P2 P Pas ko 1), (5.10.4)

BPHZ = W

1 £
P1 k+ps

k+1
P2 k—ps Pa

Fig. 5.10.1. A two-loop vertex graph in ¢* theory.

Then we will construct the integrand I.
The unrenormalized integrand is

1
U= (? —1m2) [(k+ 1)12 —m] [k + p:)z — [k = p)—m?] (5.10.5)
Subtraction of the sole subdivergence gives
= 1 1 1
R(U)=U _(12 “m?)2 [k + p3)? — m2][(k — pa)* — m]
- —2k-1—k?
"L+ 7 — ]+ p) —mPIL(k — pa — ]
(5.10.6)
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Then the overall divergence is subtracted to give
I=R(U)= R(U) - [R(U)]Im =p2=p3=ps=0
_ @k 1+ k) {(k* — m*)[p] + p3 + 2k-(p3 — pa)] + (P + 2k-p3)(p] — 2k'p,)}
(1 — m?)?(k* — m**[(k + )* — m*][(k + p;)* — m*][(k — p,)* — m?*]
(5.10.7)

The BPHZ scheme has a number of advantages:

(1) It is applied to the integrand and generates a convergent integral
without requiring any regularization.

(2) Thus it exhibits the fact that the properties of a renormalized field
theory do not depend on which UV regulator is used.

(3) Mathematically it is rather elegant. In particular there is no need to
discuss directly the divergences of Feynman graphs; it is only required
to have a theorem that tells us that a graph that is convergent according
to the naive criteria is actually convergent.

(4) It allows a very simple proof of the operator-product expansion.

There are a number of disadvantages:

(1) It is not the best scheme for theories (especially gauge theories) with
complicated symmetries, where relations between counterterms have to
be preserved ; the scheme does not allow direct computation of the value
of a divergence.

(2) The subtractions are made at zero momentum and therefore are infra-
red divergent in a massless theory.

(3) When the scheme is generalized to handle massless theories, it becomes
much more complicated (Lowenstein, Weinstein & Zimmermann,
1974a, b).

5.11 Minimal subtraction

5.11.1 Definition

It can be proved (Speer (1974) and Breitenlohner & Maison (1977a, b, c))
that, when dimensional regularization is used, the UV divergences of
Feynman graphs appear as poles at isolated values of the space-time
dimension d. Minimal subtraction ('t Hooft (1973)) — the MS scheme —
consists of defining the counterterms to be poles at the physical value of d,
d = 4. We have already used this scheme, in Chapter 3. Our purpose in this
section is to make precise the definition of minimal subtraction.

The main complication is that bare couplings have a dimension that
depends on d, so that we must introduce the unit of mass yu, as follows:
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(1) Consider in turn the coefficient g; + dg; of each term in &. Let the
dimension of g; be a; + b(4 —d). Then we replace g, + ég; by p>“ =9
(g; + 6g,)- Thus the renormalized coupling g; and the counterterm dg;
both have dimension a,, independently of d.

(2) Let T be a 1PI graph to which it is desired to apply a subtraction
operator T. Let the dimension of I be 4 + B(d — 4), and suppose the
couplings all contain powers of u as just explained. Then we define

T(I) = u®@~*{pole part of (u2“~9T) at d = 4}.
The pole part is obtained by making a Laurent expansion about d = 4.
We have arranged to take the pole part of a function whose dimension
does not depend on d.

(3) Suppose we are talking about a theory in a different number of physical
dimensions than four. For example, we might be in ¢* theory in six
dimensions. Then the ‘4’ in the above formulae is replaced by the correct
physical value.

For a simple graph with no subdivergences, like the one-loop self-energy
in (5.10.1), this prescription amounts to subtracting the pole:

IMI(d = 6) = lim ——gzﬁl“(Z —dJ2) l dx[m? — p*x(1 — x)]%*~2
¢ a6 | 2(4m)? 0

— | pole _ g | (m* —5p?)
12873d/2 -3 e

a2
= ﬁ{ [ye — 1 — In(4n)](m* —$p?)

+ fl dx[m? — p*x(1 — x)]In [t%fq;)ﬂ]} (5.11.1)
0

For graphs with subdivergences, the subdivergences must of course be
subtracted before removing the overall pole.
The advantages of the scheme are:

(1) It automatically preserves complicated symmetries. The exceptions are
chiral symmetries and the like, which in general cannot be preserved by
quantization — see Chapter 13.

(2) It has no problems with massless theories. In fact, dimensional
continuation regulates both IR and UV divergences, thus removing the
need for a separate IR cut-off.

(3) Calculations are very convenient.

(4) Computation of the divergent part of a Feynman graph — needed for
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renormalization-group calculations — is almost trivial at the one-loop
level.

Some disadvantages of minimal subtraction are:

(1) It is unphysical.
(2) The proof of the operator-product expansion is made harder than in the
BPHZ scheme.

5.11.2 MS renormalization

The MS scheme has found much use especially in work on QCD, where it
has become standard. Another disadvantage that then appears is that
minimal subtraction tends to produce large coefficients in the perturbation
expansion. These are primarily due to the In (47) — yp ~ 1.95 term such as
appears in (5.11.1). It has become conventional to work with a modified

scheme, called the MS scheme (Bardeen, Buras, Duke & Muta (1978)).
Here the u of the MS scheme is written as

_[er\'?
p=u<a> ~0384. (5.112)

Then we have, instead of (5.11.1), the cleaner form

2
}:(MS>_ —9 {61, —

12873
1 2_p2 —
+J dx[mz—pzx(l—x)]ln,:m———p;:(—li):'}. (5.11.3)
0

5.11.3 Minimal subtraction with other regulators

Minimal subtraction could also be applied with other UV cut-offs. For
example, if a lattice of spacing a is used, then the singular a — 0 behavior of
graph of degree of divergence ¢ is

a~°[polynomial in In(a)].
One can therefore define T(I') as the singular part of I', with the general
form

Bumax 5 Bma]

() = Z [In(ap) 1P 4, , + Z Z Slin@pla,, (114

After subtraction of subdivergences, the coefﬁcxents A, p are polynomials in
masses and momenta. Note again the appearance of a unit of mass. This
scheme has found little use.
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Composite operators

In Chapter 2 we met a number of equations involving products of field
operators at the same point. Examples are given by the equations of motion
(2.1.10) and the Ward identities (2.7.6). These products we will call
composite operators. When computed directly they have ultra-violet
divergences: the product ¢(x)¢(y) makes unambiguous sense if x is not
equal to y, but if x equals y then we have ¢(x)?, which diverges. Since the
equations of motion and the Ward identities express fundamental proper-
ties of the theory, it is useful to construct finite, renormalized composite
operators with which to express these same properties.

It could be argued that there is no need to have renormalized equations
of motion. One could say that one only actually needs the equations of
motion in the regulated theory, where they are finite. A situation of practical
importance where we actually do need renormalized composite operators is
the operator-product expansion, to be discussed in Chapter 10. This is used
in a phenomenological situation such as deep-inelastic scattering
(Chapter 14) where we wish to compute the behavior of a Green’s function
when some of its external momenta get large. Equivalently, we need to
know how a product of operators, like ¢(x)@(y), behaves as x— y.

This information is contained in the operator-product expansion of
Wilson (1969) which has the form

d(x)¢0) ~ Cy(x = )1+ Cpalx — ) [$0)* ]+ . (6.0.1)

Here the symbol [ 4(x) ] denotes the renormalized operator corresponding
to an unrenormalized composite operator A(x). The coefficients C(x — y)
are c-numbers, and each has a subscript which labels the operator that it
multiplies.

Therefore in this chapter we show how to renormalize Green’s functions
of composite operators, e.g.,

0| T$(x)$(»)$*(2)|0>,
(0| ToW)p(x)p(y)*$(2)* |0, (6.0.2)
O|Tp(x)*$(»)*0>.

138
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We will first motivate the use of composite operators by seeing how the
operator-product expansion arises in a low-order graph. Then we will
examine the divergences that appear in low-order graphs for composite
operators. We will see that we must expect multiplicative renormalization:

[6%]=Z,.¢7 (6.03)
where [ ¢2] is finite as the UV cut-off is removed, while Z,, is a divergent
renormalization factor. The unrenormalized operator ¢(x)* is divergent
when the cut-off is removed.

These examples will provide motivation to define renormalized com-
posite operators by application to Feynman graphs of the same R-
operation that we defined in Chapter 5. After discussion of a number of
technical issues, we will derive some basic properties of the renormalized
operators, including the equations of motion and the Ward identities.

6.1 Operator-product expansion

We will postpone a complete treatment of the operator-product expansion
to Chapter 10. Here we merely wish to motivate our definition of composite
operators with an example of their use.

a a+p+p2
Py q+p, — P2

(@)

q+p,+p; I
;;p : oy
G ’ ©

Fig. 6.1.1. Take g — oo in these graphs to obtain the lowest-order example of the
operator-product expansion.

Consider the graphs of Fig. 6.1.1 for the four-point function in ¢ theory.
We let g* go to infinity with p, and p, fixed, and with the ratios of the
components of ¢ fixed. Then |g*| - 0co. We expand the graphs in powers of
q® to find:

. g
Fig. 6.1.1(a) + (b) ~ [(pf — o2 - ](q'f)s, (6.1.1a)
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Fig. 6.1.1(c)~[(p2 7 :, ig

2 ) (p2 —m)((p; + p2) — mD) | @)
2q'(p, +py)  (2m* —(p, +py)%) 4q:(p, + p,)?
X[l_ q(p;2 py)  (@m (Z% p2)) | q(z(;z)zpz) ]
(6.1.1b)

In each term the dependence of p, and p, has factorized. We now show
that this is a case of an operator-product expansion like (6.0.1) (after
Fourier transformation into momentum space).

In (6.1.1a) the factor in square brackets is in fact the value of the lowest-
order graph for the following Green’s function:

COITH(— p)d(— p2)9*(0)/2]0>
= J.d“x fd“yexp( —ip,-x —ip,'y)<0| T$(x)p(»)$*(0)/2[0>. (6.12)

We have not Fourier transformed the ¢*(0) operator, but have set it at the
origin. If we had made the Fourier transform, then we would merely pick up
a momentum-conservation é-function, which we do not have in (6.1.1a).
To understand the appearance of the operator ¢2(0)/2 in (6.1.2), we may
find a functional-integral formula for the Green’s functions that appear in
this equation. Since ¢*(0) means the product of two fields at the same space-
time point, such a formula follows from our work in Section 2.2. It is

0| Tp(x)$()$*(0)/2[0> = A" f[dA]A(X)A(y)%AZ(O)eiS- (6.1.3)

The Feynman rules for this Green’s function can then be derived. They
are the usual ones for the Green’s function {0|T@(x)¢(y)|0)> with the
addition that each graph contains exactly one special vertex for the ¢2(0)/2
operator. The lowest-order graph is shown in Fig. 6.1.2, where the special
¢?/2 vertex is indicated by a cross. The value of the vertex is unity, for the
explicit factor 1/2 in ¢?/2 gets cancelled. This happens in exactly the same
way as the 1/4!in the ¢* interaction or the 1/3!in the ¢3 interaction gets
cancelled to leave a value — ig for an interaction vertex.

The operator ¢2(0)/2 is our first example of a composite operator (or
composite field). By this term we mean, in general, a product of elementary

/\

Fig. 6.1.2. Lowest-order graph for two-point function of ¢°.
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fields (or their derivatives) at the same point. It is the properties of such
operators that we will investigate in this chapter.
We can write
2i

2
Fig. 6.1.1()+ () ~ 733 CO| T3 () (P2)60F/2]05, (6140

This is illustrated in diagrams by Fig. 6.1.3.
In similar fashion, we derive an operator formula for (6.1.1b):

ig? [ _2g" & @m*+0)_49"4°3,9,
@72 4 ox* q q* 8
X <0|T$(P1)$(Pz)¢(x)|0>|x=o- (6.1.4b)

@+ O~ ig
a ~ e (o~ coefficients x derivatives

Fig. 6.1.3. Generation of terms in the Fig. 6.1.4. Generation of terms in the
operator-product expansion from the operator-product expansion from the
graphs of Fig. 6.1.1(a) and (b). graph of Fig. 6.1.1(c)

Fig. 6.1.1(c) ~

Here the form of the first square-bracket factor means that we need an
elementary field ¢(x), rather than a composite field. The p,’s and p,’s in the
numerators in the second square-bracket factor have turned themselves
into derivatives with respect to x; we set x =0 at the end. Equation (6.1.4b)
is illustrated in Fig. 6.1.4.

The form of (6.1.4) suggests the following formula:

<0|T(@)dO)d(p,)d(p,)|0>
~ Y C@<0| TO©0)8(p,)$(p,)|0>. (6.1.5)

The sum is over a set of local operators ¢;. Each of these is either the
elementary field ¢, one of its derivatives, or a composite operator such as
¢*2. The coefficients C,(q) are called the Wilson coefficients. In Chapter 10
we will generalize this result to all orders. We will have an expansion for any
Green’s function with large momentum on some of its external lines.

Now higher-order corrections to the Green’s functions of the composite
operators such as the ¢?(0) that appears in (6.1.4a) have ultra-violet
divergences beyond those appearing in Green’s functions of elementary
fields. We will see this in the next section, Section 6.2. To obtain an operator
product expansion, like (6.1.5), with finite coefficients, we will need to
renormalize the composite operators. This particular problem will occupy
most of this chapter.
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6.2 Renormalization of composite operators: examples

6.2.1 Renormalization of ¢*

The Feynman rules for Green’s functions of unrenormalized composite
operators can be derived from the functional integral, in the presence of an
ultra-violet cut-off. In coordinate space they are the usual rules, modified
only by having several external fields at the same point. For example, we
consider

0| T ¢(x)(y)¢*(2)/2]0> (6.2.1)

in ¢3 theory in six-dimensional space-time. The connected graphs up to
order g2 are shown in Fig. 6.2.1. As before, the vertex for ¢?/2 is denoted by

a Cross.
(@ (b) (©

e O
€] (e)

Fig. 6.2.1. Renormalization of the operator ¢2.

To work in momentum space, we Fourier transform, as usual, and define
G ={0|T$(P)d@)¢(2)*/2[0>
= jd"xd”yexp [i(p,-x + p,-y]<O| TPp(x)p(»)p(2)*/2|0> (6.2.2)
The lowest-order graph, Fig. 6.2.1(a), is equal to

i i

G"—(pf—m2+is) (P2 —m? +1ig)’ (623

Observe that the factor 1/2 in the operator ¢2/2 is cancelled, just like the
1/3! that comes with the interaction vertices.

Let us now turn to the one-loop graphs of Fig. 6.2.1. They are all
divergent: Fig. 6.2.1(b) is logarithmically divergent, while the remaining
graphs, Fig. 6.2.1(c) to (e), are quadratically divergent (all at d = 6). The
divergences in the last two graphs, Figs. 6.2.1(d) and (e), involve self-energy
corrections only, so these divergences are cancelled by the usual wave-
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V2

v}
*—X

(@ b
Fig. 6.2.2. Counterterm graphs for Fig. 6.2.1(d) and (e).

function and mass counterterms, Fig. 6.2.2. In these and other graphs in this
chapter, we indicate counterterms by a heavy dot and an insertion of a

composite operator by a cross.
The remaining two graphs have no counterterm from the interaction,

and they are both divergent. For Fig. 6.2.1(b) we get
i i N
(p}—m? +ig) (p3 — m? + ie)

G, =

x {192”6 : f d%k - 1 }
@2n)* (k* —m? +ig)[(k — p,)* — m® +ie][(k + p,)* — m? + ig]

2

(3 —d/2) x fl dx x

0

i i
(i —m?) (3 - 2)64 ’
o [ g [ =P = x = ) = pEx(l = x =) = (py + paPxy

y dnu®

/2-3

0
6.24)

and for Fig. 6.2.1 (c) we get
3-d/2

G. = — 9k X
(i —mH) (3 —mA)[(p, +p,)* —m?]

9 oy :
2207 | R —m) [, + py + W7 —m’]

_ _gus—.i/z y
(p? —m?)(p2 —m))[(p, + p;)z - m2]
—_ d/2-3 _ 2 1_ 42-2
e ra-an [ el ST

Note that there is a symmetry factor 1/2 in this last equation. The fact that
the sum of (6.2.4) and (6.2.5) diverges means that the operator ¢2(0) is not
finite.

For use in the operator-product expansion we do not need precisely the
operator ¢2. Rather, we need some local operator similar to ¢? that is finite.
This indicates that we should define a renormalized operator by sub-
traction of the divergences. Let us agree to use minimal subtraction. Then
the counterterm graphs are obtained by replacing each divergent loop by
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— L

(@ (b)
Fig. 6.2.3. Counterterm graphs for Fig. 6.2.1(b) and (c).

minus its pole part, as illustrated in Fig. 6.2.3. Thus the counterterm graph
for Fig. 6.2.1(b) is
i2 g
(p? — m?)(p; — m*) 64n°(d — 6)’
and the counterterm graph for Fig. 6.2.1(c) is
3-d/2 dji2-3
—gu gu 21 2
m* —2(p, + .
(p? —m*)p3 — m*)[(p, + p,)* —m*] {647t3(d - 6)[ 501+ p) ]}
6.2.7)
The positioning of the factors of y is such that the counterterm in curly
brackets has exactly the same dimension as the loop to which it is a

2

(6.2.6)

counterterm.
We thus find the renormalized values at d = 6:
i2 gz J y 1
R(G,) = 7 _
G = Tyt —mean®] "2 ],

N f l_xdyln[mz_ 2y +p30(L—x )~ (b + P2)’xy ]} (628)

0 dmp’

3 -9 -9
R = T ey e =D [, + 22 = m21<128n3> )
1
X{(Y - 1)[”’2 - %(Pl + Pz)z] + Jodx [m2 —(p, + Pz)zx(l - x)]x

y m[mz —(, + pzz)zx(l —Xx) ]} (6.2.9)
4nu

To interpret these renormalizations we observe that the counterterms are
vertices for ¢2(0) in (6.2.6) and for (m? + []/6)¢ in (6.2.7). Thus

G, + R(G,) + R(G,) + R(G,) + R(G,)

2
= [l + a;t‘g,%j—_—&](()l T¢(P1)¢(Pz)%¢2(0)|0>

d/2—-3

gu

t i d—6)

0| Td(p))d(p,)(m* +L[1)$(0)[0> + O(g*).
(6.2.10)
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So what we are computing is a Green’s function of the operator
2

! _ g 1 gu
ile’]= [1 +m]2¢2 * e4nd—6)

dj2-3

(m* + £0O)¢ + higher order.
(6.2.11)

We use the square brackets on the left-hand side to denote a renormalized
operator. In subsequent sections we will see that this result generalizes to all
orders: a renormalized operator [¢*] can be defined to all orders by a
formula of the form:

61 =Z30% +u? 2 Zym* ¢ + 22 Z, O ¢, (6.2.12)

where the Z’s depend only on g and d.
Such renormalized operators were defined by Zimmermann (1973a). He
called them normal products and used the notation N [#?%]. His definition

differed from ours only in that he used BPHZ renormalization instead of
minimal subtraction.

Observe that in order to obtain a degree of divergence of at least zero, the
operators that appear as counterterms in (6.2.11) or (6.2.12) have dimension
less than or equal to that of the original operator ¢ This is a general
phenomenon. Moreover, the only operators of such dimension are those

actually appearing in (6.2.12). We may write the renormalization as a
matrix equation in the following form:

6?1\ (Z. w?7Zym® pPT3ZY (347
o |=|0 1 0 o | (6213)
D¢ 0 0 1 O¢

Here we have used the fact that ¢ and [J¢ are finite. The operators ¢ and
¢ are said to mix with ¢ under renormalization, because the off-
diagonal elements Z, and Z, are non-zero. Moreover, no further operators
are needed in the renormalizations, so ¢, ¢ and [J¢ are said to form a
closed set under renormalization.

6.2.2 Renormalization of ¢p*(x)¢>(y)

Sometimes we need Green’s functions involving two or more composite
operators. A simple example is

0| T3[6*]1(P)i[421(0)]0>
= fd“xe‘i""‘<0|T%[¢2](x)%[¢2}(0)|0>, (6.2.14)

for which the lowest-order graph is Fig. 6.2.4. The renormalizations of
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=
p
Fig. 6.2.4. Lowest-order graph for <{O|T[¢2]/2[¢%]/2/0>.

(6.2.11) do not appear until the next order, so the graph has the value
1 1
— dk . 6.2.15
2(2n)“J (k* —mH)[(p + k)* — m?] ( )
This is ultra-violet divergent, even in free-field theory. Even though the
operators ¢*(x) and ¢>(0) on the right of (6.2.14) are well-defined, we have to
integrate through the point x = 0. At x =0 there is a singularity, which is
not integrable if d > 4. We may nevertheless define a finite Green’s function
by adding a local counterterm:

O] T3[¢*1(x)3[4°1(0)|0> r = <O| T3[$*](x)3[ 4] (0)]0>

— C(x)<0|1]0). (6.2.16)
with
C(x) = (m? + l:]/6)6“"(x)iﬂd—_6)— +0(g?) (6.2.17)
647°(d — 6) ‘ -

Once more we have used minimal subtraction at d = 6.

6.3 Definitions

We define renormalized Green’s functions of composite operators by
applying the R-operation to the Feynman graphs, just as we did for Green’s
functions of elementary fields in Sections 5.3 and 5.5. We will need to show
that the counterterms generate multiplicative renormalizations of the
operators (e.g., (6.2.12)). This is similar to what we did in Section 5.6, where
we showed that the counterterms in elementary Green’s functions are
generated by counterterms in the Lagrangian. Our motivation for starting
with the graph-by-graph renormalization is again to allow a simple
treatment of the problems of subdivergences. We do not need a new proof
that the counterterms for operator insertions are local; our original proof
suffices.

As before, we have a choice of many renormalization prescriptions. The
ones that are most useful for subsequent developments are the BPHZ
scheme — see Zimmermann (1973a)-and minimal subtraction — see
Breitenlohner & Maison (1977a, b, ¢) and Collins (1975b). In any case we
have a subtraction operator T(G) which is applied to a graph G (after
removal of subdivergences) in order to extract the divergent part of G. In the
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BPHZ scheme, T(G) gives the first §(G) terms in the Taylor expansion about
zero external momentum, where 6(G) is, as usual, its degree of divergence.

In the case of minimal subtraction we must state how the unit of mass u is
treated. As can be seen from the examples in Section 6.2, we must always
arrange to compute the pole part of a quantity whose dimension does not
vary with d. So suppose we need Tys(G) for a 1PI graph G of dimension
pB@=40_ Then we define

T= pB¥~4) {pole part of GuBo~9}, (6.3.1)

where, as usual, d,, is the physical space-time dimension.

The definition of a renormalized Green'’s function by the R-operation is
rather abstract, and we will now show that it amounts to adding
counterterm operators. In the one-loop examples of Section 6.2 this was
rather obvious. In the general case, we start from the formula for
renormalization of an arbitrary Green'’s function (see (5.3.7)—(5.3.9)):

R(G) =G+ Y C(G). (6.32)

Here, as usual, the sum is over all subgraphs y that consist of a set of disjoint
1PI subgraphs y,,...,7,. Each y, is replaced by its overall counterterm
vertex, generated as in Section 5.3.

Let us distinguish the various ys that occur, according to the
number of composite operator insertions that they contain. Consider,
for example, Fig. 6.3.1, which illustrates the renormalization of
{0|T¢ ¢ $*/2|0) in the ¢* theory in six dimensions. There is a one-loop
subgraph y, for the three-point function. This is renormalized by its
counterterm C, in the Lagrangian. There is also a two-loop subgraph y,
which contains the composite operator vertex. (This has a subdivergence,
which must be subtracted.) The counterterm C,, can be considered as

where

=77

| I

Cr,.‘_ i :

| SRS
-1 —_————
i i T _}
c =< | l ! |
oY | | ! |
o+t TS

Fig. 6.3.1. Renormalization of two-loop graph with insertion of composite operator.

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

148 Composite operators

Fig. 6.3.2. Renormalization of three-loop graph for <0|T[¢2]/2[$*1/2/0).

generated by an O(g*) term in the renormalization factor Z,.

Next consider Fig. 6.3.2, a graph of order g* for the Green’s function
<0|T[¢*]/2[¢$?]/2]|0). In addition to an overall logarithmic divergence, it
has three divergent subgraphs. One subgraph y, is renormalized by a
counterterm in the interaction Lagrangian. The other two subgraphs y, and
y. each look like y, of Fig. 6.3.1, and are renormalized by the same
counterterm. These two counterterms are generated from

0| T3[¢*](x):[¢*1(1)]|0> = Zi<0| T3¢*34%|0>
+ other terms from Z, and Z,, (6.3.3)

by expanding each Z, to O(g*) and picking out the terms for y,. Finally, the
overall counterterm is obtained. It gives a term of O(g*) in the C(x) of
(6.2.16).

These arguments generalize easily to arbitrary graphs. It suffices to
consider a renormalized Green’s function of one composite operator

N
O[T [T ¢(x)[A4(»)]]0). (6.3.4)
i=1

We define the renormalization by the recursive formula (6.3.2), and we wish
to prove that this equals

N
> Z,5<0|T [T ¢(x)B(»)[0>. (6.3.5)
B i=1

Here Z , is a renormalization factor whose value is given by writing, in
analogy to (5.6.5),

1
[4]1=Y Z,sB=Y —D(G). (6.3.6)
B G NG '

Here G is any 1PI basic graph that includes a vertex for 4. It has N external
lines in addition to the vertex for 4, and D(G) is the operator corresponding
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to the overall counterterm C(G). The factor 1/N! is just like the 1/N(G) in
(5.6.5), to organize the symmetry factors.

Consider a graph for (6.3.4). We investigate one of its counterterms C (G).
The subgraph y consists of 1PI graphs y,,...,7,. A y; that does not contain
the vertex for A is replaced by C(y;), which corresponds to one of the
counterterms in #. A y; which does contain the vertex for 4 must be one of
the G’s that are summed over in (6.3.6), so the counterterm C,, s generated
by one of the counterterm operators on the right of (6.3.6).

Now sum over all graphs G for our Green’s function and expand each
R(G) by (6.3.2). The sum over 1PI subgraphs y; that correspond to
counterterms in % can be done independently of the sum over the
subgraphs giving the counterterms for the operator vertex. The result is
then the desired result (6.3.5).

6.4 Operator mixing

We have seen that a renormalized composite operator [A4] is expressed in
terms of unrenormalized operators by

[4]=Y Z,5B. (6.4.1)
B

In the case of [¢?] we saw that the operators that were needed as
counterterms had the same or lower dimension. Let us now demonstrate
this for the general case.

The proof is essentially dimensional analysis. Let G be a 1PI graph
containing a vertex for 4 and having the same number N of external lines
as a particular operator B. Now B is a product of Ny fields with a certain
number Dy of derivatives. A counterterm can only be generated if the degree
of divergence 6(G) is at least Dy. Now in a renormalizable theory all
couplings have non-negative dimension, so

d(G) = dim (G) — dim (couplings)

<dim(G). (6.4.2)
On the other hand, since Z ,zB is a possible counterterm we have
dim (G) = Dy + dim (Z ). (6.4.3)
But we only need B as a counterterm if Dy < §(G), so
dim (Z ) =0

for every counterterm. This means that the maximum dimension of a
counterterm operator is the dimension of A4, as we wished to prove.
In Section 5.8.1 we examined the dependence of counterterms in the
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Lagrangian on mass parameters. Provided we used minimal subtraction
this dependence was polynomial, with the mass behaving as a dimensional
coupling in determining allowed counterterms. The same argument applies
here. The result is that Z,; is a polynomial in masses (and super-
renormalizable couplings) times the inevitable power of the unit of mass u.
The coefficients of the polynomial are dimensionless functions of the
dimensionless couplings and of d. A typical example of this is given by our
calculation in Section 6.2 of the renormalization of [ ¢2] — see (6.2.11) and
(6.2.12).

6.5 Tensors and minimal subtraction

Suppose we use minimal subtraction to define [(0¢$)*] and [0,¢0,¢]. It is
tempting to suppose that

[(0¢)*]1=g""[0,40.0]. (6.5.1)
This supposition is in fact false, as we will now demonstrate. This means
that the taking of a trace does not commute with taking a finite part, in
general. We will explain the significance of this fact.

The lowest-order graph (in ¢* theory) for either operator is Fig. 6.5.1.
The 1PI part for 0¢?/2 before renormalization is

_igw? ™2 k- (k + p)
60 =g [N G+
__g,u"/2_3 1 mz—pzx(l—x) d/2~3
1287 L d"[ 4mps? } *
x {T(2 —d/2)p*x(1 — x)[m* — p*x(1 — x)]
+(d/2r(1 = d/2)[m* — p*x(1 — x)]?} (6.5.2)
For 0,40,¢/2 we have
_igu"’""”j y k,(k + p),
G#v(p) - 2(271,):1 (kZ _ mZ)[(p + k)2 _ m2]

_g#d/2‘3 1 |:m2__p2x(1 _X)T/Z—S
" 1287 L dx Ay X
x {I'(2 —d/2)p,p,x(1 — x)[m* — p*x(1 — x)]
+39,, (1 —d/2)[m® — p*x(1 - x)]*}. (6.5.3)

k+p k

Fig. 6.5.1. One-loop graph for the operators in (6.5.1).
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Manifestly
9°G,,=G (6.5.4)
for the unrenormalized Green’s functions. This has to be true since

6p* =g"0,$0,4.
We can renormalize by minimal subtraction.

gﬂd/2-3
=G — T 3mttm2p?—1p*]. (65.5
R[G(p)] = G(p) 128n3(d—6)[ m* +3m*p* —gp*], (6.5.5a)
g#d/2—3

2 2

R[G,,(P]=G,.(p) - m[!’upv(%m — 15P")
—g,,(3m* —m*p* + g5p*)]. (6.5.5b)

Thus
g3 2,2, 1 4

R[G(p)]—¢"R[G, (D] = — W[%m4 —sm’p® +gop*]. (6.5.6)

The reason why contraction with g** does not commute with the
subtraction of the pole is simply that taking the trace introduces d-
dependence. Thus:

g d
A4 BY =
g"* pole part ofd_ T
Y d 6
pole part offi_g‘g = pole T-6-1-¢

We must evidently be careful to specify whether a trace is inside or outside
of the renormalization. The need to do this is characteristic of dimensional
regularization. Which place to put the trace depends on the problem under
consideration.

The problem arises whenever we have to consider a tensor of rank at least
2. (It could also arise in connection with taking a trace of Dirac y-matrices
except that we choose the trace of the unit Dirac matrix to be independent
of d.) We have discovered that our renormalized operators do not have all
the properties that the bare operators do. The lack of commutativity of the
trace and the finite-part operation is related to a physical effect, that there is
an anomaly in the Ward identity for scale transformations — see Callan
(1970), Symanzik (1970b) and Brown (1980).

If we were to use, say, zero-momentum subtractions (BPH or BPHZ), then
the trace and the finite-part operation would commute — as can be checked
from our example. So it might appear that zero-momentum subtraction
provides a better all-purpose definition of renormalized operators than does
minimal subtraction. However, some of the properties we will prove when
using minimal subtraction now disappear or become more complicated.
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For example, the equations of motion which we will prove in Section 6.6 are
only true if the mass terms are oversubtracted. This turns out to prevent
some Ward identities from being true when the simplest renormalized
operators are used, whereas they are true in their simplest form when using
minimal subtraction. We will prove this in Section 6.6 also. The moral is
that one cannot completely eliminate the problems.

It is possible (Collins (1975b)) to construct a definition of, say,
[0,40,¢/2] which uses minimal subtraction and for which g*'[3,40,¢/2] =
[(0¢)?]. This is done by writing tensors in terms of Lorentz-irreducible
components. Thus we write a second-rank tensor M, as the sum of an
antisymmetric term, a symmetric traceless term, and an invariant term:

M, =3M,, —M, )+3M, +M,, —(2/d)g, M)+ (1/d)g, M.

The subtraction procedureis applied to each term separately. Thisdefinition
loses other properties of the renormalized products. For example, con-
servation of energy and momentum is a consequence of the fact that the bare
energy-momentum tensor 6,, has zero divergence: ¢*f,, = 0. If we define a
renormalized energy-momentum tensor [6,,] by our original definition of
minimal subtraction, then this is the same as the bare 0,, up to allowed
redefinitions and it is conserved. But if we construct [0,,] by the procedure
just suggested, then it is not conserved.

nv

6.6 Properties

One of our motivations for working out the theory of renormalization of
composite operators was that in Chapter 2 we had proved equations of
motion and Ward identities. These results involved unrenormalized
composite operators. So now that we have defined renormalized composite
operators, we must prove the equations of motion and Ward identities
expressed in terms of these renormalized operators. This is particularly
important for the Ward identities, for these express the symmetry properties
of the theory.

In this section we will derive a number of useful properties of the
renormalized operators. Some properties will be purely technical, while
others will be the actual equations of motion and Ward identities. Our proof
will be given for the case that the operators are renormalized by minimal
subtraction. A typical proof of some equation starts by observing that the
corresponding equation is true for the unrenormalized operators.
Renormalization is almost the same procedure applied to both sides of the
unrenormalized equation, so the main problem is tofind the places where the
renormalization procedure is not identical for the two sides.
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It is always possible to make the theorems false by changes in the
renormalization prescription. The point of using minimal subtraction is that
it is a universal prescription that preserves almost all of the desirable
properties. (The reason is that it amounts, roughly, to defining each
counterterm by the requirement ‘remove exactly the singularity’) These
properties are relations between different operators.

The other standard renormalization prescription that preserves most of
these relations is the BPH (or BPHZ) method of zero-momentum
subtraction. In fact, the proofs were first given using the BPHZ prescription
(Zimmermann (1973a, b), Lowenstein (1971) and Lam (1972)). However the
use of minimal subtraction is better for gauge theories because of their infra-
red singularities. The proofs were given in this case by Collins (1975b) and
Breitenlohner & Maison (1977a, b, c). All these works are rather technical.
However, the basic ideas are simple.

Property 1. Linearity:
a[A] + b[B] =[a4 + bB], (6.6.1a)

where aand bare pure numbers, while 4 and Bare composite operators. This
equation is to be interpreted as an equation for Green’s functions of the
operator. That s, if X is any product of renormalized operators (elementary
or composite), then

a{0|T[4]X|0) +b{0|T[B]X|0> = <O| T[a4 +bB]X|0> (6.6.1b)

Proof. This property is almost obvious. If 4 and B have different numbers
of external legs (e.g. ¢* and ¢*), then there is no simple way of defining the
right-hand side of (6.6.1) except as being the left-hand side. But if 4 and B
have the same fields, like (0¢)> and ¢2, then the Feynman graphs for
<0|TAX|0>, (O|TBX|0) and <O|T(ad +bB)X|0) are the same; the
differences are only in the placement of powers of momentum. The equation
corresponding to (6.6.1b) is true for the basic graphs (i.e., without
counterterms). To obtain the renormalized Green’s functions we apply the
forest formula to each graph. The terms in the forest formula are the same,
since the graphs for the three Green’s functions are the same. Then (6.6.1)

follows from linearity of the subtraction operators T,.

Comments. (1) Itis necessary to be pedantic about this proof because:(a) itis
a prototypefor less trivial cases, and (b)itfails for the case of zero-momentum
subtractions. The reason for the failure is that the T, operation is then not
linear. For example, [ (9¢)*] and [ (0¢)* + m*@*] need twoextrasubtractions
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compared with [ ¢?], because the degree of divergence is two higher. So we
can only have

[(08)*Ispn + m*[$*Tapr = [(00)* + m*$* Jppy (6.6.2)
if the [¢?] operator is oversubtracted.

(2) The coefficientsaand bin (6.6.1) must be independent of d, for otherwise
taking a pole part is non-linear. Furthermore, we cannot use (6.6.1) to show,
for example, g**[3,¢0,¢] = [(0$)*]. As we saw, this equation is in fact false.
The proof fails because it can only be applied to the case that we sum over a
finite number of operators. It does not automatically apply to infinite
summations. However, when we defined dimensional regularization in
Chapter 4, we saw that our vectors and tensors have to have infinitely many
components.

Property 2. Differentiation is distributive. Let A be the composite operator
A= T[] ¢;x)
j=1

where each ¢, is an elementary field or one of its derivatives. Then

a1 [a”] z[ ey x)] (663a)

Htl
Again this equation is to be interpreted for Green’s functions:

%«)] T[A(x)]X|0> = (0| T[04/6x*]X|0. (6.6.3b)

Proof. Let p* be the momentum leaving the Green’s function (6.6.3b) at the
vertex for A. Then the derivative d/0x*" gives afactor — ip*. The point of (6.6.3)
is to state that we get the same results whether or not we take p* inside the
finite-part operation. To prove the equation, it is enough to observe that this
statement is true for the basic subtraction operator T,.

Comments. (1) We can contract y with an index in 4. Thus we have

90,[00,0]1=9g""[0,(60,0)] = [(0¢)°] + [¢ O ¢]. (6.64)
Since the overall derivative merely gives afactor —ip, thereisno possibility
of introducing extra d-dependence by contracting with g**. This is in
contrast to the case considered in Section 6.5.
(2) Note that derivatives are always implicitly taken outside of the time
ordering. Thus:

0| T(¢0,8)(x)39°(»)|0> = lim— < 0| T¢(2)p(x}30°(»)[0>. (6.6.5)
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This gives the simplest Feynman rules in momentum space, with each
derivative of a field giving a factor of momentum on the corresponding line.
The lowest-order graph for the Fourier transform of (6.6.5) is

Jddxddyeip.x+iq~y<0| T(¢au¢)(X)%¢2(Y)IO>

s d% ik,

Property 3. Simple equation of motion. Decompose the action into a basic
action and a counterterm action:
S =L+ L (6.6.7)

just like the decomposition (5.1.1) of the Lagrangian, except that &, includes
both the free and interaction terms: &, = [d*x(L, + £,). Then define
functional derivatives with respect to renormalized fields

0 0¥ 0%
S 4(x) = = -0 , 6.6.8
=560~ apl0  +30,600 (€68
FEOx) = 0Fy _ &, with counterterms omitted. (6.6.9)
¢ ép(x) ¢
We already know the unrenormalized equation of motion (2.5.5)
. 0
0|TY (x)X|0) =1——<0|TX|0). 6.6.10
OIS (x)X |05 =iz 75 < 0| TX|0) (6.6.10)
Now we wish to prove the renormalized equation
)
O|T[£Le(x)]X|0> =i (0|TX|0>, (6.6.11)
ITL73IXI0> =155
from which follows the operator equation
[#e]=0. (6.6.12)

Comments. (1) The functional derivatives are to be treated in a purely formal
sense.

(2) Even though [%,(x)] is zero as an operator, its Green’s functions
(6.6.11) are non-zero because we define them by taking derivatives outside
the time-ordering. Bringing them inside gives equal-time commutators
(Section 2.5).

(3) Signs for fermions are easiest to determine by examining the derivation
in Chapter 2.
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Example. In the ¢ theory
& =Z(0¢)/2 —m3Z ¢*/2 — g, Z°1¢° /6,
we have
Fo=—ZO¢—miZd — 39,2 ¢, (6.6.13)
[Fo]l=—0O¢ —m¢— 3>~ "?g[4°]. (6.6.14)
Then cases of (6.6.11) are
O] T[L4(x)]6(1)]|0> = (— O, — m*)<O| T p(x)p(») |0
— 31720 T[¢*(x)]p(»)[0>
=169(x — y), (6.6.15)
CO[T[Z3()][0°(1)](2)p(W)| 0>
= 310(x — y)<O| T[$*(») ]p(2)p(w)|0 >
+i6x — 2)<0| T[¢*() ]p(w)| 0>
+i6“(x — w)<0|T[$>(»)]¢(2)[0 . (6.6.16)
Proof. A general proof of (6.6.11) is rather complicated because of the
arbitrary number of fields. To show the main points it is sufficient to prove

one case, (6.6.15) in ¢> theory. The problem in proving the renormalized
equation from the unrenormalized equation is that the Feynman graphs are
different for the different terms.

We write

Fe=F0.0F FLino
= —(O+m)$ — sgu® 297 (6:6.17)

Examples of low-order graphs are given in Figs. 6.6.1 and 6.6.2. The
counterterms are those arising from the action.

In momentum space we evidently have

<0| Tgo,¢(P)$(¢1)|0> = (p* — m?<0| TJ’(P)&(CIHO) (6.6.18)
COIT Sy HpII0> = (7 — m) {—+ (—o— +)

+

+ (OO +~O4-Ow v
(—CD-+-O—+—O— + -._>

v

Fig. 6.6.1. Low-order graphs for (6.6.15) with free part of action.
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OTC}, 1801105 = O+ (O‘Q— +O+>
- (D-+O)
‘..

Fig. 6.6.2. Low-order graphs for (6.6.15) with interaction part of action.

The p? — m? multiplying the free propagator attached to ¢(p) cancels the
denominator of the propagator. Thus in the graph where the other end of the
propagator is ¢(gq) we obtain the right-hand side of (6.6.15).

In all the remaining graphs the other end of the propagator is an
interaction vertex, either a basic interaction or a counterterm. In fact we
obtain

(0| T2, +(P)(a)|0> (6.6.19)

where
yim,¢(") =%3—%oe

= —(Z-1)O¢ — (MIZ —m)p —3g,Z%7¢%  (66.20)
This is exactly what we must obtain in order that the unrenormalized
equation of motion (6.6.10) is true. Notice that because (6.6.18) is
finite, so is (6.6.19). We must now prove that the counterterms in
(6.6.20) are precisely those that are needed to give the operator
[Shi.e] = —gu®~“*[¢?] renormalized according to our standard pre-
scription for composite operators.

Now, the renormalization prescription is precisely to add to the basic term
Stio = — 591>~ “?¢? a series of counterterm operators whose coefficients
are pure poles at d = 6, so as to make its Green’s functions finite. But this is
precisely (6.6.20). The relation between the counterterms can be seen from a
comparison of Figs. 6.6.1 and 6.6.3.

OS5, B0y = (O— + ~——)

+ (O—O—+’O—‘—+*‘O—+*—'—>
+ <><D—+ O—+O—+r—)

Fig. 6.6.3. Renormalization of Fig. 6.6.2.
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Property 4. Equation of motion times operator. With the same notation as
before we have

(OIT[AZHx)]X |05 =i<0|TAX)——X[0>r,  (6.6.21)

5¢( )

where A4 is any product of operators at the same point. Hence
[4#,]=0. (6.6.22)

Comments and examples. (1) This property is crucial to proving Ward
identities.
(2) All operators appearing on the right of (6.6.21) are to be renormalized.
(3) In ¢? theory, cases of (6.6. 21) are

O|T[- O —m*¢* ~ 39¢°1(x)(»)$(2)|0)
=id(x — y)<0| T¢(y)¢(2)|0> +(ye2), (6.6.23)
O|T[ - ¢*O¢ — m*¢’ — 39¢*1(x) [#* ] (1b(2)|0 g
= 2i0(x — y)<0|T[¢°](1)¢(2)|0>
+18(x — 2)<0| T[$*10)[$21(2)]0 ). (6.6.24)
Proof. The unrenormalized version of (6.6.21)follows almost directly from
the previous propertyinitsunrenormalized version. Thisin turnfollowsfrom
the functional-integral solution of the theory, as shown in Section 2.5. We
have
(0| TA(x)¥ 4(x)X |0
0A(x)
o¢(x) o9(x)

Then we use the fact that in dimensional regularization

=i0| T A X|0). (6.6.25)

|0>+ 0|T

390)= |d?p1 =0, (6.6.26)

according to the results in Chapter 4. This enables us to eliminate the
0A(x)/dp(x) term.

The renormalized equation of motion (6.6.21) can be proved by
generalizing the method for the previous property. It is enough to consider
the example (6.6.23). Low-order graphs for the left-hand side of (6.6.23) are
shown in Fig. 6.6.4. The (— [] — m?) factor in .4 cancels an attached
propagator. If the other end attaches to an external field (viz., ¢(y) or ¢(2)),
then we have a contribution to the right-hand side. If it attaches to an
interaction then the negative of a contribution with &,_, is obtained, such as

int

Fig. 6.6.5. Since these manipulations do not change the one-particle-
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OIS o, )FR)F(9)10>

=(q*>—m? ‘ +(k* —m?)
q

p+k+gq
+{@* —m) +[(p+k+4q) —m’]} O——<
p
+(k2+q2—2m2){< + Q+

Fig. 6.6.4. Low-order graphs for the left-hand side of (6.6.23), using free action.

OTLo g 2 1B()F(9)10>

+cts

Fig. 6.6.5. Low-order graphs for the left-hand side of (6.6.23), using interaction part
of action.

(ir)reducibility structure, renormalization can be performed without chang-
ing the result.
Since the % , terms need renormalization two subtleties arise:

(1) Since (J¢ = g**0,¢0,¢, the ambiguity about the placement of g*” is
relevant. To preserve the derivation it must come before the re-
normalization is performed.

(2) Inthe BPHZ scheme m?¢2 must be oversubtracted otherwise we cannot
use linearity to combine — ¢ [J¢ and —m?¢p>.

The case of (6.6.24) involves two further subtleties illustrated by Fig. 6.6.6.
In thefirst graph (a) the (— [J — m?) multiplies the line coming back to a ¢(x)
factor. This term gives zero after use of (6.6.26). The second graph (b) has two
1PI loops separated by a line. In the basic graph, the g2 — m? factor cancels
the propagator to give graph (c), which has a different reducibility structure.
The first two counterterm graphs give the obvious counterterm graphs in
Fig. 6.6.6(d). These correspond to the first two counterterms in Fig. 6.6.6(b).
But the last countertermin (b) has two vertices while the corresponding graph
(e) has one vertex. Their operator structure is different: graph (e) is another
counterterm to renormalize the x — y singularity of ¢*(x) ¢*(y). Even so the
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) y
© 18x/2 y
@ xyO— Qs

(&) xy*—12

Fig. 6.6.6. Some graphs for (6.6.24).

two counterterm graphs must be equal. They are both a single free
propagator times a pole part coefficient times a polynomial in momentum
times the same power of the unit of mass. They both make the complete
Green’s function finite.

The general proof is rather tedious and can be found in Collins (1975b).
This proof was given for the minimal subtraction scheme, but also works for
the BPH(Z) scheme. In the original BPHZ proof, by Lam (1972), of (6.6.21),
there is no treatment of this complication, that the counterterms for the two
sides are not in manifest correspondence - i.e., that the forests are different.

Property 5. Ward identities: We will use the notation of Section 2.6 for
transformations under potential symmetry operations. Let

¢ ¢+ 09,
be an infinitesimal transformation of the fields under which the basic
Lagrangian transforms as

gbasic - gbasic + Ab + auY Il:

We are restricting our attention to the transformations generated by one
particular generator of a group. Thus, as compared to Section 2.6, we now
drop the index ‘e’, which labelled the generators. The subscript ‘b’ on A, and
Y, indicatesthat we are considering transformations on the basic Lagrangian
(i.e., without counterterms). In the equations below, we will add in the
counterterms by use of our standard renormalization scheme. Note also that
in setting up the renormalized Green’s functions, in Section 2.8, we defined a
free Lagrangian % and a basic interaction Lagrangian .#,. We now work
with their sum: &y, ;. = Lo + L.

We proved earlier the unrenormalized Ward identity (2.7.6). The
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renormalized Ward identity is
0 .
W«)l T[j5(x)]X[0>x

= (0| T[Ay(¥)]X|0 5 — <0 T6,0(x)2% |o Se. (6.627)

0 (x)

We will have to prove it. From it follows

0,Lit]=1[As] (6.6.28)
and by integration over all x:

0= Jd“x(O] T[AP(x)] X |0)g —i6<0| T X |0 . (6.6.29)
Of course A =0 for a symmetry. The current is

"?basn:
Lit]l= Z[aa¢ 5b¢,~]—[Y;;]. (6.6.30)

Proof. In defining Y and A,, we have used the basic Lagrangian, i.e., the
one with the counterterms omitted. This is because we use the operation
symbolized by square brackets to generate the counterterms. The proof of
(6.6.27)—(6.6.30) follows the usual proof of Noether’s theorem, but using the
previously proved properties to write it directly in terms of renormalized
operators.

First we use linearity and distributivity to obtain

0 .
- [Ab] + [aujg] = Z au[(%ﬁ>5¢1 - Y’t:} + [6;4 Yg - 6$basic]

ag asic
-3[oGapen ][ e

= - Y [66,45,]. (6.6.31)

From this the Ward identity (6.6.27) follows by the equation of motion
(6.6.22).

We exchanged the order of renormalization and tracing over u to write
0,[jt]=1[0,jt]. This is permitted — see our remarks below (6.6.4).

Comments (1) The theorem appears to give an unrestricted proof of the
renormalized Ward identities. This appearance is false, since there are
symmetries that can and often do have anomalous breaking — see
Chapter 13. Such symmetries are dilatation and conformal symmetries and
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chiral and supersymmetries. The potential for such anomalies can be seen by
computing A®in a regulated theory; it contains a non-zero coefficient which
vanishes as d — 4. Such is the case for conformal transformations and for
chiral symmetries (Where the transformations involve y; or ¢, ,,,, explicitly).
Minimal subtraction is then not easily applicable and the properties we used
in the proof are false.

(2) Corresponding problems appear with any other regulator and with
any other renormalization scheme (Piguet & Rouet (1981)). Minimal
subtraction confines the problems to cases with anomalies.

Property 6. Non-renormalization of current: Consider an exact internal
symmetry (such as the symmetry that gives electric charge conservation).
Compute the corresponding unrenormalized current j* from the complete
Lagrangian. Now j* contains counterterms derived from the counterterm
Lagrangian. We will now prove that these make j* finite and that

#=[t1 (6.6.32)

Comments This theorem does not apply to space-time symmetries — see
Callan, Coleman & Jackiw (1970), Freedman, Muzinich & Weinberg (1974),
Collins (1976), Brown & Collins (1980) and Joglekar (1976)for the case of the
energy-momentum tensor. It also cannot be extended to the case of a non-
conserved current unless the breaking term has dimension below that of &
(Symanzik (1970a)). Furthermore, the proof does not apply directly if the
transformation ¢ ;isnon-linear in ¢ ;. It also needs generalization for gauge
theories.

Proof. Both j* and [ j#] consist of the basic current j# plus some minimal
subtraction counterterms. The difference

et =j*—[jt] (6.6.33)
is a series of pure pole terms, and we wish to prove it vanishes. Each term has

dimension 3 or less (at d = 4), since the currents have dimension 3.
Now both j{ and [j#] satisfy the same Ward identity, so

3,{0| Te*(x)X|0> =0. (6.6.34)

Thus J,¢ =0, without use of equations of motion; any need to use the
equations of motion would give a non-zero right-hand side to (6.6.34). In the
absence of gauge fields, it isimpossible to construct such a term. The theorem
is thus proved.

In the presence of gauge fields, such terms do exist. For example, in
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quantum electrodynamics we have a counterterm to the electromagnetic
current proportional to d,F*’, where F,, is the field-strength tensor 0,4, —
d,4,. With non-abelian gauge fields one might have ¢, e, ;,,0%(4}4}),
but the presence of the ¢, ;,, indicates a chiral symmetry, which in any case
needs special treatment. Moreover, in a non-abelian theory, we must also
take account of the constraints imposed by gauge invariance, which is a
subject we will not treat until Chapter 12.

The energy-momentum tensor also has possible counterterms, like
(0,0, — gw[j)d)2 - see the references quoted above.

6.7 Differentiation with respect to parameters in %
Consider Green’s function derived from the bare classical Lagrangian
L =Z(0A)*/2 —mpA?/2 — ggA*/4!
by using the functional integral:

Gy =<0|Tp(x,)...p(xy)|0>
ﬁdA]A(xl) o A(xy)e

f [dA]e

(6.7.1)

Differentiating with respect to g, gives

3G, J[dA]A(xl)-'-A(x~)<;—!ljd4yA4(Y)>eM
593 J[dA]ei;y

) {J~[dA]A(x1).A..A(xN)ein}{f[dA] <;—;>Jd4yA4(y)eify}
oo ?
(X)

= fd“y(;—!‘)wlT¢(x1)...¢(x~)<¢“(y)— <0[¢*(]0»)]0>

. 0L (y) 0¥
=1 Jd4Y<0| T¢>(X;)---¢(X~)< 3 ¥ _<o| 3 ) I0>>|0>- (6.7.2)
9B 9B
Similarformulae hold for differentiation with respect to the other parameters

Z or m}.
The renormalized equivalents of those equations are also useful. One use
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will be to show, within perturbation theory, that terms quadratic in the fields
can beshifted between free and interaction Lagrangians without affecting the
Green’s functions.

First consider differentiation with respect to the renormalized coupling, g.
We differentiate the renormalized Green’s function

GN(xl,...,xN)=ZI:F+ZCY(F)}. (6.7.3)

r b

Applied to each basic graph I' in this formula, the differentiation just gives
-1
41

Renormalization of (6.7.4) produces a set of counterterms isomorphic to

those in (6.7.3). So

9
dg

J‘ddy< 0, T¢(.V)4¢(x1) ot ¢(xN)'0> , no counterterms * (674)

—1i
Gv="77 d?y O] T{[$(1)*] = <O[[P(»)*][0> } (x,)... (xy)[0).
6.7.5)
The subtraction of the vacuum expectation value of [¢*] comes about
because no vacuum bubbles are used in Gy. Thus each ¢* vertex in dGy/dgis

connected to some external line.
Suppose we let the basic Lagrangian be

ybasic = z(0¢)2/2 - m2¢2/2 - g¢4/4 ' (676)
and let the free and interaction Lagrangians be
ZLo=1(0¢)*/2—mi$*/2 (6.7.7a)

Ly=(2~1)@2¢)*/2 —(m* —m})¢?/2 — gp*/4, (6.7.7b)
with m? + m? = m*. Notice that we have allowed the (0¢)* term to have an
arbitrary coefficient. We choose to put some of the terms quadratic in ¢ into
the interaction, so that we can derive an equation for Gy/dz or dGy/om*
like (6.7.5). Then we will show we can move the quadratic terms to the £,

without changing the Green’s functions.
Differentiation with respect to z or m* gives

0= |4 <OITIL87]) - Ol[@871j03 9t ¢l 0.
(6.7.8)

;#GN = :2‘1 d?y<0| T{[p(»)*] = <O[[¢(»)*]]0>} p(x,). .. $(xy)|0>.
(6.7.9)
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However, we may want to put all of (0¢)%z/2 — m*¢$?/2 into the free
Lagrangian. In this case the free propagator is

i/(zp? — m?).
We wish to prove that (6.7.8) and (6.7.9) remain valid.

In this case 8/0m? applied to an unrenormalized graph I gives a sum over
terms in which each propagator is differentiated

0 i . i 2

szz —a= l<zp2 — m2> . (6.7.10)
This gives us thesame result for the unrenormalized graphs as the right-hand
side of (6.7.9). Next, we differentiate a counterterm graph.C (T'). Either a
propagator is differentiated,so that the — iin (6.7.9) gives the basic vertex for
[¢2(y)], or a counterterm C(y,) is differentiated. In this second case there is
also a counterterm graph C,(0I'/0m?) with a term dy,/0m?

Now

C(8y,/om?) = 6C(y,)/0m> (6.7.11)

in the minimal subtraction scheme. (The reason is that both are defined to be
pure poles times u to a power — the same for both graphs.) We thus obtain all
the counterterm graph for the right-hand side of (6.7.9).

Similarly (6.7.8) is true if z(0¢)? is all in the free Lagrangian %,,.

We thus see that, for any renormalized parameter A in the Lagrangian &£,
we have

0P aeic 5.4 basic
;GN=in“y<O|T{[#(y>]—<0f[ - (y]]0>}¢(x1)...¢<x~n0>

(6.7.12)

From thisresult we can see that the Lagrangian (6.7.6)is equivalent to the
one with unit kinetic term

Lo=(09)/2—m?¢"?/2—g'¢"*/4! (6.7.13)
by a scaling of the field, with

p=z"12¢, (6.7.14a)
m? =zm'?, (6.7.14b)
g=1z%4y (6.7.14c)
The proof is to write (6.7.6) as
L= 209) /2 —m'?zd?* /2 — g'Z2 /4. (6.7.15)
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Then differentiation of a renormalized Green’s function G, of ¢ with respect
to z gives

zdGy/dz = z@GN/02|medm‘g
+ rnzaGN/a'n2 |fixedz,g + 2gaGN/aglfixedz,m

= in4y<0| T{[z((3¢)2/2 —m?¢?/2 — 2g¢*/4!]
— vacuum expectation value} ¢(x,)...4¢(xy)|0)

=—;—Jd4y ((O|T{[¢&%] — vacuum expectation value} X

X P(x1)...p(xy)|0D). (6.7.16)
We now use the equation of motion (6.6.21) with 4 = ¢ to give
zdGy/dz= — NGy/2. (6.7.17)

From this it follows that

GNiz.g,mz =z"N2Gy|

z- 1,99 ,m2->m'?
ie.,
CO|Tglx,)... 0|03 = 20| T/ (x,)... 6 (xy)|0, (67.18)

exactly as we would expect. The proof is non-trivial only because we are
shifting terms between the free and interaction Lagrangians. Thus we must
ensure that counterterms do not go astray.

6.8 Relation of renormalizations of ¢ and m?

Observe that at order g2 the renormalization factor Z, for ¢ in (6.2.13) and
(6.2.11) is the inverse of the renormalization factor m3/m?. This relation is

true to all orders, as we will now prove. (We are now back in ¢ theory at
d=6.)
We use the renormalized formula

om?
X @(x,)...0(xy)|0)

mZa—a—z— Gy=1 J d*yco|T {mzaﬁ — vacuum expectation value} x
m

=—71m2fd4y<olr{[¢2]—<0|[¢2]|0.>}¢<x1)‘--¢<x~)|0>-

But we also have (6.8.1)
L =(0¢o)/2—m*Z,¢%/2 —g,03/6, (6.8.2)
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so that
m2 0¥ [om* = —m*Z, ¢2/2. (6.8.3)
Hence
P .
50N = —%mzz,,fd“xolwé— <0[$3105}¢(x,).... (x| 0.
(6.8.4)
Therefore
fd‘ym2[¢2] = |d‘ymi32, (6.8.5)

from which the desired result follows.
Generalizations of this method can be found in Brown (1980) and Brown
& Collins (1980).
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7

Renormalization group

As we saw in Chapter 3, the renormalization procedure has considerable
arbitrariness: the counterterm for a graph must cancel its divergence but
may contain any amount of finite part. A rule for choosing the value of the
counterterm we called a renormalization prescription. In one-loop order it
was clear from the examples that a change in renormalization prescription
can be cancelled by a change in the finite, renormalized couplings
corresponding to each divergence. Thus a change in renormalization
prescription does not change the theory but only the parametrization by
renormalized coupling and mass. What is not so easy is to see that this
property is true to all orders. This we will show in Section 7.1. The
invariance of the theory under such transformations is called
renormalization-group (RG) invariance.

A particularly useful type of change of renormalization prescription is to
change the renormalization mass u. Infinitesimal changes are conveniently
described by a differential equation, called the renormalization-group
equation, which is derived in Section 7.3. This leads to the concept of the
effective momentum-dependent coupling. This concept is very useful in
calculations of high-energy behavior, as explained in Section 7.4. The
coefficients in the renormalization-group equation are called the
renormalization-group coefficients and are important properties of a
theory. Various developments of the formalism occupy the remaining
sections.

The renormalization group was first discussed by Stueckelberg &
Petermann (1953) and by Gell-Mann & Low (1954). Very similar ideas are
applied in statistical physics (Wilson & Kogut (1974)). Many impertant
recent applications arise because of the asymptotic freedom of QCD.

Results of calculations ‘of renormalization-group coefficients can be
found in many places:

(1) Gross (1976) lists many one-loop results for theories with scalars and
fermions and up to two loops for gauge theories with only fermions.

(2) Cheng, Eichten & Li(1974) give the S-function for a general renormaliz-
able theory to one-loop order.

168
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(3) Tarasov, Vladimirov'& Zharkov (1980) compute renormalization-
group coefficients to three-loop order in gauge theories with fermions
using minimal subtraction.

(4) Vladimirov, Kazakov & Tarasov (1979) compute to four-loop order in
¢* theory.

(5) Chetyrkin, Kataev & Tkachov (1981) and Chetyrkin & Tkachov (1981)
compute the anomalous dimension in ¢* theory at five-loop order.

(6) Tkachov (1981) summarizes the methods used for the above
calculations.

(7) Caswell & Zanon (1981) perform calculations in supersymmetric
theories at three-loop order.

7.1 Change of renormalization prescription

7.1.1 Change of parametrization

The techniques we will describe are valid for any theory. However, to be
specific, we will mainly work with the theory we have been using as a source
of examples, the ¢* theory in six space-time dimensions. There are three
alternative, but equivalent, forms in which to write the Lagrangian. First of
all, we can write it in terms of the bare field ¢,:

L =(0¢0)*/2— mip2/2~ g, $3/6. (7.1.1a)
(As before, we ignore the term linear in ¢.) The importance of this form is
that the bare field ¢, is invariant under change of renormalization
prescription: its normalization is determined, because it satisfies canonical
equal-time commutation relations.

When we renormalize the theory, we obtain finite Green’s functions of
the renormalized field ¢ = Z~'/?¢,,. In terms of the renormalized field, the
Lagrangian is

P =Z(0)/2—mEZP*/2 — g, 2> $3/6
= Z(0¢)*/2 — m5*/2 — g5 /6. (7.1.1b)
This is the second of the three forms.

In the perturbative theory of renormalization, we wrote the Lagrangian
as the sum of a free Lagrangian, a basic interaction Lagrangian, and a
counterterm Lagrangian:

=L+ L+ L
= Prasic T Lt- (7.1.1¢)

This is the third form of the Lagrangian. Here, we have chosen to define a
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basic Lagrangian
L asic = (00)*/2 —m?>¢*/2 — >~ 42g 93 /6, (7.1.2)
where m and g are the renormalized mass and coupling. Since we will mostly
use minimal subtraction, it is sensible to define g to be dimensionless, and
therefore to introduce the unit of mass u. The counterterm Lagrangian is
P=0Z(0¢)*/2 — m*p?/2 — 5g3/6, (7.1.3)

and the counterterms 6Z, 6m?, and dg are computed as definite functions of
g, m and u with the aid of some renormalization prescription.
To be concrete, let us use minimal subtraction, so that

0Z=Y (6—d) c,g,mp), (7.1.4a)
j=1
om*=m> Y (6—d)”'b (g, m, p), (7.1.4b)
ji=1
og=p>"4% Y (6—d) Ja,(g,m,p). (7.1.4¢c)
i1

We saw, in Section 5.8, that in fact the coefficients a;, b;, ¢; are independent
of m and u; they are functions of the dimensionless coupling g only.
However we will not use this fact at the moment.

The three forms of the Lagrangian listed in (7.1.1) are equivalent — if we
use any of them in the functional integral, then the same Green’s functions
will result. The coefficients Z, mZ, and g, will be singular when d approaches
6 with g,m, and y fixed. The singularities will be just such as to give finite
Green’s functions of ¢ at d =6.

The parametrization of the Green’s functions by g,m, and u is rather
arbitrary. Suppose that we change variables to g’, m’, and y’, which are
some given functions of g, m, and . These functions may even depend on the
regulator, d, provided that the change of variable remains non-singular at
d = 6. Then we get the same theory, for the collection of Green’s functions
Gy is unchanged. It is just the numerical values of the renormalized mass
and coupling and of the unit of mass that have changed.

We may even change the scale of the renormalized field by writing
¢’ = (¢, where ( is finite. The Green’s functions are now different:

Gy ={"Gy.
But observe that the value of { is irrelevant for a physical observable like the

S-matrix. For example, consider an S-matrix element involving N particles.
It is obtained from G, by (1) dividing out an external propagator G,(p;) for
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each external line and (2) multiplying by 2!/? for each external line, where iZ
is the residue of the pole of G, (p). Finally we let the momenta p; go on-shell.

Thus
N
S= lim {GNz‘"’Z HGz}
pz—'m;h i=1
= 1im {Gy((2""*)" /]G3 }- (7.1.5)
But
G,=("2G), (7.1.6)

so the particle pole is at the same position in G asin G, and the new residue
is
2 =(% (7.1.7)
Hence
S =1m{Gy(E"*)N/T]G3}. (7.1.8)

and the S-matrix is invariant, as claimed.

7.1.2 Renormalization-prescription dependence

In the bare Lagrangian (7.1.1a), there are only two parameters. So there
should be only a two-parameter collection of physical theories obtained
from it. As we have just seen, the freedom to vary the scale of the
renormalized field ¢ in the second form of %, viz. (7.1.1b), does not
introduce a third real parameter into the physics.

Unfortunately, we appear to have introduced a large and indefinite
number of parameters by having to choose one out of the infinitely many
possible renormalization prescriptions. One might suppose that in different
renormalization prescriptions, the singular behavior of m, and g, as d — 6
could be different in such a way that one picks up different phases of the
theory. In fact, this is not so. We will show that a change of renormalization
prescription is one of the reparametrizations discussed in the previous
subsection 7.1.1. This is the property we have defined as renormalization-
group invariance.

Even within a single renormalization prescription, we have introduced a
third parameter, the unit of mass, u. Notice that the basic Lagrangian does
not depend on y and g separately, but only on the combination u3~42g; but
notice also that this property is not true for, say, the renormalized Green’s
functions at one-loop order. However, a change of u is in effect a change in
renormalization prescription. Indeed, we could include in our definition of
the renormalization prescription the requirement that y and m have a fixed
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ratio; we would still have two free parameters. A change in this ratio is then
a change in renormalization prescription. Our proof of renormalization-
group invariance will, in fact, only explicitly cover the case of a change in .
The more general case will be essentially the same.

We will prove that if we change u to ', then the physics is unchanged,
provided that we choose suitable new values, g’ and m’, for the renormalized
coupling and mass. That is, an S-matrix element S(g, m, u) satisfies

S(g,m, u)=S(g’,m’, ).
The bare mass and coupling m, and g, are similarly invariant.
The new renormalized field ¢’ with the new values (g',m’,u’) of the
parameters is not the same as with the old values but is related by

o' =(¢,
where ( is a finite function of g, m, p and u’. Hence the renormalized Green’s
functions satisfy
GN(pl" N ’pN;g’m’/‘) = C—NGN(pl’ v ,PN;g’,ml,ll,)
=("NGy. (7.1.9)
It will be convenient, in our proof, to compute Green’s functions of the

original field ¢, but with the new value ' of the unit of mass. Now, in terms
of the new field ¢’, the Lagrangian is

L=Z0pY2—midp'}2—gpd'>/6. (7.1.10)
Here we write
Z'=Z(g',m'/y,d), (7.1.11a)
mg = mi(g',m’, ', d), (7.1.11b)
9s=9s(g’, 1, d). (7.1.11¢)

These are the same functions of the new renormalized parameters m’,g’, and
u’ as the original bare parameters were of the old renormalized parameters
m, g, and u. To get the Green’s functions of the original field ¢ but with the
new value of the unit of mass, we substitute {¢ for ¢’ to obtain

L =2(g m/u,d)0¢*2 — myg',m'/u,d);*$?/2
—gglg’,m', ', d)>$°/6. (7.1.12)

7.1.3 Low-order examples

Let us remind ourselves how the changes in g and m are obtained at one-
loop order. We must start at tree approximation, where we ignore all
counterterms. In order that the two formulae (7.1.1b) and (7.1.12) for % be
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the same in tree approximation when we change u to u’, we must write
9 = Goew = W/p')> "%,
m =m,
{ =1. (All tree approximation.) (7.1.13)
Note that at d =6 we have g’ =g to lowest order. We distinguish g’ and

Fnew' Inew 18 defined to be exactly the value of g’ in tree approximation. In
higher-order calculations, g’ gets corrections, but g,,.,, will be defined to be

(u/w')>~%*g always.
To treat higher-order corrections, we write the Lagrangian (7.1.12) as
& =(0¢)*/2—m*$*/2— p> =V [g(u/w)’~¥*]¢°/6
+6'Z(0¢)?/2 — 6'm*p?/2 — §'gd>/6. (7.1.14)
Our strategy will be to express the counterterms in (7.1.14) as minimal
subtraction counterterms plus some new finite pieces. The finite pieces will
accomplish the change of parametrization.
First we consider the one-loop graph for the self-energy, Fig. 3.1.1. The
unrenormalized value is
ig’T'(2 —d/2) (*
="
1287 o
This is invariant under the transformation (u, m, g)—(u’, m,
g(u/p’)® ~4?). If we use unit of mass y, then the counterterm is
C(I'y)= —pole(T'y)
___—ig’
 64n3(d —6)
Next we use p’ and g, =(u/u')® " %?g instead of u and g. The
counterterm changes to

dx[m? — p?x(1 — x)]¥*~2(4nu?3~ 92,  (7.1.15)

(m?* —1p?). (7.1.16)

Cl(l—‘ )= _igrzlew (mz__lpZ)
V'™ 64n’(d — 6) °
102 6—d
Y 1y B 7117
—6411’3(d—6)(m 34 )<ﬂ,> . ( ot )

Notice that we define C'(T";) to be the negative of the pole part of I';,
with the d-dependence of g,., ignored. That is, we consider the function
I', =T (P, gnew» M, ) and extract its pole at d =6 with g,.,, fixed. This
prescription ensures that we may later replace g,.,, by its value at d=6
without changing the renormalized value of the graph.

Since both C(I';) and C'(T',) cancel the divergence, their difference is
finite. We may therefore obtain the same value for the graph plus
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counterterm by letting the counterterm coefficients in (7.1.14), namely 6'Z
and 6'm?*, each be a sum of two terms:

2 2 17,\6—d
"7 — Inew Inew (ﬂ /ﬂ) -1
o Z‘384n3(d—6) +384n3[ i—6 : (7.1.18)
ngz ngz (/t'/u)s—"— 1
12 new new
om”= 64713(d — 6) t ean3 i—6 ] (7.1.19)

The first term in each equation is the minimal subtraction counterterm for
the new coupling, while the second term is finite as d — 6. Using the formula
(7.1.12) for the Lagrangian, we may regroup these terms to give

gnew (”/”)6 d"'l
0 =1+ 3 [ d—6
2 n6—-d
_ g° [1—(w/u)
‘1+3s4n3[ e (7.1.20)
2,211 — N
m'24’2=m2+':453[ ;”1”6) ] (7.1.21)

Hence we obtain the value of m’:

59 [1—=(up)**
2 —m2l1 4
m '"{ +384n3[ i-6 |T09)

2
'"2[ 324 sIn(u/u) + o(g“)] as d— 6. (7.1.22)
Also at d =6 we have
2
d=g=1+ 768 7653 P (W) + 0(g%). (7.1.23)

We can apply the same procedure to the vertex graph, Fig. 3.6.1, whose
value is the factor in curly brackets in (5.3.5). The counterterm §’g is written
as

Gaewh> ™Y @R/ —1
7.1.24
643d—6) T 64n° i—6 | (7.1.29

with the result that

Gaew [ /W) —1
3 /3 /2 _ r3-d/2) 1 new
C gnew“ { +64 [ d 6

_ g [1—(/u) "
— g3 d/2{1+641t3[ e J} (7.1.25)
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It follows that

2 _ n6—d
g = g(u/u’)3“‘/2{1 + 222,,3[1 ;“1“6) ]+ 0(g4)}

256m73

Our strategy for understanding the effect of a change in renormalization
prescription is to absorb the difference into a finite counterterm. The
counterterm will itself generate divergent counterterms when we insert it
into a bigger graph. Finally we reorganize the Lagrangian by putting all the
finite counterterms into the basic Lagrangian. Then we see that the change
in renormalization prescription is exactly compensated by a change in the
parameters of the theory.

What happens when we go to higher order? An example is given by the
two-loop self-energy graph of Fig. 7.1.1(a). Graphs (b), (¢c), and (d) renormal-
ize its subdivergences and its overall divergence. We write the renormalized
graph with the original value of y as

Z(p.g.mu) =%, +2%,+ I, (7.1.27)
(We used the fact that X, = X_.) The unrenormalized graph is unchanged if

we replace u by ' and g by g,..- But the vertex counterterm is treated
exactly as at (7.1.24), so that:

3g2
ﬁg[u ln(u/y’)+0(g4):| as d—6, (7.1.26)

Zy(p,g,mp) = Zy(Ps Gnews ms 1) + [Zb(pa gsm, 1) = Zp(Ps Gnews M, ”l)]'
(7.1.28)

Thefirst term contains the counterterm for one of the subgraphs, computed
by minimal subtraction with unit of mass u’. The second term exactly
compensates the difference. It has the counterterm replaced by the finite

(@) ®

>

(]
Fig. 7.1.1. Self-energy graph with counterterm graphs.
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part in (7.1.24), viz.

3 3-d/2 1 06—d
Inewh (#/#) -1
Ag = .
9= 6an® [ i—6

(7.1.29)

We now write
21 = za(p9 Inews M, /“’) + zzb(p’ Inews M, ”,) + zd(p’ Inews M, #,)

A ’
+ {21‘1 g—ﬁ +Z4(p:9,m, 1) — Zy(P, gew> My 1 )}. (7.1.30)

Here we wrote out the first three terms as the minimal renormalization of
X, with unit of mass y'. The remainder is finite, since X, is finite. The term
2T ,Ag/(Gpewtt’>~*?) is the one-loop self-energy graph with one of its
couplings replaced by Ag. It has a divergence which can be cancelled by a
minimal counterterm:

- af;’a,"('“;"%g)(mz _1p). (7.1.31)
Hence the term in curly brackets is
I:‘g:il;fé‘—qﬁ/? +2C ] + [Zi(p,g,m, 1) — Z4(D, Gnew> M, 1) — 2C].
(7.1.32)
The second term is finite, since there are no remaining divergences. It is of
the form

i(— Am? + AZp?),

and so gives rise to another finite contribution to m'? and to (.

7.2 Proof of RG invariance

To show to all orders of perturbation theory that g’, m’ and { can be chosen
so that (7.1.9) holds, we generalize from our treatment of the examples. We

write
C3gl”/3—d/2 = g#3—d/2 + Ag,
C=1+A0,
m'? =m? + Am>. (7.2.1)
The original version of the theory has counterterms computed with unit of
mass u:
L= Lrasic + Laltt) (722)

We now change to unit of mass u’ and wish to show that identically the
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same Green’s functions and total Lagrangian are obtained if we make
changes of the form (7.2.1).
The Lagrangian is written in the form

& = gbasic + gc + gtl:t, (723)
with the basic Lagrangian the same as before, but written as
gbasic = (a¢)2/2 - m2¢2/2 - gnew#ls —d/2¢3/6- (7.2.4)

(As before, we define g, = (u/p')* ~4?

Lagrangian’ of the form
L. =AP0¢?/2 — Am*p?/2 — Ago3/6. (7.2.5)

The counterterm Lagrangian %/, in (7.2.3) is computed using minimal
subtraction with unit of mass p'.

We may later reorganize (7.2.3) so that the basic Lagrangian is taken as
L rasic + £.. We may drop the d-dependence of the finite counterterms Ag,
A{?, and Am?, since renormalized Green’s functions are finite functions of
renormalized quantities. Finally we may rescale the fields to give (7.1.10).

But a proof is most easily given with the form (7.2.3). Each of the finite
counterterms is computed as a sum of terms, one for each 1PI graph
contributing to the relevant Green’s function:

Ag =Y An(g), etc. (7.2.6)
r

g.) The term %, is a ‘compensating

Particular cases are given by the examples in Section 7.1. Thus

2 1/ \6—d __
A3.11C2_ gnew [(ﬂ/"") l:l’

"~ 384n° d—6
m’gl. [ (w/u)° =1
2 new
A =g [ i—6 |
3 ’ 6—d
13— Inew (“ /ﬂ -1
A3.6.19=#3 d/264n3[ i—6 :I,

A, 1.1(C2P2 —m?) = —i[Z,(p,g,m, 1) — Z4(P, Gnew» M, 1') — 2C],
where the label on A indicates the number of the figure depicting the basic
graph.

The general proof is by induction on the size of a graph. Consider a
graph G contributing to some Green’s function. Using the basic interaction
— g2 $3/6 we renormalize it with unit of mass u using the method of
Section 5.11. The renormalized value of G is then

R(G)=G+ Y C/G) (7.2.7)

Y& G
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Here the sum is over subgraphs of G that consist of one or more disjoint 1PI
graphs, and C,(G) denotes the replacement of each of these 1PI graphs by a
counterterm with unit of mass p. Similarly we can renormalize G with a
different unit of mass u’ but with the same basic interaction
~ Guewht > 12¢°/6 to get
R(G)=G+ Y C)G). (7.2.8)
ysG
Here, we use the prime to denote use of the unit of mass u’ instead of pu.
We will now derive a series of new basic graphs containing finite
counterterms. These counterterms will be used to generate the compensat-
ing Lagrangian %, in (7.2.3). The new graphs will need renormalization,
and we will arrange them so that when they are added to R'(G), we get back
the original value R(G). The aim will be to have a finite counterterm A, for
every 1PI graph y that is a vertex or self-energy graph. We will arrange the
A,’s so that

R(G)= R’[G + 3 AJ(G)+ A(G)]. (7.2.9)

y¢G

Here the sum over y is over products of 1 PI graphs. The overall counterterm
for a graph is computed using minimal subtraction, but with the d-
dependence of g,., and of the finite counterterms A, ignored (see our
remarks below (7.1.17)). That is, the counterterms in R’ are a series of poles
at d = 6 with their coefficients being power series in g,,,,. In the case of a
vertex'subgraph, there is also the usual factor u’'3 ~%2. The finite subtraction
A(G) for the complete graph in (7.2.9) is only non-zero if G is a 1PI vertex or
a self-energy graph.

We will prove the following relation between counterterms for a 1PI
graph

Cy)=C '(V + Aa()’)) + A(y). (7.2.10)
43y

The above equations (7.2.9) and (7.2.10) are trivially true for tree graphs,
where no counterterms are needed, for we can set A(tree graph) = 0. So let
us assume they are true for all graphs smaller than a given graph G, with all
the A s finite. There are two cases: (a) G is not overall divergent; then we
must prove (7.2.9) with no counterterm A(G). (b) G is 1PI and overall
divergent; then we use (7.2.10) with y replaced by G to define A(G). We must
prove A(G) finite and prove (7.2.9). We must also prove A(G) is polynomial
in the external momenta of G, with degree equal to the degree of divergence
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of G; we will assume inductively that this is true with G replaced by any
smaller graph.

Consider the terms in (7.2.7). For each we identify a contribution in
(7.2.9). The term G is the same as G in R’(G). Next let y be a 1PI subgraph of
G (G itself being excluded). Decompose C.(G) by (7.2.10):

(1) The C'(y) term occurs in R(G) as C(G).

(2) The term A(y) occurs as A (G).

(3) The term C;(A4(y)) occurs as a counterterm in the renormalization
R'(A4(G)).

If G is not overall divergent, these exhaust all of the terms in R(G) and on
the right-hand side of (7.2.9). But if G is 1PI and overall divergent then there
remains C(G) in (7.2.7) and the terms

C'[G+ > A‘,(G)] + A(G)

0¢G

in (7.2.9). We are therefore forced to define A(G) by (7.2.10), and it remains to
prove A(G) finite. This is now easy, since

R(G),R'(G), and R'I: Y AJ(G):I (7.2.11)
d¢G

are all finite, while we have
R'(A(G)) = A(G).

Moreover all the terms in (7.2.10), except possibly A(G), are ordinary
minimal-subtraction counterterms. So they are polynomial in the external
momenta of G, with degree equal to the degree of divergence of G. So A(G) is
polynomial, of the same degree. (Note that the replacement of a subgraph y
by A, does not change the overall degree of divergence of any graph I’
satisfying y = I = G. This is because of our inductive assumption on the
polynomial degree of A,.)

The theorem is also true if R and R’ stand not for renormalization with
different units of mass, but for any two renormalization prescriptions. It is
important that the d-dependence of A, is taken outside of the extraction of
pole parts when computing a counterterm like C(A,). This can be seen
from the example of Fig. 7.1.1,at (7.1.31). The primed counterterms must be
a particular function of g,..,,, &', m’, and d. The fact that g’ itself is a function
of other variables is ignored.

Equation (7.2.10) expresses the counterterm C(y) for a graph y (with unit
of mass p) in terms of renormalization counterterms with unit of mass u’
and a finite counterterm A(y). We can use the finite counterterms to generate
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the compensating Lagrangian % in(7.2.3), and the primed counterterms to
generate .%.,. It should be evident that the new Lagrangian is the same as
the original one (with unit of mass ), considered as a function of ¢ and d¢.
If we set ¢, = Z'/*¢, with Z = Z(g, m, p), then we can deduce that the bare
parameters m, and g, are renormalization-group invariant:

mO(g9 m’ #) = mo(gl9 m/5 ﬂl)’
golgm, ) = golg’,m’, ). (7.2.12)

7.3 Renormalization-group equation

We saw in Sections 7.1 and 7.2 that a change in the unit of mass u
accompanied by suitable changes in coupling and mass does not change the
theory, while the Green’s functions satisfy

Gy(Xys-os Xy @M ) =L NGylxys... xy3g,m', 1. (7.3.1)
We wish to compute g’, m'? and { as functions of g, m?, u,and y'. If the ratio
u/u’ is large, it is not sufficient to use lowest-order perturbation theory,
since, for example, in (7.1.26) the coefficient of g2 may be large.

An important device is to consider a large change in y as being made up
of a sequence of very small changes, so that g’, m'%, and { are obtained as
solutions of differential equations. This is the subject to which we now turn.

The consequence of our work in Sections 7.1 and 7.2 is that for a given
physical theory, we have for each value of u a definite value of the coupling
g(u) and mass m(u). These are called the effective (or running) coupling and
mass. We will derive differential equations for g(u) and m(y).

The easiest way to derive the results is to look at the Green'’s functions
and the Lagrangién expressed in terms of the bare field ¢,. The important
point is that the Green’s functions of ¢, are invariant under our change of
parametrization (u,g,m)— (u',g’,m’). (This is because the mass and coup-
ling in the bare Lagrangian are invariant.)

7.3.1 Renormalization-group coefficients

Physical quantities like the S-matrix are invariant under the change of
variable (u, g(n), m(u))— (u', g(1'), m(p’)). This invariance is conveniently
expressed by considering a small change in u, accompanied by the
corresponding changes in g and m. We write the result as

udS/du=0. (7.3.2)
The total derivative with respect to u can be written as
ud/dp = pd/op + Bo/og — y,m*d/om*. (7.3.3)
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On the right-hand side the partial derivatives with respect to y, g or m are
taken with the other two fixed, and the coefficients B and y,, give the
variations of g(u) and m?(u) when p is varied. The sign of the m?d/0m? term is
the usual convention (Weinberg (1973)). We have

B = pdg(w)/dp, (7.3.4a)
Y= —m~ 2udm?(u)/dp. (7.3.4b)

The coefficients B and y,, are called renormalization-group coefficients.
As we will see they are easy to calculate in terms of the counterterms, as
functions of g, m, u, and d. If we use minimal subtraction, they have no mass
dependence. This means that (7.3.4) can be readily solved as differential
equations for g(u) and m(u). Indeed this is the easiest way in practice to
compute the effective coupling and mass.

To compute B and 7y, it is convenient to consider the Lagrangian
expressed in terms of the bare field ¢, — see (7.1.1a). We saw in Section 7.2
that m} and g, are renormalization-group invariant:

udgo/du =0, (7.3.5)
udm?2/du =0.
Suppose we have computed g, and m, to some order in g. Then (7.3.5) can

be solved to give § and y,,.
An example of such a calculation comes from our results on ¢* theory,

where
_ 392
=3-"424] 1 4
Jo=H g[ +256n3(d_6)+0(g )],
m2 = m? 1+—§L+0(g‘) . (7.3.6)
0 384n3(d — 6)
Thus
dg, - 34
0=p—22=pu3"92{g(3-d/2 g°
P u {g( /2) — 5123+0()
9g2
14— 918,
+ﬂ(g)[ * s6na—e) T O )]}
SO
— 5
Blg)=(d/2 —3)g — 256 3+O( )
343 s
- =6. 7.3.7
256n3+0(g)atd 6 (7.3.7)
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Similarly
dm?
0=u—2
L
= — w1+ 0] + mfg)| 2+ 0" |,
" 19273(d — 6)
so that
3¢ .
Pm = g EZ;'[? + O(g ). (7.3.8)

Observe that the (d/2 — 3)g term in f is important in these derivations, even
though the term disappears at d = 6. Observe also that, even though the
coefficients in g, and m, diverge at d = 6, it is crucial to expand strictly in
powers of g. A phenomenon true to all orders is that g and y, are
independent of m and u, provided that we renormalize by minimal
subtraction.

The general calculation of fand y,, can be organized with the aid of (7.1.4)
for the counterterms. Since we use minimal subtraction, the m- and u-
dependence of ihe bare parameters is simple:

go= #3—4/2g0(g, d),
mé=m?Z,(g,d). (7.3.9)
Then
Blg,d)= (/2 — 33, / %o,
g

olnZ,

Ym(9) = B(g, d)—a—. (7.3.10)
9

The expressions (7.3.9) are to be expanded in powers of g with the aid of
(7.1.4). Now

go=(u>""*g +69)Z""?

—3
=#3—d/2[g +‘ﬂ(i)6__2dgf_‘(_g_) + higher poles:l,
Z,=(1+ém*mHZ"!

= [1 + él(_g;___i_l_@ + higher poles], (7.3.11)

where we have picked out the sit:gle poles in the series expansion of the
counterterms (7.1.4). (These are all that will be relevant.) Then (7.3.10)
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becomes
[g 149 =304 | e poles]
’ (g’d)=<—‘21_3> a;(g)—%f;;(in—%c,(g) A
[1 + o + higher poles]
— 2+ %( - g;%)[%gc,(g) ~ a,(g)] + poles (that cancel)
=(d/2 — 3)g + Blg), (7.3.12a)
1o = L2~ 99+ @) 2] 9= vigher pots |

)
= %ga—g[cl(g) —-b,@9)]. (7.3.12b)

These manipulations are made by expanding in powers of g.

In the last line of each of (7.3.12) we have used the fact that although pole
terms are in principle present, they must cancel in order that 8 and y,, be
finite as d — 6. Notice that § and y,, are independent of m and y, and that the
only d-dependence is the (d/2 — 3)g term in §. Only the single-pole terms are
needed for the calculation. There is a series of relations between these and
the higher poles that ensures that the poles cancel in (7.3.12); we will
investigate these later.

7.3.2 RG equation

The RG coefficients f and y,, are computed from two out of three
combinations of the counterterms. The differential equations (7.3.4) then
enable g’ and m’ in (7.3.1) to be computed. To complete the calculation we
need (. This is related to the wave-function renormalization. It is easiest to
obtain by observing that the bare Green’s functions G’ = Z¥2G, are
renormalization-group invariant, so that

d d
—Gy=u—(GOZ N2
U auv=H d#( N )
N d
= — 5”(174““ Z)Gy. (7.3.13)
Let us define the finite coefficient
d
v=u@1n Z; (7.3.14)
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then G, satisfies the following renormalization group equation (e.g.
Weinberg (1973)):

d N d 0 , 98 N
A =| y—+p—— = =0. (7.3.15
[”d,ﬁ 2v]G~ [”3y+ﬂag L vJGN ( )

In the minimal subtraction scheme for ¢* we find

= [@2- 39+ Be)] o [ 49 1 higher poles]

. d
= _igaacx(g)
g

33 Saam3 + 0l (7.3.16)

7.3.3 Solution

We wish to solve the RG equations to find g(u'), m(u’) and {(u’, p) in (7.3.1),
given that g(u) =g and m(u) = m. The RG equation tells us that

d 1 d
W In{ == " —In[Gy(p)/Gy(w)]
= —3lgw)]. (7.3.17)

So we must solve this equation together with (7.3.4) for g and m. The
boundary conditions are

g) =g,
m(p) =m
(=1 (7.3.18)
Explicit solutions can be written:

g(u’) dg
In(p'/u)= J o B@)’
m?(u') = m*(u)exp

[0
o

" gt )}
g(u) B(g )

wd }
(I u)—eXP{ -3 p (g(#))}
)

g(u 'Y(g )
= exp{ Lm ﬁ(g ) } (7.3.19)
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Approximations can be made by taking a finite number of terms in the
perturbation series for §, y,, and y. For example:

25673 (9w d
In (/) = — =3 J S1+06"]
g 9

128 11 o)
=3 [g(u’)z g(u)2]+0['“<g(u)>]' (7.3.20)

This is accurate if g(u) and g(u) are small. Notice that g(u)—0 as
u' — oo. This is the property called asymptotic freedom. It is determined by
the negative sign of the first term in § at d =6.

The full solution to the RG equation is

u

i
GN(x;g,m,u)=exp[—§ j ,—#.Ev(g(ﬁ))]GN(x;g(u’),'n(u’),u’). (7321)

"

7.4 Large-momentum behavior of Green’s functions

The most important application of the renormalization group is to
compute large-momentum behavior. In this section we treat the simplest
case, that of a Green’s function Gy(p,,...,py) all of whose external
momenta are made large. (Notice that we have used our standard notation,
where the tilde indicates Fourier transformation into momentum space.)

Let us suppose initially that all the Lorentz invariants formed from
the momenta are non-zero. Then we scale all the momenta by a factor x:
pi— xp;, and let k get large. Thus all the Lorentz invariants p;-p; are scaled
by a factor k* and become large. Under these conditions, Weinberg’s
theorem tells us that at least in a renormalizable theory all internal lines of
graphs for G, carry large momenta, and that graphs for G, have the
asymptotic behavior

k4™ ¢(logarithms of x). (7.4.1)

Since all propagator denominators are large, we should be able to neglect
masses and make only an error a power of x smaller than the leading
behavior (7.4.1).

For example consider the propagator in ¢> theory at d = 6. The tree
graph goes like i/p? at large p?, while the one-loop correction is

i g i, ’ —p’x(1 = x)
e 128n3{g(y- 1)+J dx x(1 —x)ln[ o

0

2
+ 0[';'— In <.'§;)]} (742)

(We used (3.6.10) for the self-energy graph to derive this equation.)
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Now there is a term proportional to In(— p?/u®)/p? that gets large
relative to the tree graph if p? is large enough. Thus the perturbation series
has large coefficients and is not directly useful. However we may use the
renormalization group to set u? = O(p?). This makes the coefficient small
again. So we use the following strategy to compute GN(xp) at large «:

(1) Set p’ = ku, and use the solution of the RG equation to write
G(kp, g, m, ) = Licp, 1)~ Gy (rcp, glocp), mlscus), ko) (74.3)

(2) Neglect m (if m(xp) does not get too large). Then use dimensional
analysis to give

N(Kp,g,m W)~ "Gy lkp, glrcu), 0, k)
= k™G (e, p) NG n(p, gic), O, ). (7.4.4)

(3) Large k-dependent coefficients, as in (7.4.2), are now removed, so if g(xu)
is small, a low-order calculation suffices.

This procedure makes it evident that the coupling that is relevant is the
effective coupling at the scale of the momenta involved.

It should be noted that we haverelated the large-momentum behavior of
G to the finite-momentum behavior of the zero-mass theory. It is therefore
crucial that the zero-mass limit exists. However this limit does not always
exist: if we use mass-shell or zero-momentum subtractions, then we see
from, for example, (3.4.7), that the same self-energy as considered in (7.4.2)
diverges as m— 0. Now Weinberg’s theorem tells us that, in the dominant
momentum region for a graph without counterterms, all lines are far off-
shell; hence masses can be neglected. So the problem must be that with
mass-shell or zero-momentum renormalization prescriptions, the counter-
terms diverge as m — 0. This is easily checked from our explicit calculations
(see (5.10.2)).

We can now see the practical importance of the theorem whose proof was
summarized at the end of Section 5.8, that the counterterms may be chosen
polynomial in masses. It ensures that the zero-mass limit may be taken
directly and used to compute large momentum behavior. The minimal
subtraction scheme is one way of ensuring that counterterms are poly-
nomial in mass.

If one uses, say, zero-momentum subtractions, large-momentum be-
havior may be computed by changing renormalization prescription to, say,
minimal subtraction. Another approach is to observe that the logarithms of
p? break a possible symmetry of the theory under scaling transformations.
The consequences of this point of view were worked out by Callan (1970)
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and Symanzik (1970b). They derived the Ward identity for scaling
transformations. It is called the Callan-Symanzik equation and looks
similar to the RG equation. This equation may also be used to discuss high-
energy behavior.

7.4.1 Generalizations

The behavior of Gy when all momenta are scaled by a large factor « is not
normally experimentally relevant, for all the external momenta are then far
off-shell. In coordinate space the corresponding region is the short-distance
limit of Gy(x,,...xy), where every x;—x, is made small: x;— x,—
(x i X))/ K.

This means that we should be able to use RG methods to discuss the
renormalization of the theory, for renormalization is a purely short-
distance phenomenon. We will work out the details in Section 7.10. On the
other hand, physical experiments involve long distances. To get results for
high-energy experiments we need the so-called factorization theorems. The
simplest of these is the operator-product expansion which we will treat in
Chapter 10. These theorems typically give a cross-section as a product of a
factor which can be computed by pure short-distance methods and of
simple factors related to wave-functions of the incoming and/or outgoing
particles.

We could also use RG methods to discuss the infra-red limit k — 0. This is
only useful if masses can be neglected. Certainly this is true in a purely
massless theory, as we will see in Section 7.5.4, and then IR behavior is
computable if and only if the theory is not asymptotically free. But in a
massive theory, it is not useful to take y much less than a typical mass, for
one obtains logarithms of m/u, and these prevent a simple use of
perturbative methods when u < m.

7.5 Varieties of high- and low-energy behavior

7.5.1 Asymptotic freedom

In solving the RG equation to obtain high-energy behavior, we find two
cases according to whether f is positive or negative. In this section we
discuss the asymptotically free case, when B is negative. Suppose the
effective coupling g(u) is small for one value of u, so that g is well
approximated by its first term. Then the evolution equation (7.3.4a) shows
that g becomes even smaller at larger values of u and in fact goes to zero as
u— oo, Thus perturbation theory is reliable for computing high-energy
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behavior. From (7.3.7) we see that ¢* in six dimensions is asymptotically
free.

It is instructive to compute the behavior of g from the first two terms in g.
Let us define

B=—A,9°—A4,9°+ 0(g"). (7.5.1)

We have the equation for the evolution of the effective coupling:

d
ud—g=ﬁ(g). (7.5.2)
u

Equations of the same form as (7.5.1) and (7.5.2) hold in any renormalizable
theory, for example in QCD, though 4, and A4, are not necessarily positive
in the general case.

The solution of (7.5.2) is

9(n)
In 4 = constant + J dg'/B(g")

g(1) -1 A
= constant + dg’ +
J g [ NG Azg, O(’ )]

1
=constant + ——— A7 + ln [9(w)] + O(g?). (7.5.3)

The constant can be computed from a knowledge of g(u) at one value of . It
is conventional (Buras, Floratos, Ross & Sachrajda (1977)) to write the
constant intheformIn A + 4,4 *In(A4,), where A is a parameter with the
dimensions of mass. Then

In(u?/A%) = —ZIn[4,9@W?]+ 0w,  (7.54)

Aig(u )2
so that
1 A,n[n@3/A»] | (In?[In(/A)]
9w’ =~ A AT AT +o{ G } (1.5.5)

A specification of g(u) at one value of u is exactly equivalent to a
specification of A. The precise choice of the scale of A is that in (7.5.5) the
omitted terms are of the order shown rather than of order 1/In?(u/A). The
expansion (7.5.5) is much used in QCD. A higher-order calculation of g can
be made from the following form of the solution

1
In(u?/A?) = 7 (;4)2+ Azln[Alg(u)ZJ
9(u) 1 1 A
21 4 2 756
* Jo g[ﬂ(g')’LAlg“ Alg] (729
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It is necessary to go to two-loop order to obtain both the terms on the right
of (7.5.6) that diverge as g— 0.
The values of m(u) and { may be similarly calculated. For example, if

y=C,g9*+-, (7.5.7)
then
0 dg C, .
(' )= CXP[ZL(M p A1+0( )J
9w | 2]
= In
ex p[ ) + 0(g7)
_ M C1/2A, )
oc[In(u'/p)]~€1/44:, as y' — o0. (7.5.8)

7.5.2 Maximum accuracy in an asymptotically free theory

The results above enable calculations of Green’s functions to be made at
high energy. By taking more and more terms in the series, we may improve
the predictions. However, in general, perturbation series are asymptotic,
not convergent. A trivial example is the ordinary integral

o

I(g,m)=m(2m)~ 1/2J dzexp(—m?z%/2 — gz*/4")

- ©
This can be considered to be a functional integral in Euclidean ¢* field
theory at zero space-time dimension with the normalization chosen to give
I =1 when g =0. The perturbation expansion is

o]

12 5 2 gz“ N1
I ~m(2n) Y dzexp(—m?z%/2)
N T@N+1/2)

0l — 41 ) N!
-y (=4
B ,Eo <6m4 I[(N+1)

=3 (%) Iy. (7.59)

N=o\M

z

2
a

Now
Iy NN( 3 2) (rN)~'2[1+ O(1/N)], as N—> o, (7.5.10)

so the series is divergent. The divergence is associated with the fact that the
defining integral diverges if g is negative, so that I is not analytic at g =0.
The corresponding property of ¢* theory is that the Hamiltonian is
unbounded below (i.e., the vacuum does not exist) if g is negative.
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What we can say is that we can approximate I by truncating the series:

Nom
I= Y (g/m*"Iy+O0[g/m*)"*']. (7.5.11)
N=0
The error is estimated by the first term omitted, i.e.,

O[INm+1(g/m4)N'"+l]~
These results are standard in the theory of asymptotic expansions for simple
integrals. All experience, together with rigorous theorems for quantum
mechanics and super-renormalizable field theories (Glimm & Jaffe (1981)
and references therein), indicate that this behavior is typical for functional
integrals in a non-trivial dimension (i.e., d > 0).
Next, let us suppose we wish to compute some quantity in an
asymptotically free theory by truncating its perturbation expansion

NM
Z g(,u)ZNIN-
N=0

We assume that the quantity depends on some momentum p, and that we
set the unit of mass u to be of order p. A case would be the propagator with
1= 0(|p|). Suppose that the coefficients in the expansion behave like

Iy~ N"b¥N°d[1+ O(1/N)], (7.5.12)
for large N. What is the best accuracy with which we can calculate the
quantity ? This is given by the minimum error, i.e., the minimum of I ,g*" as
N varies. The result is that the minimum possible error in a perturbative
calculation is of order

constant |p| ~ 24/**(In|p|)*.

This means that beyond a certain level, power-law corrections to the
asymptotic behavior computed in perturbation theory are meaningless
since they are smaller than the irreducible error in using perturbation
theory. Power-law corrections are those that are a power of p? smaller than
the leading term.

7.5.3 Fixed point theories

In four dimensions, the only theories that are asymptotically free are non-
abelian gauge theories with a small enough number of matter fields — see
Coleman & Gross (1973) and Gross (1976). Other theories, like ¢* and
QED, have an effective coupling that increases with energy. Thus, in such
theories it is impossible to compute the true high-energy behavior by
perturbation theory. (Note however that the coupling in QED is a/n
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B(g)

g*
Fig. 7.5.1. B(g) in a non-asymptotically free theory with a fixed point at g = g*.

~ 1/430. This is very small, so the non-perturbative region in QED does
not occur until very many orders of magnitude beyond experimentally
accessible energies.)

An interesting possibility is that f(g) has the form shown in Fig. 7.5.1,
with a zero at g = g*. Then g(u) approaches the ‘fixed point’ g* as u — . At
large momentum Green’s functions behave like

Gy(KDy, ... KDy>g, M, 1) ~ const kdimCv+N1a2G  (p,,. .., by, g*, 0, ).
(7.5.13)

This behavior is as if ¢ had an extra term y(g*)/2 in its dimension.
Consequently, the function y(g)/2 is called the anomalous dimension of the
field ¢.

7.5.4 Low-energy behavior of massless theory

If m = 0, then the renormalization group can be used to compute infra-red
behavior. The calculability is the opposite of that for the UV behavior.
Consider first an asymptotically free theory. There, the effective coupling
g(u) goes to zero when u goes to infinity, so that short-distance behavior is
computable perturbatively, as we saw in Section 7.5.1. But, when u is small,
g(u) is large, so the infra-red behavior cannot be computed reliably by
perturbation theory. (This is the case for strong interactions, according to
QCD)

Let us now consider a non-asymptotically free theory. For large y, the
effective coupling is large, so the short-distance behavior is not per-
turbatively computable. (For example, a perturbative caiculation in low
order of the position of the fixed point, g*, in Fig. 7.5.1 and of the value of
B(g*) is subject to large errors from higher-order uncalculated corrections.)
But when p goes to zero, so does the effective coupling. We are assuming the
absence of a mass term for the field, so there are no large logarithms of m/u
as u goes to zero. Hence, we can compute IR behavior in such a theory, just
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as we computed UV behavior in an asymptotically free theory. We will now
do this.

Now, for almost any graph there are large logarithms of p?/u? as p2 -0
in a massless theory, just as in the ultra-violet. In the case of the propagator,
these logarithms mean that the propagator’s singularity is not a pole, at
least order-by-order. '

To investigate this singularity let us again write

1@)=Cig°, Blg)=—4,9° (7.5.14)

using the same notation as before, but now with 4, < 0. We assume that g is
below the first non-zero fixed point g*, if there is one. The propagator is

glicu)

G,(xkp;g(1), 1) = K'Zaz(p;g(xu),u)emf dgy(g)/B(g)

g(u)

=i/(k?p?)[1 + O(Q(Kﬂ)z)]exP{ - Jdg(cl/Aﬂ)[l + 0(92)]}
~ i/(x?p?)-constant-[In(1/x)]€/?4:, (7.5.15)

as k —» 0. Hence if C, is non-zero, then p2G,(p) does not have a finite non-
zero limit as p— 0; the singularity of G,(p?) at p? = 0 does not correspond
to a simple single-particle pole. The massless particle that gives rise to the
singularity cannot be treated as an ordinary particle, because its long-range
interactions are too strong. Positivity of the metric of the state vectors
constrains C, to be positive, and we assumed a theory with 4, negative, so
k? times the right-hand side of (7.5.15) goes to zero. (The positivity
argument is the one given in the textbooks (e.g., Bjorken & Drell (1966))
that the residue of the pole in a propagator is less than unity if the
propagator is of the canonical field. Application of this argument in the
theory with an ultra-violet cut-off shows that the divergence of the self-
energy must be such that C, is positive.)

Notice that if C, =0, then the propagator does have a finite residue at
p=0:

o 9(n)
—iKk’p? Gy (kp, g(u), p) exp{ - J dgy(g)/ﬂ(g)}- (7.5.16)
0

Fig. 7.5.3. Lowest-order self-energy
Fig. 7.5.2. Lowest-order self-energy graph that contributes to the
graph in ¢* theory. anomalous dimension in ¢* theory.
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Observe that only the first term in y is relevant to the finiteness of the limit,
and that the limit does not exist order-by-order. A case where C, = Ois the
¢* theory, because the one-loop graph Fig. 7.5.2 is independent of p. The
two-loop graph Fig. 7.5.3 provides the lowest-order term in the anomalous
dimension.

7.6 Leading logarithms, etc.

7.6.1 Renormalization-group logarithms

We saw in Section 7.4 how to compute the large momentum behavior
of a Green’s function by approximating it by a Green’s function with
m=0. Then we used the renormalization group to reorganize the
perturbation series into a form with small coefficients. It is of interest to
examine how the complete result can be obtained by a systematic
resummation of the perturbation expansion.

For concreteness, let us examine the propagator G,(p, g, 4) in massless ¢°
theory in six dimensions. We write its perturbation expansion as

G,=(/p>) Y. ¢*"T,(— p*/u), (7.6.1)
n=0

where the lowest coefficient is T, =1. We will prove that each T, is a
polynomial in In u (and hence in In(— p?/u?)) of degree at most n, with n
being the number of loops. To do this we will regard the RG equation
(7.3.15) not as an equation to give the variation of G, when y is changed
with g set equal to the effective coupling g(u) (thus keeping the theory fixed),
but as an equation for the u-dependence of G, with g fixed. Picking out the
order g?" term gives

a a n—1
T, ={| —y(g) - Blg)— T, g*" 762
gl {[ (@) — B(9) 6g:|,.go g }Coemcicm o (7.6.2)

Since yis O(g*) and Bis O(g>), this equation determines T, in terms of lower-
order T,’s:

T, = constant

a Inpu
+{ Y -[v(g)+ﬂ(g)a—g]gz"f dlnu’T,.'(—p"/u’z)}

n<n 0 coefficient of g,

(7.6.3)

Iteration of this procedure another n — 1 times gives T, in terms of T, and n
constants of integration. Evidently T, is a polynomial of degree nin In u as
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claimed:

T,=
1

Tn,n—l [ln( - PZ/HZ)]'~ (764)

™M=

0

ll

All but the constant term are determined in terms of lower-order
coefficients.
A convenient way of organizing the series is to define for each term

L= — number of logarithms + number of powers of g>= —[+n. (7.6.5)

This is non-negative. The sum of the terms with L=0 (viz,
T,,[In(— p?/u?)]") gives what is called the leading logarithm approxi-
mation to G,. Application of ud/du, f3/dg or y to G, (with one-loop values
for B and y) increases L by 1. All the non-leading logarithms give even
higher values of L. So the leading logarithm series exactly satisfies the one-
loop approximation to the RG equation. Hence we may sum the leading
logarithm series by solving this approximation to the RG equation

v-rd,’
G, (p%59.) =0 = { exp” #—‘fv(g(ﬂ’))]éz(pz 9/ =P — pz)}

u L=0
=[1+ 4,9*In(— p?/u?)]/*4i/p2. (7.6.6)
Here we used the same notation as in Section 7.5.1. This equation
reproduces the approximation derived at (7.5.8).
Another way of treating both the leading and non-leading logarithms is
to use the RG equation (7.6.2) to give a recursion relation for the T, ,’s:

Lio 2(L- n)Tn‘L[ln( - pZ/#Z)]n—L—l

n—1
=[24,n-1)~C,] } T,—y.[In(- pYuh]n it
L=0
n—-2
+ [2A2(n -2)- Cz] Z Tn—Z,L[ln( - PZ/HZ)]"_Z_L +
L=0 (7.6.7)
where y = C,g>+ C,g* + -, and f= — 4,9 — 4,9° + .
The leading logarithm part of this equation is
—2nT, ,=[24,(n—1) = C{]T,_, ,. (7.6.8)
This equation determines the leading logarithm series in terms of Ty, = 1,
and of 4, and C,; this series sums to (7.6.6).

Equation (7.6.7) also determines the non-leading logarithms. For
example the next-to-leading terms are

-2 —-1T,, =[24,(n—1)—C]T,_, , +[24,(n —2) = C,]T,_, ,.
(7.6.9)
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Fig. 7.6.1. Illustrating the leading logarithms and non-leading logarithms of a
Green’s function.

n— L =#]logs

n= # loops

Again a convergent series results. Its sum is equally accurate as the result
of using the two-loop approximation to § and y in the solution (7.3.21).
There p is set equal to ( — p?)*/2 and we take the one-loop approximation to
Go(p;g(/ — PP, m=0,/ = p?), ie, (i/p?) (1 + g*T},).

The series for larger L may be similarly determined. In Fig. 7.6.1 we
illustrate the structure of the calculations. The diagonal lines are lines of
constant L, and the recursion relation (7.6.7) determines a coefficient 7, ; in
terms of lower-order terms on its diagonal and on the higher diagonals.

Suppose we have computed perturbation theory to n— 1 loops for G,
and wish to compute the n-loop term. In this term the coefficients of all but
In(— p?/u?) and the constant are fixed by the lower-order calculations.
Thus the new information is in the nth order coefficient C, for y and in the
terms with one and no logarithms, ie.,in T, ,_, and T, ,. The (In)° term in
(7.6.7) is

n—1

—2T,,-1=-C,+ Y [24,_,j—C,_ 1T}, (7.6.10)
j=1
This shows that knowing the coefficient, T, ,_,, of the singly logarithmic
term in T, is equivalent to knowing the n-loop coefficient C, in y(g).
Exactly the same procedure may be applied to any Green’s function Gy.
The only difference is that there are several external momenta. It is enough

to consider the connected graphs. Let us write

Gy(connected) = (p?)*™ @2 g% =2 7§ G In"H(— p?/uP)g™,
n=0L=0

(7.6.11)

where p is one of the external momenta and we have factored out g~ 2,
which is the power of g appearing in the tree approximation. The
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coefficients G{*} are now functions of the dimensionless ratios of the
Lorentz invariants formed from the external momenta.

The leading logarithm series and all the non-leading series are con-
vergent, so they can be summed. The n! behavior of large orders only
appears when we consider the single log and constant terms, and thus in the
sum over L.

7.6.2 Non-renormalization-group logarithms

In all of the above cases there was one logarithm of the large momentum per
loop. There are more complicated situations where not all invariants get
large. A simple standard example is the form-factor of the electron in QED
with a massive photon (Fig. 7.6.2). Here q?> = (p, — p,)? gets large but p?
and p3 are fixed. It turns out (Sudakov (1956), Jackiw (1968)) that there are
two logarithms per loop. These must be in the coefficients G} in (7.6.11),
since the power of the logarithms is too high for them to be the explicit
logarithms in (7.6.11).

P

o

q D2

Fig. 7.6.2. The electron’s form factor in QED.

One would like to find the large-momentum behavior in such situations.
A much-used technique is to sum the leading logarithms, which are often
relatively easy to compute. For the on-shell form-factor this gives a
convergent series which sums to (Jackiw (1968))
F ~exp[ —(e?/16n%)In?q?*]. (7.6.12)
(See also Mueller (1981). For the simple cases that we considered earlier,
with all momenta large, the leading logarithm approximation is justified by
renormalization-group methods, as we have seen. For cases like the present
one of the form-factor, it may be a bad approximation (Collins & Soper
(1981, 1982b)). However methods are available to obtain large-momentum
behavior in some of these situations. See Mueller (1979, 1981) and Collins
(1980) for the electron form-factor and Collins & Soper (1981) for cases in
strong interactions.

7.6.3 Landau ghost

The leading logarithmic approximation (7.6.6) for the propagator has a
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singularity when

p*=—plexp[ —1/(4,9%)] (7.6.13)

This singularity, if present in the true propagator, would signal a state of
this value of mass squared. Since the residue has the opposite sign to that for
anormal propagator pole, this would be a state with unphysical properties.
It is called the Landau ghost (Landau & Pomeranchuk (1955)). In a non-
asymptotically free theory like QED, it occurs at very large energies and in
an asymptotically free theory like QCD, it occurs at low energies. In either
case it occurs where perturbation theory is inapplicable and so where the
leading logarithmic approximation is a bad approximation.

7.7 Other theqries

We restricted our attention in deriving the renormalization group equation
to a theory with one field, one coupling, and one mass parameter. However
we may treat, by exactly the same method, a theory with several fields
¢,,..., P, (each may be Bose or Fermi), several couplings g,,...,gp, and
several masses. A change in the unit of mass u is compensated by a change in
each of the parameters and in the scale of the fields. The main problem is a
proliferation of indices. It is easiest to treat couplings and masses on the
same footing. So we have a collection g, ..., g. of renormalized parameters,
with C being the total number of couplings and masses. Then we must write

e, ) = B, (8), (.71
u

each function §;being, a priori, a function of all the parameters. For the case
of a theory with a single coupling, and a single mass, would have (g,,g,) =

(g’ m2)9 and ﬁl = ﬁ(g) and BZ = - ‘ym(g)mz
Given a function f of the renormalized parameters and of u, we have

d 0 0
ugﬁf (8 u= <H'a'; + Z B jgj)f. (7.7.2)

J
The RG coefficients can be determined by noting that the bare couplings
g j0y are invariant:

d
U azg (08 u,d)=0. (7.7.3)

These form C equations for C unknowns.
The RG equations for Green’s functions are complicated by the
possibility that fields of the same quantum numbers may mix under
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renormalization. Writing
b0y = ; (ijgde;
we find, for example, that ‘kinetic energy’ terms in ¥ are of the form
%Z a‘»17(20)1‘ = %; a¢ja¢zzi CijCil = %; a¢ja¢lzﬂ'
Hence, we have a matrix counterterm for the field-strength renormalization

Z,(gd)= ZI: Culij= (CTO:," (7.7.4)

where T denotes transpose. (Note that { has a different meaning here than in
Sections 7.1 and 7.2))
If we define a matrix anomalous dimension by

d 1
—h. = — vy 7.7.5
gt = ~4Z 18, (175)
then invariance of the bare fields gives
d d
0= llaq&(mi = <ﬂa‘;§ - '21‘C'}’>¢, (7.7.6a)
ie.,
d
1t — —
1% udﬂC ;
or
4z 11z (7.7.6b)
”dﬂ -2 >Ys- <.

If Zis diagonal (as is the case in most theories we consider): Z;; = §,;Z;, then
(7.7.6) reduces to an anomalous dimension for each field

d
.“d ¢ = _—;Yid)i’ (7.7.7)
u

dl z
ﬂ@n i= Ve

In the case of a diagonal Z, the renormalization group equation for an N-
point Green’s function is

d o & 0 _I
—Gy=| u—+ (8)=— |G
.ud# N [/’la# jgl ﬁj(g)ag,_. N

N
== ;1 %yi,(g)GN‘ (7.7.8)
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Here y, is the anomalous dimension function for the ath external field of
Gy. If the renormalization matrix Z is not diagonal, then we have a similar,
but more complicated, set of equations for the Green’s functions.

The equations for the evolution of the couplings are coupled, so their
solution is in general complicated. Considerable simplification can be
achieved by using our knowledge of the dependence of the counterterms on
massive couplings. Let the couplings g,,..., g, be dimensionless and let the
corresponding bare couplings be

H(4_d)pi940)i(g,d),

where the g,,; depend only on the renormalized dimensionless couplings
and on the UV cut-off. For the sake of definiteness, we assume that the
physical dimension of space-time in the theory is d = 4. The wave-function
renormalizations Z; also only depend on the dimensionless couplings and
on d. Let the other parameters (masses and super-renormalizable coup-
lings) be denoted by f,, and let the dimension of f, be (4 — d)t,+ o,. I £, is
the mass of a fermion, then g, = 1, 7, = 0. If it is a boson mass squared, then
o,=2 and t,=0, while for a super-renormalizable coupling 7, # 0 and
o, > 0. Then (by Section 5.8) the bare quantity corresponding to f; has the
form

fos= Y u*TONXF (g d). (7.7.9)
Here X is any product of the dimensional couplings with dimension (at
d = 4) equal to the dimension o, of f..

Requiring invariance of the bare couplings gives

A
0
0=@—-d)pgiou+ Y ﬁja—g(O)i’ (7.7.10a)
j=1 99;
A 0
7= 2 Bfa—g.ln z, (7.7.10b)
i=1 J
0
0=(@—dit, Y XFou+ ¥ Xp;=~Fox
Xj 9;

n Z p, af, (7.7.10¢)

There is then a triangular structure to the evolution equation: the evolution
of a coupling depends only on couplings of the same and lower dimensions.
In these equations, the index j runs over the values 1 to 4, i.e., over those
values that correspond to the dimensionless couplings, while the indices s
and ¢ run over the labels for the dimensionful couplings.
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If we use minimal subtraction, the calculation of the coefficients is rather
easy. Let Gi(g), Z,.(g), and F sx(g) be the coefficients of single poles in go;, Z;
and F . Then we have

Bi(g.d) =(d —4pg;+ B,(®),
Bs(g’ f, d) = (d - 4)Tsfs + Bs(g’ f)a (771 1)
with y,, B; and B, satisfying

B A A 0 A
i=pG; — 9;7—Gi
P j;l pjgjagj

0

—Z,,
0g;

A
Y= D P,
j=1

_ d . 4 d -
b= ;{(r - ;r,f.a—ft)(Xst)— Xj; pjgjég—stx}. (7.7.12)

7.8 Other renormalization prescriptions

It was only for the sake of simplicity that we restricted our attention to the
minimal subtraction procedure. The proof in Section 7.2 in fact shows that
any change in renormalization prescription can be compensated by a
change in renormalized parameters and a change in the scale of the
renormalized field. Let us examine what happens in more general schemes.
It is sufficient to restrict our attention to a theory with a single coupling and
mass, like ¢3 theory in six dimensions.

If we choose a renormalization scheme with an extra mass u, which might
be a renormalization point, then renormalization-group coefficients can
still be defined and computed by (7.3.4), (7.3.5), and (7.3.14). What we lose in
general are:

(1) the simple formulae (7.3.12),
(2) the lack of dependence of f, y,, and y on the masses.

In order to discuss UV limits, it is sensible to choose a scheme in which the
limit m — 0 exists. This means that §, y,, y are finite, order-by-order, as
m— 0.

Now, different renormalization schemes are related by finite renormali-
zations of the parameters. So we may relate the RG coefficients in different
schemes by looking at the theory in the physical space-time dimension and

- then computing ud/du in one scheme in terms of ud/dyu in another scheme
with the aid of the chain rule.

Suppose we have a second scheme in which the new mass, coupling and
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field are m’, g’ and ¢':
g'=g'(g.m*/u’),
m'? =m?z, (g, m*/u?), (7.8.1)
o' = ¢llg, m*/u).
Then the Green’s functions in the new scheme are
Gulpsg',m'%, )= (" Gylp; g, m?, p). (7.8.2)
The renormalization-group coefficients in the new scheme are:

) d | 0 é 0 ,
B(g',m?/u?) = Ha9 = (#5; + ﬂa—g - vmmzw>g (g, m*/u?), (1.8.3)

’ ’ 2 2 # d 12
3 V= ———5—m
' m ) =~

ja
C

5m2)1“ [z,(9.m*/p*)]. (7.8.4)

=Ym— <u(% + ng = Y’
Our definition of the total derivative d/dyu is as the derivative with respect to
uwhen the bare coupling g, and bare mass m,, are held fixed. Therefore, it is
the same in both schemes. Notice that there are two steps in computing ' or
..+ First, compute the right-hand side expressed in terms of g, m, and p;
second, change variables to the new coupling and mass.
The anomalous dimension of ¢’ is obtained as

2 d
’ ’ 12 2 ’
Y(g' m'*/u%) = —_N”d—#ln(;"’

d. .
= —Zpalng+y

o - 0 0
_ — — 4+ —— 2~ 2/,,2 8.
A considerable simplification occurs in relating mass-independent
schemes. Then ¢’, { and z, are functions of g alone, so that the

renormalization-group coefficients in the new scheme satisfy

’ ’ a ’ ‘
Bg)= ﬁ(g);a—gg (9)

Vv

¢
¥m9) = vm = B Inz,(g), (7.8.6)
9

0
79 =) —265, In{(g)- }
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In this case, let g’, z,, and { have perturbation expansions
g=g+ag*+ayg’+ -,
z,=1+b,g*+bg*+---, (7.8.7)

{=14cg"+cg*+ -,
and let the expansions of §, y,, and y be
Blg) = — 419> — 4,9° —A39" =,
Ymlg)=B.g* + Byg* +- -, (7.8.8)
y(g) = C1g2 + ng4 +
The expansions of §', y,,, and y’ are written similarly with all quantities
primed. Then we can express them in terms of g by using (7.8.7). For
example:
B(g'(9)=— 419’0 +a,g> +a,g* +-) — A’ (1 +a,g* +--)° —Asg" + -+
= —A,g®—g3(4,+3a,4}) — g"(A5+ 54%a, +34ja, +34ad) + .

(7.8.9)
This must agree with the perturbation expansion of the right-hand side of
(7.8.6)
Bog'/dg = — A,9° — g*(4, + 3a,;4,) — g"(4; + 34,a, + 5A,a;) + .
(7.8.10)

From these equations we see that the first two coefficients in § do not
change when the renormalization prescription is changed, ie.,
A, = A}, A, = A}. By generalizing the above equations to all orders we also
see that, by adjusting the terms in the expansion of g'(g), we may choose the
terms beyond the second in B’ to be whatever we want. In similar fashion we
see that only the O(g?) terms in y,, and y are invariant.

Note that if the one-loop term in y or y,, is zero then the whole of y (or y,,
respectively) may be made zero by a choice of renormalization prescription.
This privilege does not extend to f: if the first non-vanishing term in f is at
n-loop order (n > 1) then that term is RG invariant (but not the (n + 1)-loop
term).

In a theory with more than one dimensionless coupling we may try to
apply the same methods. This is left as an exercise. It will be found that only
the first term in each f is now invariant, except in the case that the one-loop
B-function does not mix the different couplings.

The invariance of these coefficients only applies within mass-
independent renormalization prescriptions. If one were to use, say, on-shell
subtractions, then the parameter x4 would not appear, so all derivatives with
respect to u are zero. Then we have f=y=y, =0. (The asymptotic
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behavior that we extract by varying p can no longer be computed by
renormalization-group methods, if we stay within this renormalization
prescription. In this case the Callan-Symanzik equation must be used
instead — see Callan (1970) and Symanzik (1970b).)

7.9 Dimensional transmutation

Consider a renormalizable field theory with one dimensionless coupling g
and no masses. A physically important case is QCD with several flavors of
massless quark ; with two or three flavors this is an approximation to actual
strong interactions.

Since the basic theory has no masses we must use a renormalization
prescription with an arbitrary renormalization mass . Although the theory
apparently has two parameters, g and u, we saw that this is not so: a change
in u can be compensated by a change in g. In fact, as Coleman & Weinberg
(1973) pointed out, the theory really has no parameters at all. The point is
simple but somewhat elusive, so we explain it at length.

A physically measurable quantity must be renormalization-group
invariant. For example, let M(g,u) be a particle mass. By dimensional
analysis, it is u times a function of g alone. So

d
0= g M= M+,B M. (7.9.1)
Hence
M- tant [ j " dg. ]
= p-constant-exp| — | ———
# PL7) @)
A3g” + Bg')(A4, — A,9')
=uCexp{— =“2In(g) - f 4 ﬂz Ly e ]
24,4° A 0 Aig"B(9’)
A,
= uC — 2 79.2
n exp{ YW In(g) + O(g )} (79.2)
Here C is a constant and we have written f(g)= — A,9° — A,g° + -+, as
usual.

Note that the Green’s functions are not renormalization-group in-
variant: to measure a Green’s function, one must define the field operators.
This definition has an arbitrariness, which is the freedom to vary its scale.

The formula (7.9.2) has a number of consequences:

(1) Non-zero particle masses cannot be computed in ordinary perturbation
theory (in a theory with no mass in the Lagrangian). For to avoid large
logarithms one must set u to be of order M, where M is the particle mass
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being computed. Then (7.9.2) tells us that g(M) is not a free parameter ; it
is a number of order unity.

(2) In a non-asymptotically free theory (4, < 0), suppose we have a small
value for g(u). Then u < M, where M is the value of the mass of any given
massive particle. Perturbation theory is therefore only useful for
Green’s functions when the external momenta are much below the
threshold for producing any of the massive particles.

(3) Inanasymptotically free theory (4, > 0), we have u > M whenever g(u)
is small. Perturbation theory is useful in such a theory only when
momenta are much bigger than particle masses.

(4) Since the g-dependence of (7.9.2) is universal, i.e., the same for all
particles, ratios of particle masses are pure numbers independent of g
and u.

Let us emphasize once more that these results are true when there are no
explicit mass terms in the Lagrangian.

The observation of Coleman & Weinberg (1973) comes from asking what
can be measured in the theory. Suppose we start with y = y; andg =g, and
ask how the theory changes when we work with the theory with a different
value of g, g = g,. (We suppose g, and g, are between g = 0 and g = g*, the
first fixed point of B.) Each version of the theory has an effective coupling
satisfying

Gvers 1) = G15 Grers2(lt1) = 95
Now evolve g(u) in the second version to the value of u where

Gvers2(12) = 95
Then the second version of the theory is just the first version with all
momenta scaled by a factor u,/u,. For example let ¢ be a cross-section
depending on momenta p,,...,py. Then RG invariance and dimensional
analysis give us

(P15 sPN3 G2 1) = 0(Pys .-, PN3 915 )

dimo
ﬂz) (#1 1y )
=== | —Pps--»—DN3 915 Uy |- 79.3
<u1 py Uy IR (793)

The last factor is the cross-section in version 1 of the theory, with its
momenta scaled.

We see that changing the dimensionless coupling in a massless theory
does not basically change the theory, but only its mass scale. This is called
dimensional transmutation.

There are many ways of specifying the scale of the theory: in QCD one
might give the proton mass. For perturbative purposes it is better to use
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something that can be directly used in perturbation theory, for example the
value of u at which g(u) has some given value (e.g., 0.1) in one’s chosen
renormalization prescription. One standard way is to notice that for large p,
g(u) has its asymptotic behavior given by

2u)= 1 _ A,In(In(p?/pd)) | constant
! A In(u?/ud) A} In*(u?/ud) In? (/)
In?(In (u/uo))J
0| =5~ | 79.4
[ In® (/o) (7.9.4)

Here p, is a reference value of pu. If u, is changed then the series is
reorganized; only the first two terms are unchanged. As is conventional
(Buras, Floratos, Ross & Sachrajda (1977)), we define the scale A of strong
interactions as the value of u, for which the 1/In(u?/u2) term is zero. This
gives (7.5.5).

If we change from, say, minimal subtraction to momentum-space
subtraction, then the theory is unchanged provided the coupling is
adjusted. This may be done in perturbation theory. For example, we might
find that g in the MS scheme and in the momentum-space subtraction
scheme are related by

Ims = Gmom + @1Gimom™ " (7.9.5)
Now let gy be given by (7.5.5) with A = Ay, and let g, be given by (7.5.5)
with A = A, .. (We already know that 4, and A4, are the same in both
schemes.) Substituting these expansions into (7.5.5) and requiring con-
sistency gives

AMS = Amom exp (al/A 1)‘ (796)

Notice that both 4, and a, are obtained from one-loop calculations and
that there are no higher-order corrections whatever (Celmaster &
Gonsalves (1979)).

An amusing consequence is obtained by substituting (7.5.5) for g in
(7.9.2). Since M is independent of y we may let y— co. The higher-order
terms all go away and leave

M = CA(4,)14, (7.9.7)

This equation is not very useful for performing perturbative calculations.

If the theory is a complete theory of physics, then measurements of ¢ and
the p’s in (7.9.3) will be in terms of a standard of mass. This we may take to
be the mass M of some particle (say, the proton). Let us now change the
theory by changing the coupling from g, to g,, just as we did earlier. Then
the standard of mass is multiplied by u,/u,. So if we do experiments in
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version 2 with numerical values of momenta equal to those in version 1, the
momenta are actually increased by a factor u,/u, . Therefore, (7.9.3) tells us
that ¢ gets multiplied by a factor (u,/u,) %™ But its unit of measurement
increases by the same factor, so the numerical value is unchanged. In this
sense massless theories with different values of the coupling (or different
values of A) are indistinguishable. This is perhaps the most important result
of Coleman & Weinberg (1973).

However, there are many experiments that claim to measure A. There are
even some that give (without qualification) a single measured value of g.
How can this be? The second problem is easy to dispose of. What is being
measured is the effective coupling g in some renormalization scheme with y
set to a value of the order of the energy of the experiment (typicallyine*e™-
annihilation). Strictly one should specify not only the value of g but also the
scheme and the value of u. Now the experiments are at around 10 to
30GeV, and A is at most a few 100 MeV. The variation of g over this range
and the variations between the usual renormalization schemes are often no
more than the size of experimental errors. So it is possible to talk loosely.

However, we just asserted that massless QCD with different values of A is
the same theory. The sense of a measurement of A is that we measure the
numerical value of the ratio of A (defined by (7.5.5)) to a standard of mass.
For the purposes of the argument, we may regard the standard as being that
the nucleon mass is 939 MeV. In terms of dimensionless quantities the
measurement is of the constant C in (7.9.7) when M is the nucleon mass. (In
the MS scheme, we find that C is between about 5 and 20.) The non-zero
masses of the quarks make a relatively small perturbation of the above
argument.

Notice that if we play God and double the size of A, then the size of the
standard mass also doubles, so that numerical results of experiments are
unchanged.

In QED the situation is different. The electron has a mass, and its
Coulomb field is classical at large distances. A mass-shell renormalization
scheme is natural. Since there is a very important mass-scale, an unqualified
statement of a measurement of the QED coupling, viz., e = (4n/137)'/%,
makes good sense. QED with a different value of e is a different theory,
unlike QCD in the absence of quark masses.

7.10 Choice of cut-off procedure

It is very convenient to use dimensional continuation as an ultra-violet cut-
off in perturbation theory. However, there is no known construction of a
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complete theory in an arbitrary complex dimension, so one must beware of
assigning too much physical significance to use of dimensional con-
tinuation. This is especially true when we use minimal subtraction, which is
a procedure that exploits the form of the cut-off dependence of the theory.
However, the renormalized theory with the cut-off removed does not
depend on the form of the cut-off. We saw this in our one-loop calculations.
In general the fact is easiest to see by using BPHZ renormalization, in which
an integrand is constructed that gives a manifestly convergent integral. The
only freedom left is a change of renormalization prescription, otherwise
known as a change of parametrization.

In this section we will examine the renormalization-group properties
when a different UV cut-off is used. For definiteness we cut off the theory by
using a lattice, with spacing a. We consider any theory with a single
dimensionless coupling g and a single mass m. It is, of course, possible to
generalize to any cut-off procedure and to any theory. In general we will
need a renormalization mass g, in order that we can take the massless limit.
The bare coupling g, bare mass m,,, and the field-strength renormalization
Z are written as functions of the finite parameters g, m and u, and of the cut-
off a. Then the renormalized Green’s functions are written in terms of the
bare Green’s functions

GN(xl’ e ’xN;g? m,,usa) = Z——N/z(gy m5.u,a)G;V0)(x1a e ,xN;gO’ mo’ a), (7101)

and for them the limit a — 0 exists.

The renormalization-group structure is essentially unchanged. Let us
again choose a mass-independent renormalization prescription, so that g,
Z, and m, have the forms:

do = 9o(g, ua),
Z = Z(g, pa), (7.10.2)
mi =m?Z,(g,ua) + a~2Y(g, ua).
The massless theory has m = 0, and, as before, g, and Z are independent of
mass. But now the cut-off parameter is dimensional, so g, and Z have
explicit dependence on u as shown. But the dimension of g, is fixed at zero,
so the d-dependent power of y is not used.

The m2-dependence of the bare mass squared is again linear. But it is no
longer true that m, =0 when m=0. In the case of dimensional reg-
ularization the only remaining dimensional parameter is y, and it is not
possible (Collins (1974)) to generate by minimal subtraction a counterterm
u>Y(g,d). But with a lattice cut-off a term a~ 2 Y is both possible and needed,
as we will now verify by computing a low-order graph.

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

208 Renormalization group

7.10.1 Example: ¢* self-energy

The simplest example that shows the existence of the Y-term in (7.10.2) is the
self-energy graph of Fig. 7.10.1, not in the ¢> theory that we have been
using, but in the ¢* theory in four space-time dimensions (with m = 0). The
Lagrangian is (2.3.1). With dimensional regularization the value of the

graph is

1g,(2m) ¢ f d%/k? =0,

O

Fig. 7.10.1. Lowest-order self-energy graph in ¢* theory.

but with a lattice cut-off we find

—igo(32n*) ! J d3kdw D(w, k;a). (7.10.3)
|k#| <n/a

Here the Euclidean lattice propagator is 1/(w? + k?) if w and |k| are much

smaller than 1/a. For general values of k*, it is

az/{4 i sin? (k“a/Z)},

u=1
which is positive definite, so that the integral (7.10.3) is non-zero and
diverges to a number of order 1/a* as a—0.
A similar divergence occurs in the self-energy of a scalar field in any
theory.

7.10.2 RG coefficients

We now continue our general discussion of the renormalization group
when a lattice cut-off is used. As in the treatment using dimensional
regularization we define a renormalization-group operator

ou
We have changed our notation slightly, and used an overbar to indicate
renormalization-group coefficients in the cut-off theory. These coef-
ficients B and j,, have finite limits, B(g) and y,,(g), as a— 0. In our later work
it will be rather important to distinguish the coefficients before and after the

d 0 0 _ 0
p—=pu— + B(g, pa)— — (g, paym*—. (7.10.4)
du dg om

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

7.10 Choice of cut-off procedure 209

cut-off is removed. The coefficients can be computed from
d d
o = 0 = yuU— 2,
”dﬂ gO #d[l mO

with (7.10.4) used for ud/du. We also have the anomalous dimension
= udIn Z/dy, just as with dimensional regularization. This all results in

0
- (ua)mgo(g, ua)
F=—s ,
%go(g,ua)
0 0
Tm [uaa( ) +B= :'an (g, ua), (7.10.5)

[uant 452 Jnz

In addition there is the constraint
d 5, _1 i 8
‘”Eﬁ(“ Y)=2z| » [ ) a) +B— ] Y(g, pa). (7.10.6)

The information on the divergences is all contained in the finite functions
B, 7, and 7. If desired, we can use minimal subtraction with the form

do=9+9°G,,In(ap) + ¢g°[G,,In*(ap) + G, In(aw) ]+,

so that B= —g3G,, —g°G,, — - is a function of g alone. In order that
B be finite as a— 0 all the logarithms of au must cancel in 3. This implies
a set of relations for the counterterms, the first of which is 2G,, =
3G%,. An analogous set of relations occurs when we use dimensional
regularization, as can be seen from (7.3.12). These we will discuss further in
Section 7.11. Note that for minimal subtraction with the lattice cut-off we
have B =B, y,, = 7, €tc.

7.10.3 Computation of g, and Z; asymptotically free case

If we were to compute the exact theory, rather than a perturbative
approximation, we would need to know how g,(g, ua) dependsonaasa—0
with g and p fixed. A low-order calculation is not sufficient, for g, has large
logarithms in its perturbative expansion. Provided the theory is asymptoti-
cally free. we can remedy this by using the renormalization group to
improve the calculation, just as we did for the large-momentum behavior of
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Green’s functions. The starting point is the equation
d 0 ~ 0
—go=p=—¢go+ B=—g, =0, 7.10.7

which is in effect the renormalization-group equation for g,. We may solve
it just as for the Green’s functions.

Ultimately, we will let a approach zero while holding g and u fixed. But
first let us keep a non-zero. Then we can define an effective coupling g(u) by

pdg(u)/dp’ = Bgw)), (7.10.8a)
with the boundary condition
guw=g. (7.10.8b)

We will also need the effective coupling at a =0. For the moment, let us
denote it by the symbol g(u'). It satisfies

wdg(u)/dp’ = B@G@w") = Bg(w); w'a=0),
=g
Implicitly there is dependence of g on u and g, and of g on p, g and a:
g=4u;m9), §=49u;pa9.
Of course, g(u')— g(u') as a—0.
We can solve the renormalization-group equation (7.10.7) for g, to find
9o = 9o(9,ap) = go(4(1/a), 1).

Now, when a is small, it might appear that we can replace g(1/a) by g(1/a),
and that g, is well approximated by the first term in its perturbation
expansion (since g(1/a) is small). That is,

dgo = §(1/a) + negligible error.

These suppositions are actually false, for two reasons. First, B(g,au)
in general depends on ay, so we cannot just replace g at u = 1/a by g(1/a)
computed in the a = 0 theory. Secondly, we cannot simply drop the higher-
order terms in g,, since the dependence of renormalized Green’s functions
on g, is singular. Thus small errors in g, may give rise to large errors in a
Green’s function computed as a function of bare quantities.

To derive the correct formula we must examine the a-dependence of B
more closely. So we write the perturbation expansion of g, in the form:

go=9g+ g3[G“ln(ay) + G+ Gl(a#)]
+9°[G,,In*(ap) + G, In(ap) + Goo + Gylaw ] +-+-.  (7.10.9)
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Here we have not specified the renormalization prescription, so in addition
to the logarithms we need finite functions G,(au), etc. We have explicit
constant terms G,, so we define G(au) to be zero at au=0. Once
divergences and subdivergences have been subtracted from Feynman
graphs, the remainders converge with power-law convergence in momen-
tum. This is a consequence of our treatment of Weinberg’s theorem, and is
further treated in Weinberg (1960). Therefore we can say

Glap) = O((ap))
as au—0, for some positive number ¢, In general, G, equals au times

logarithms of au, so we can safely set ¢; = 1/2.
First we compute the p-function:

a_ 6 ago

Jd = 0 -
3 G 5 v
—{g ,:G11 +61n(ap) 1:|+g [2G221n(au)+ G,, +61n(ay)62]+ }

{1 +392[Gllln(a#)+610+ Gl]+ }

0 -
=—-g3 G —
g [ “+W6(ua)Gl:|

_QS{G =3G,,G,, +

0 =5 -
6ln(;1a)[ —-3G1~3G,,G,In(ap)

- 361061]} +: (7.10.10)

The relation 2G,, = 3G?, must hold in order that j is finite as a — 0. The
limit a— 0 gives

B@) =B(3.0)= —g°G,, —g°(G;; —3G,,G, )+ -, (7.10.11)
so that with our usual notation 4, = G,, and 4, = G,, — 3G, G,,. Since
G, (ap) and G ,(au) go to zero like a power of au (times logarithms) when au
— 0, their logarithmic derivatives audG ;/0(ap) also go to zero like a power.

The first step in our calculation of g, is to observe that the RG invariance
of g, implies that
9o(g, na) = go(g(u’), u'a)
=go(g(1/a),1). (7.10.12)
The next step is to examine the size of the error that is made in replacing
g(1/a) by the effective coupling g(1/a) in the a = 0 theory. Finally, we will
find the accuracy to which g,(g(1/a), 1) must be computed in order to obtain
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the correct renormalized Green'’s functions at a = 0.

The difference between the two effective couplings §(1/a) and g(1/a) will
turn out to be of order §(1/a)® when ais small. So let us define the fractional
error §>A by

gw'sma,9) =41 g)[1 + g(u'sm9)* Al s, a,9)]. (7.10.13)
We will now show that A is finite when y’ = 1/a and a —0.
From (7.10.13) and the definitions of § and B we find that

) . g r s
u'a—#,A(u’) =47 [B((1 +§*A)g, w'a)— (1 + 3§*A)BG)]

- a( 0 )G +0(5%(w'a)"'?) + 0(G*A). (7.10.14)

Now §*(u)~1/4,In(y'/A) as p'— oo, so this equation tells us that
Ay, p, a,g) is finite when a— 0 and u < u’ < 1/a. In fact it implies that

A(p)= - G,(ap’) + O(1/In(1/a)). (7.10.15)

We now compute g,. It is convenient to write a formula for its square:

9o(g, pa)’ = go(g(1/a), 1)’
={§(1/a)(1 +§°A) + 3> (1 + §*A)’[G,, + G, (V] + 0(§°) }?
_ 1 A,In[In(1/a*A%)]
T[4, In(1/a*AD)] 43 In3(1/a*A%)]
2G,
[Azlnz(l/ 2A%)]
Here we used the formula for g(u) in terms of x and A - (7.5.5). The formula
for g, in terms of 1/a and A is the same as (7.5.5) except for an additional
1/In? term. Observe that it was essential to keep the a-dependence in
B(g,aw); the — G (1) term in (7.10.15) canceled the G,(1) in the two-loop

coefficient in g,,.
Finally we express (7.10.16) in terms of g, a and u:

1 _A,In(In(1/a’p?))

+0{In?[In(1/a)]/In>1/a)}. (7.10.16)

2 __
9060 = )~ A (@A)
1 y
+W[2G10 pl _Zf”ln(f‘hgz)_zf‘hf(g)J
+ 0{In*[In(1/aw ]/In*(1/ap)}, (7.10.17)
where

f(g)=j dg'[1/B(g) + 1/(4,9”) — 4,/(A1g)].  (7.10.18)
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Similar formulae hold for Z, for Z_, and for Y. Thus

m>

Z=[4,4*In(1/a’u?)]~ 241 x

7(9) ln(ln(au))]},
xexp{f dg’ [ﬂ(g)+ ]}{1+0|: In(ag)

(7.10.19)

where y = C,g* + O(g*).

7.10.4 Accuracy needed for g,

Let us now suppose we compute the renormalized Green’s functions:
Gy(xys. s Xysgsmp;a) = Z7V2G g n(Xy,. .., Xy 3o, Mg ;a). (7.10.20)

We must now let a approach zero, and ask how accurately we need to
compute g, and Z. In (7.10.17) and (7.10.19) we gave formulae for g, and Z,
with explicit estimates for the errors coming from uncalculated corrections.
These equations tell us the value of g, (g, ax) when we let a — 0 while keeping
g and u fixed. Since the bare Green’s functions have singular dependence on
do, the uncalculated corrections might affect the values of the renormalized
Green’s functions. In fact these terms do not affect the renormalized Green’s
functions in the continuum limit, as we will now show.

The key observation is that the renormalized Green’s functions are finite
functions of the renormalized parameters. Thus we do not need to hold the
renormalized coupling and mass fixed while taking the continuum limit
a—0. We may in fact let them vary continuously, provided only that their
values at a = 0 are the same as before. Now examine (7.10.17). It is evident
that we may absorb the whole of the correction term into just such a
variation of g. In fact the necessary change in g is of order
In?(In(1/a))/In(1/a) as a— 0. So we may choose the bare coupling to be

2 1 _A,In[In(1/a*p*)]

D= ma?e?) A (/)
1 1 4
+ Af1n2(1/a2#z) [2610 _g_z“A_jln(Axgz) —2A1f(g):|.

(7.10.21a)
Hence in (7.10.16), we can also drop the O{In*[In(1/a?)]/In*(1/a)} terms.
So we have the following formula for g, in terms of a A alone:
. 1 _AyIn [In(1/a*A?%)] 2G,,
o= A,In(1/a*A?) A3In%(1/a*A?) A2In*(1/a*A?%)

- (7.10.21b)
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In the case of the wave-function renormalization Z, the uncalculated
corrections can be absorbed into a factor (¥ multiplying the Green’s
function Gy. This factor must approach unity in the continuum limit. Hence
we may use

_ 5 1 =Cyj24, g M C,
Z_[A‘g m(d”‘”)] CXPUodg [/3(9’) T ]}

(7.10.22)

where M is an arbitrary mass that is irrelevant when a — 0. Notice that for
the coupling we had a form (7.10.21 b) that had dependence on A, but not on
uor on g. This was because g, is renormalization-group invariant: we may
take u arbitrarily large without affecting g,,, provided that we also set g
equal to the effective coupling at u. When u is very big, g is very small, and
the higher-order corrections contained in f(g) go to zero. But Z is not
invariant;it must depend on g. What we can say is that any dependence ona
of the form

Z =finite-[In(1/a) ]~ </24

will produce finite Green’s functions.
Notice that if the one-loop divergence in Z vanishes, then we may let Z be
finite:

Z= exp[J‘ dg’y(g’)/ﬂ(g’)].
0

There will in general be divergences in the self-energy graphs in higher
orders. What we have proved is that they must sum to something finite.

In the case of g,, any a-dependence of the form

g3=1/4,In(1/a* — A,In[In(1/a)]/[ A7ln*(1/a?)] + finite/In’a
will give finite renormalized Green’s functions. Only knowledge of 4, and
A, is necessary for this. They are obtained from one- and two-loop
calculations. The coefficient of the 1/In2a determines the value of g.

The formula (7.10.21b) shows the fundamental significance of the A-
parameter. In a renormalizable field theory, there are divergences, so one
cannot simply specify a single number as the bare coupling constant.
Rather, one must construct the theory as the continuum limit of some
lattice theory, with g, depending on the lattice spacing, a. Equation
(7.10.21b) gives g, as a definite numerical function of a.

Unfortunately, there is a certain arbitrariness in precisely how one
constructs a lattice approximation to a continuum theory. This arbitrari-
ness is physically irrelevant (although some particular approximation may
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be superior when it is used for a numerical calculation). So (7.10.21b) s also
important because it expresses the bare coupling in terms of quantities (A,
A,, and 4,), which have direct meaning in the continuum theory, and in
terms of one number G, ,, which depends on the lattice approximation, but
which can actually be computed analytically (Hasenfratz & Hasenfratz
(1980)). The result of such a lattice calculation is normally given as the ratio
of a Aj,ce to the value of A in some standard continuum renormalization
scheme. The definition of A, is the value for which

g5=1/[4,In(1/a*Afc.)]

— A, In[In(1/a* Adyic) I/[47 02 (1/a* Afiyice) ] (7.10.23)
gives the same continuum limit as (7.10.21). It is easily checked that this is
Atarice = Aexp(Gyo/A4,). (7.10.24)

Despite the fundamental significance of A, there is a convention
dependence in its definition. In specifying a theory by its value of A, one
must specify these conventions. This is analogous in its effect to the need for
specifying a system of units in electromagnetism. The main convention is
that of the renormalization prescription. The other convention is the one
implicit in the choice of the constant in (7.5.3). It is sensible to follow the
usual convention, to avoid confusion.

We have seen that higher-order corrections (beyond two loops) do not
enter into our formula for g, in terms of A. This is in contrast to (7.10.21a),
which expresses g, in terms of g and u. So it is sensible to treat A as a
fundamental parameter of the theory —say in strong interactions. But
practical considerations intervene if one tries to measure A. A typical
measurement consists of measuring a quantity for which a useful per-
turbation expansion exists (for example, a jet cross-section in e* —e~
annihilation). The experiment therefore measures the effective coupling g(u)
at some value of u which is of the order of the energy of the experiment.
There are errors in this measurement caused by uncalculated higher-order
terms in the theoretical calculation of the cross-section, not to mention non-
perturbative corrections. We can then deduce A from (7.5.6), with further
errors due to corrections in f.

Since g is more directly related to the size of the cross-section, it is
perhaps correct to argue that experiments should quote their results as a
value of g. But to give the value of A is equally valid. However, a small
fractional error in g corresponds to a much larger fractional error in A. This
can be seen from (7.5.6). If we change g and A while holding u fixed, then

|dA/A|=|dg/g|[24,97]"'[1+ 0(g*)].
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If one could do a real calculation of the mass of, say, the proton in QCD,
then it is the error in the value of A that would determine the error in the
mass. As we saw in Section 7.9, when we discussed dimensional transmu-
tation, the mass is proportional to A.

7.10.5 m?

Unfortunately m3 has a 1/a” term, but the variation of m, with m* depends
on a [In(1/a)] %41 term. So we need the coefficient of 1/a* to very high
accuracy. Anyslight error (say of order 1/a) will be equivalent to making the
renormalized mass diverge like 1/a as a— 0. The resulting need to be very
accurate in m, leads many people to consider scalar field theories
unnatural.

In the case of fermion theories there is a symmetry under y — ysy when
m=0, so the Y term is absent and we have

my =mZ, ~ m-constant [In(1/a)]~B:/24,

7.10.6 Non-asymptotically free case

The values of g,, etc., as a — 0 are not perturbatively computable unless the
theory is asymptotically free. However, if we suppose that f in a non-
asymptotically free theory has a fixed point, then we may write

90(9,ap) = go(g(1/a), 1)
—golg*,1)as a—0. (7.10.25)

Note that g,(g(1/a), 1) is a finite function of g, so the limit exists. However
the same value is obtained for g, at a = 0 for any value of g(u). So the way in
which the limit is approached determines the value of g.

An example is easily constructed. Suppose we have a theory in which

B(g) = sin*(g*)/(29), (7.10.26)
and

90(9,1)=g. (7.10.27)
Then the effective coupling has the form
g =[arctan (1/In(A/u))]"2.

There is a fixed point g* = n'/2. We therefore find that the bare coupling as
a—0 must be

do(g,ap) = [arctan (1/In(aA))]*/?

1
S 2
= T wany T O/ @A) (7.10.28)
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It is necessary to know how g,(g,au) approaches its limit g,(g*,1) in order
to determine the value of A.

7.11 Computing renormalization factors using dimensional regularization

In the previous section, Section 7.10, we computed how the bare coupling g,
should behave as a function of the lattice spacing a. In this section we
present the corresponding argument using dimensional continuation as the
cut-off. We do this by treating the defining equation (7.3.10) of 8 as a
differential equation to compute g,. Our argument will be valid in any
asymptotically free theory, like ¢* theory in six dimensions or QCD in four
dimensions. If we let d, be the physical space-time dimension, then we
regularize by going to a lower dimension d =d,, —¢.

First we compute the relations between lower and higher poles in the
renormalization. Now we write

go=#"2[g+ > dj(g)e"'], (7.11.1)
j=1
and we have the definition of B:
£go/2 + P(g,d)dg,/dg = 0. (7.11.2)
Let usexpand (7.11.2) in powers of &. The terms proportional to ¢ and £° give

us:
B=—¢g/2+ Blg)= —eg/2 + }(90/9g — Dd,(9).

We have changed notation from our original definitions to correspond to

the definitions that we used in Section 7.10 for the lattice cut-off. There we

defined B to be RG coefficient in the cut-off theory, while we defined f as the

limit of j as the cut-off is removed.

Now, the coefficient of the pole ¢/ in (7.11.2) is

31— g0/0g)d, 1 (9) + Blg)dd,/3g =0, (7.113)
This is a differential equation which, when solved using the boundary
condition d;(0) =0, gives all the higher coefficients d(g) in terms of the
single pole d,(g).

Similar relations (’t Hooft (1973)) hold for all renormalization counter-
terms. The structure is similar to the leading logarithm expansion. They
show that in each order of perturbation theory the only new information in
the counterterm in a given order of perturbation theory is in the single pole.

A convenient way of solving these relations is to work out the solution of
the differential equation (7.11.2). This gives

g 1 1
1 -2 = | dg/| ———— — = 11.
n[go(g’ H, d)” ] \[0 g [g, _ 2ﬂ(gl)/8 g, ] + lng7 (7 11 4)
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1e.,

?4.2B9) !
o o . (1115
Go=H geprO Pz [1—213(9’)/(9’8)]} N

The boundary condition g,/g — u?? as g —0 has been used.

We now ask how g, must behave as ¢ = d, — d — 0, with g (and y) fixed. If
the theory is not asymptotically free (so that in f(g)= — 4,9> + -, 4, is
negative), then the integrand has a pole at

g?=—(dy—d)/24, +0(d —d,)*

The solution (7.11.4) only unambiguously exists if g2 is less than this value,
which is zero when d = d,,. To get to the d = d, theory with g non-zero we
must continue g, so that the integration avoids the pole. The result is that g,
has an imaginary part. This, among other things, suggests that the theory is
unphysical (see Wilson (1973), Gross (1976)). Recently, evidence has
accumulated that the lattice ¢* theory does not have a non-trivial
continuum limit — see Symanzik (1982) for a review.

If the theory is asymptotically free then we may continue (7.11.4) to
d=d,, ie, ¢=0. The integrand becomes singular when &¢=0, and we
examine the singularity by expanding in powers of g':

Ing,=Ing 4—;lnu

—EJgdg'{ 1 B 1
2)o " [-eg'2+B@)] [—eg/2—4,9"]

_ A,9"7 }
[—eg'/2—A4,97]

e [? 1 A,9" 2
_Z dg’{ ( ——+ 2 +—>5. (7116
2Jo [~ew2-Ag7] [—e2—Ag" T Togf 11O

In the first integral we may set ¢ =0 and have errors that are o(1). So

€
In gdo = %ln (2—A—”>
1

€ 1 A, 24,9* A
2l lny— — 2 |n| 1 )4 22 11.
+2[np YW REYVE: n< . +2Af flg) [+ole), (7.11.7)

19

where f(g) is defined by (7.10.18). Thus

22 =A»<§>{1 N %323[1 i <§)]+ o(e)}. (7.118)
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7.12 Renormalization group for composite operators

We have seen how a change in renormalization prescription for the
interactions of a theory can be compensated by a change in the values of the
renormalized parameters. The same property holds for the composite
operators we defined in Chapter 6.

For example, consider the renormalized [ ¢2] operator in ¢* theory at
d = 6. In Section 6.2 we calculated it in the one-loop approximation:

0| To(x)p()[¢*](2)/2]0) =
= tree graph + {one-loop graph + counterterm graphs} +--- (7.12.1)

A change in renormalization prescription amounts to a finite change in the
counterterm graphs. Since the counterterms are of the form

3?1 =31¢*+30Z,0% + 6Z,m* ¢ + 6Z.[1 ¢ + higher order, (7.12.2)

we have

3[#Jnewre = 2L0%Jaiare +30[$°]1 + b + 0. (7.12.3)
Here a, b, and c are finite quantities of the same order in the coupling as the
one-loop counterterms. The equation (7.12.3) is, so far, only derived at the
one-loop order —so the finite counterterms are to be used with their

operators inserted in tree graphs.
Let us examine the situation we expect to all orders. We will use minimal
subtraction. Then the renormalization in the notation of (6.2.12) is

{1 = 42,2703+ 172,27 o gy + 87722, D
(7.12.4)

Now the bare field is independent of yu, so we may write
g 41971 = 2,27 468 In(2,12)
+u‘”2'3Z,,Z‘“2m2¢0yd—d—ln(p"/2”32b2‘”2m2)
+ui?=3z,Z27 Y 2[](;50;1 ln(,u‘”2 3z.2717)
iraq d
=3[é ]#aln(za/z)
+u?73Z,m d)u d ln(p‘”2 3Z,ZV2Z 'm?)

d
FHTZ Do W2 22, (1129)
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which has the form

d
ugﬁ%[dﬁ] =y 5[¢%] +y,m2 U2 3G+ y T2 0. (7.126)

We can formulate this as a matrix equation:
%[4)2] Z,,Z_lmzZ,,Z'”zud/z_3 ZcZ_1/2y4/2‘3 %d’é
¢ =

Q= 0 AR 0 b, |=MPo
O¢ 0 0 AR C 9o
(7.12.7)
d dM |
—_ —_y— - = (D . .
yd#d) P M™1® =y, (7.12.8)

The coefficients y,,7,, and vy, are finite at d = 6. From our calculations in
Section 6.2, we have

_ 5¢° _5,1
a= 38473 " 6™
g _; ! 712
yb=64n3_ /g» ( .9)

g _1
Te =384 ~ 6719

where 1 = g?/64n>. Thus

__5_/1 AmEpd =3 423
y =6 g 9 | 4 higher order.  (7.12.10)
»~| 0 1 0
0 0 9

Observe that y,, y,, and y, are all independent of u and m. This follows from
the same arguments that we used to prove the same property for y,, and y.

From the RG equation (7.12.7) we prove renormalization-group equa-
tions for Green’s functions of the composite operators. For example:

0 0 0
("a vpl- ymmza—m7><0| TS0 72)1[0

== 1<0|TH93[¢°]]0>
+(pm? +7.0)<0| To(x)p(1)d(2)[0),  (7.12.11)

where we have used ud¢/du= —y¢/2, and we have set d =6, thus
eliminating the u%? 3 factors.
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We must prove (7.12.8) both to all orders for the [ ¢? ] operator and in its
generalizations to deal with any operators. Since bare operators are
automatically RG invariant, the only question is whether the anomalous
dimensions are finite. This is handled by a simple generalization of the proof
given in Section 7.2 for the ordinary Green’s functions. We will not spell out
the details — for that is just a mathematical exercise.
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Large-mass expansion

A common situation in physics is that in investigating phenomena on a
certain distance scale, one sees no hint of those phenomena that happen at
much shorter distance scales. In a classical situation this observation seems
evident. For example, one can treat fluid dynamics without any knowledge
of the atomic physics that generates the actual properties of the fluids.
However, in a quantum field theory this decoupling of short-distance
phenomena from long-distance phenomena is not self-evident at all.
Consider an e* — e~ annihilation experiment at a center-of-mass energy
well below 10 GeV, the threshold for making hadrons containing the b-
quark. There is, for practical (or experimental) purposes, no trace of the
existence of this quark. However, the quark is present in Feynman graphs
as a virtual particle, and can have an apparently significant effect on cross-
sections. Our task in this chapter is therefore to prove what is known as the
decoupling theorem. This states that a Feynman graph containing a
propagator for a field whose mass is much greater than the external
momenta of the graph is in fact suppressed by a power of the heavy mass.
The physics at low energy is described by an effective low-energy theory
that is obtained by deleting all heavy fields from the original theory.
The decoupling of heavy particles is not absolutely universal. One
important and typical exception is that of weak interactions. Let us
consider the interactions of hadrons at energies of a few GeV. The effective
low-energy theory, in the sense just described, consists of strong and
electromagnetic interactions alone, without weak interactions. So weak
interactions should be ignorable at low energies. However, it is well known
that there are in fact many observed processes, particularly decays, that are
due entirely to weak interactions. The point is that, in the absence of weak
interactions, these processes are exactly forbidden by symmetries, such as
parity, charge-conjugation, and strangeness conservation. Weak-
interaction amplitudes for the processes in question would be power-law
corrections — suppressed by a power of energy divided by the mass of the
W-boson — were it not that they are corrections to zero. The consequence of
this particular situation is that, at low energies, weak interactions are

222
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described by a non-renormalizable theory, viz., the four-fermion in-
teraction. Efforts to find a renormalizable theory led to gauge theories, and
a prediction of the W- and Z-bosons from phenomena at energies much
lower than their masses: low-energy phenomena have indeed provided
clues as to what might happen at much higher energy.

In this chapter, we will treat the cases where decoupling occurs. The
theorem that tells us to expect decoupling to occur in many theories was
formalized by Appelquist & Carazzone (1975) and Symanzik (1973). They
work with a renormalizable theory in which some fields have masses very
large compared with the others. They then consider Green’s functions of the
low-mass fields at momenta much less than the large masses. The theorem is
that the Green’s functions are the same as those in an effective low-energy
theory obtained by deleting all of the heavy fields. Corrections are smaller
by a power of momentum divided by a heavy mass. The sole effect of loops
of heavy particles is that the couplings of the low-energy theory can have
different values from those in the complete theory.

Since the renormalized couplings have no particular a priori value, the
heavy particles are unobservable until close to threshold. The practical
importance of the theorem is that one can understand low-energy physics
without having a complete Lagrangian for all phenomena.

We will also show how the renormalization group can be applied in the
computation of the relation between the couplings of the low-energy
effective theory and those of the full theory.

There are many ramifications of the decoupling theorem, but we will not
treat these. One of these is the detailed application of the decoupling
theorem to gauge theories (see, for example, Kazama & Yao (1982)).
Another is the large-mass expansion of Witten (1976) — where Green’s
functions of the heavy fields are computed; this expansion is used is deep-
inelastic scattering.

We will also not treat the exceptions to the decoupling theorem. These
can be treated by the same techniques as those used to prove the decoupling
theorem itself. We have already mentioned weak interactions as one of the
typical exceptions. Let us just note two other main classes of exception:

(1) In theories with spontaneous symmetry breaking, a mass is often made
large by increasing a dimensionless coupling (Veltman (1977) and
Toussaint (1978)). The decoupling theorem assumes that a mass is made
large by increasing dimensional parameters.

(2) Some dimensionless couplings needed by power-counting violate
renormalizability of the low-energy theory (see Collins, Wilczek & Zee
(1978)).
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In any event the effective low-energy theory is non-renormalizable.

It might be supposed that since General Relativity is non-renormalizable
in perturbation theory, it contains some clues to phenomena at very high
energies (see, for example, Hawking & Israel (1979)).

8.1 A model

We will restrict our attention to a very simple model. It is a ¢ theory with
two fields in six space-time dimensions:

&L =0¢)*/2+ (0¢n)*/2 — m*¢{ /2 — M>¢3/2
— w2 g,07/6 + g,102/2] — w73 f ¢, + counterterms. (8.1.1)

Symmetry under ¢, — — ¢, has been imposed to cut down the number of
possible couplings. Then (8.1.1) contains all couplings necessary for
renormalizability. We assume that the renormalized mass, M, of the heavy
field is made large while all other parameters are held finite. The factors of
the unit of mass u needed with dimensional regularization are explicitly
indicated.

All our techniques can be readily extended to treat more complicated
(realistic) theories.

As usual we have introduced a linear term in the Lagrangian to cancel the
tadpole graphs. This is determined by the renormalization condition that
<0|¢|0)> =0.

The remaining counterterms can be put in the form

Lo=(2,~1)0¢¢/2+(Z, — 1)0¢3/2

—[m¥Z,,— 1)+ M?Z,,]$3/2 — [MHZy — 1)+ m*Z,,, ] $2/2

— 127" [(g918 — 91)7'/6 + (g2n — 92)0:161/2]

— 1235 = . (8.1.2)
As usual, we may choose the dimensionless renormalizations (viz., the Z’s
and the gg’s) to be independent of the dimensional parameters m2, M2,
and f.

The decoupling theorem asserts that phenomena on energy scales much
less than M are described by an effective low-energy theory whose
Lagrangian has the form

L= 2032 —m*22}/2 — 0GR 6 — 232 A g,
+ counterterms
= 0g*2/2 — m¥2p2/2 — g [6 — 23 g
+ counterterms. (8.1.3)
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Here we have defined a scaled field ¢* = z'/2¢,. We will prove that g*, m*
and the coefficient z can be chosen so that Green’s functions of ¢, obtained
from &, differ from those obtained from the full Lagrangian (8.1.1) by
terms which are of the order of a power of external momenta divided by M.

It is usually convenient to work with the scaled field ¢* which has unit
coefficient for its kinetic term in the basic Lagrangian. Then Green’s
functions in the full theory are related to Green’s functions in the low-
energy theory by

GN(P1 s+vs DN G1s G, M, 1) = <0! T$I(P1)~ . ~$l(pN)|0>fuu theory
=27"2GH(py, - i g* m* w1 + O(1/M%)]
=z7V2C0| T@*py)...$*(p)[0>[1 + O(1/M*)], (B14)

as M — oo with p,,..., py fixed. The fractional errors go to zero as a power

of M times logarithms; the power is typically M ~2. We can therefore use

1/M?*, with aslightly less than two, to bound the error. As is our convention,

the tilde signs over the fields and Green’s functions indicate a Fourier

transform into momentum space.

8.2 Power-counting

In this section, we will establish the rules for finding the leading power of M
in the value of a graph as M — co. These form a simple generalization of
Weinberg’s theorem, and will involve us in understanding which regions of
momentum space are important. We will mostly be interested in graphs for
the Green’s functions of the light field ¢,. Our aim will be to find those
graphs that contain lines for the heavy field and that do not vanish as M
goes to infinity.

8.2.1 Tree graphs

Because we choose to impose the symmetry ¢, = — ¢,,, the only tree graphs
containing lines for the heavy field have heavy external lines. An example is
Fig. 8.2.1. Since all momenta on the lines are fixed, and since the free ¢, -
propagator is

i/(p? — M?) ~ —i/M?,

{

Fig. 8.2.1. A tree graph with a heavy line.
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the behavior of any given tree graph as M — oo is
M~2H (8.2.1)

where H is the number of heavy lines. (We use the natural terminology of
calling a line of a Feynman graph heavy or light according to whether its
free propagator is for ¢, or ¢, respectively. Our graphical notation is that
heavy lines are thicker than light lines.)

8.2.2 Finite graphs with heavy loops

Consider now a graph that has one or more loops but no ultra-violet
divergences or subdivergences, and that has some heavy internal lines. The
lowest-order example is Fig. 8.2.2(a), for the four-point function. Its
external momenta (if small) may evidently be neglected on the lines of the

loop, whose value is then
4

r,= g L i (822)
(2 ) *2 =M~ 384 M2 -

(We label the symbol T by the figure number.)

ig3
3847:3M 2
(@)

Fig. 8.2.2. Large-mass behavior of graph w1thout an ultra-violet divergence.

The graph vanishes as M — . The precise power of M can be obtained
by considering the possible regions of momentum space (after Wick
rotation), as follows." Any region of k that is finite as M — oo gives a
contribution of order M ~°. Since the graph is UV finite, the only other
possibility is k = O(M). Simple power-counting gives M~ 2, as found in
(8.2.2). This power-counting is the same as for the UV degree of divergence.

The graph is negligible (by a power of M2) compared to graphs with no
heavy lines. If, nevertheless, we wanted its leading contribution, then it
would be effectively the local four-point vertex symbolized in Fig. 8.2.2(b).
The non-renormalizability of this coupling (when the space-time dimension
is six) is tied to the negative power of M2,

8.2.3 Divergent one-loop graphs

Consider the logarithmically divergent vertex graph in Fig. 8.2.3(a). After
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pi p P2

P3

(a) ®)

Fig. 8.2.3. Large-mass behavior of graph with an ultra-violet divergence.

minimal subtraction the loop gives

ig> {, [ [
R(l"3)=W7r3 v+ | dx dy x
0 0
in| M2 = (pix +py)(1 — x — y) — pixy
x In A

i 43 2 2
ig M :
- 128;3[y+1n (W)+o<%>]. (8.2.3)

The same power-counting as for Fig. 8.2.2 confirms the power M° for the
leading behavior as M — co. There is also a logarithm. This occurs because
two regions contribute to the leading behavior: the first is where the loop
momentum k is of order M. The second region is the UV region where
k — oo. After subtraction of the ultra-violet divergence a finite contribution
remains.

Evidently the graph gives a contribution that increases with M.
Fortunately the non-vanishing part of the loop is independent of the
external momenta. So for large M, the loop is effectively a three-point
vertex, as shown in Fig. 8.2.3(b). A proof which generalizes to higher order is
to differentiate with respect to any external momentum. Since the
differentiated graph is finite, it vanishes when M — oo, like a power of M.

Recall our statement of the decoupling theorem, that at low energies, we
could calculate Green’s functions from the effective low-energy Lagrangian
(8.1.3). The result of our calculation of Fig. 8.2.3 is that the graph generates
an extra piece in the ¢; coupling of the low-energy theory. Let us therefore
write

H M?
Mg =g, — o3 In{ — 5

We may drop the graph Fig. 8.2.3 and replace it by the order g* term on the
right of (8.2.4). The loop has been replaced by a local vertex where all the
lines come to a single point. This corresponds to the fact that the internal
line is far off-shell and can only exist for a short time.
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O — —

Fig. 8.2.4. Large-mass behavior of graph with a quadratic ultra-violet divergence.

The self-energy graph, Fig. 8.2.4, gives a leading term of order M?2. The
value of the loop is

. {(y DM~ §p?)

1 2 201
+J dx[M? - p*x(1 —x)]ln[zw———p——)#———x—)}}

o dnp

ig3 5 M? p? ( M? >
- M2y —14in(— ) [=2] y+in( oy
128713{ li'} + n(4nu2 6| 7T dnp?
2
+ 0({4—2». (8.2.5)

Again the loop momentum k can be either UV or of order M to contribute,
so there will be at most a single logarithm of M?/u®. Since we have to
differentiate three times with respect to p, before obtaining a convergent
graph, the non-vanishing terms, as M — co, are quadratic in p. From the
effective Lagrangian (8.1.3), we see that the graph may be replaced by a

contribution to the basic self-energy vertex i[(z — 1)p* — (m*?*z —m?)] in
the low-energy theory, with
gz Mm? 4
= 8.2.6
z=1-— 7687 l:)+ln< -~ >]+O(g ), ( )
2772 2
%2 _ 02 gZM _ M
zm m 128”3[)) 1+In <4ﬂ# ):, + 0(g*). (8.2.7)

We can now compute g* and m*:

2 1 2
(g, -1 M
gt =g, - 32927280 ?1’;87[;" 1)[)) +In < i )] +0(g%), (8.2.8)

2 MZ
*2 _ 2 92 2 _
m m 1287r3{M [y 1+ln<4nu2)]
MZ
— émz[y +In <W>:l} + 0((]4). (8.2.9)

Notice that there is a contribution of order M? to the self-energy and
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hence to m*?. In order to keep the physical mass of ¢, finite and hence keep
m* finite as M — oo, we must let m? have a term proportional to g2 M? (with
higher-order corrections):

nu

2 . , M? M? .
m? = finite + gzm[)} —1+1In (4 2)] + higher order. (8.2.10)

On expanding m*? in powers of coupling, we find

m*? = finite term in m?

2,2 2
1 92m M i
+ 6<128n3>|:)’ +In <—4nu2 )] + higher order. (8.2.11)

Since m is the mass parameter for the light field, it is generally considered
unnatural to have to fine-tune it within a fractional accuracy of m*2/M?, as
is required by (8.2.10), to obtain a finite value of m* when M — <. In the
context of grand unified theories this is called the gauge hierarchy problem
(Weinberg (1974, 1976), Gildener & Weinberg (1976)). It is hoped to solve it
by finding a phenomenologically sensible theory with no need for fine-
tuning.

8.2.4 More than one loop

We may have one of the divergent one-loop graphs occurring inside a
larger superficially convergent graph. A typical example is Fig. 8.2.5. When

k / A(g*z”z)

-

Fig. 8.2.5. Large-mass behavior of two-loop graph with an ultra-violet divergence.

M - oo with the external momenta fixed, the only region of the loop
momenta that gives a non-zero contribution is where the outer-loop
momentum [ is finite and the inner-loop momentum k is of order M or
larger. So the heavy loop can be replaced by its effective low-energy vertex
computed at (8.2.3). This procedure does not change the overall degree of
divergence.

The situation at higher order or with overall-divergent graphs is more
subtle as we will now see. The graph of Fig. 8.2.6 is typical. Now, it contains
a subgraph, consisting of the heavy loop, which we have already considered.

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

230 Large-mass expansion

Fig. 8.2.6. Large-mass behavior of another two-loop graph with an ultra-violet
divergence.

Therefore, the low-energy theory contains a graph where the heavy loop is
replaced by a vertex using (8.2.4) for g*z*?> —g. This graph exactly
reproduces the region where k is finite and [ is large for Fig. 8.2.6. We add
and subtract this graph from the original graph as indicated in the figure.
The subtracted term (in square brackets) has a vanishing contribution from
finite k (as M — o). So we replace it by an effective vertex A¢. The same
arguments as we used for one-loop self-energy, Fig. 8.2.4, show that it has
three terms, proportional to p?, m?, and M2, with coefficients polynomial in
In (M?/p?).

In this and in other graphs there are UV divergences for the whole graph
and for subgraphs. Implicitly, the counterterm graphs are to be included.
Provided we use mass-independent renormalization we are guaranteed
that the counterterm graphs satisfy the same power-counting as the original
graphs. In particular they are polynomial in the light masses. Thus the
counterterm graphs do not change the power-counting and differentiation
arguments that are crucial to our work.

8.3 General ideas

Structurally, the arguments in the last section appear similar to those we
used in Chapter 7 to show that renormalization-prescription dependence
can be compensated by finite counterterms. In fact, as we will see in the next
section, Section 8.4, a proof of the decoupling theorem can be constructed
exactly by changing the renormalization prescription. We will show that a
renormalization prescription can be chosen to have a number of convenient
properties, the most important of which is that the low-energy theory is
constructed simply by deleting all heavy fields without changing the
couplings and masses of the light fields. This property is called manifest
decoupling, and we will explain it with the aid of an example in
subsection 8.3.1.
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Our approach follows the method given by Appelquist & Carazzone
(1975) and Witten (1976). This approach generates the effective theory as a
series of subtractions. The simplest non-trivial case is given in Fig. 8.2.6.

There is another approach due to Weinberg (1980) in which the
decoupling is considered by first integrating over the heavy fields in the
functional integral. (See also Ovrut & Schnitzer (1980).) This method is less
convenient for treating graphs like Fig. 8.2.6, so we do not use it.

8.3.1 Renormalization prescriptions with manifest decoupling

Suppose we used BPH(Z) renormalization instead of minimal subtraction.
Then the renormalization condition is that the terms up to p*" are zero in
the Taylor expansion of a graph I" about zero external momentum. Here
&(IN) is the degree of divergence. For a graph with a single loop, consisting of
a heavy line, these terms are precisely those that are non-vanishing as
M — 0. Examples are given by the graphs of Figs. 8.2.3 and 8.2.4.

In fact, for a general graph, the effective low-energy theory in this
renormalization presciption is obtained merely by deleting all graphs
containing heavy lines, together with all their counterterm graphs. The
values of the couplings and masses are not changed. Therefore the BPH(Z)
prescription has the property we called ‘manifest decoupling’. It might
appear sensible always to use a renormalization prescription that has this
property. However, for many purposes it is useful to use other re-
normalization prescriptions, e.g. minimal subtraction and its relatives.
Particular cases are theories containing massless fields, especially non-
abelian gauge theories, and theories with spontaneous symmetry breaking.
In any case, it is good to have a direct method of proof of decoupling that
can work with any prescription. Furthermore, a prescription like minimal
subtraction is more convenient if one also wishes to compute high-energy
behavior (Section 7.4) with the aid of the renormalization group. In fact, the
method we will use will start from a mass-independent renormalization
prescription defined for both the full theory and for the effective low-energy
theory. Then the renormalization of the low-energy theory is extended to a
renormalization prescription of the full theory in such a way as to satisfy
manifest decoupling. This method was first stated by Collins, Wilczek &
Zee (1978).

One renormalization prescription that gives manifest decoupling at low
energies and that allows the use of renormalization-group methods at high
energies is due originally to Gell-Mann & Low (1954). In this scheme, one
makes subtractions at some arbitrarily chosen value of momentum. This

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

232 Large-mass expansion

scheme was applied to the large-mass problem by Georgi & Politzer (1976).
The disadvantage of this scheme, compared with the scheme that we will
actually use, is that renormalization-group coefficients are explicitly
functions of M/u, and of m/u:

Bi=B1(g1,9:;:M/pu,m/p).

This makes calculations complicated. Furthermore, this scheme obscures
some symmetries.

8.3.2 Dominant regions

Before actually constructing a proof of the decoupling theorem, let us give a
precise statement of the regions that give unsuppressed contributions (i.e.
not suppressed by a power of M?). We consider each graph in the full theory
together with the set of subtraction graphs needed to cancel its divergences
and subdivergences. We do not consider the subtraction graphs separately.

First of all, any graph with no heavy lines at all contributes without
suppression.

A graph with one or more heavy lines cannot give a contribution unless
at least one loop momentum is of order M. The contribution to a graph
when M is large can be considered as the sum of contributions from various
possible regions of momentum space. The regions can be specified by the
sizes of the loop momenta. For our purposes, it is enough to classify a
momentum as either finite or large. ‘Large’ we define to mean ‘of order M or
bigger’. We can do power-counting for each region in the obvious way. For
the loops carrying large momenta, counting powers of M is the same as for
the ultra-violet degree of divergence. This gives a factor M?, where § is the
ultra-violet degree of the lines carrying large momenta. A heavy line
carrying finite momentum counts as M ~2. A light line carrying finite
momentum counts as M°.

The leading power of M for a graph is obtained as the maximum of the
powers for the possible regions. Let us define 8,,(I") to be this highest power.
In general there will be logarithmic enhancements. But Weinberg’s theorem
guarantees that the power §,,(I') is correctly given by considering only the
regions we have listed. The graphs treated in Section 8.2 provide examples
of this procedure. (The subscript ‘M’ is to distinguish §,,(I') from the ultra-
violet degree of divergence.)

A region contributing to a leading power that is M° or bigger is
symbolized by contracting to a point both the heavy lines and the lines
carrying large momentum. The points represent vertices in the effective
low-energy theory; we have already used this notation in Section 8.2, in the
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P o

Fig. 8.3.1. Graph with two contracted  Fig. 8.3.2. One-particle reducible sub-
subgraphs. graphs may have to be contracted.

figures. In general (see Fig. 8.3.1) the contractions will result in several
vertices. We include in our definition the restriction that a subgraph is only
contracted to a point if it contains at least one heavy line. A contracted
subgraph is 1PI in the light lines; for if it can be split into two parts by
cutting a light line then that line is not carrying a large loop momentum.
However, the contracted graph may be 1PR in the heavy lines. For
example, in a theory where the symmetry ¢, — — ¢, is not valid, a graph
like Fig. 8.3.2 gives a leading power M°; the self-energy gives a power M?
which cancels the 1/M? in the propagator.

A subgraph that is contracted to a single vertex gives the same power of
M as its UV power-counting. So

dim (subgraph) = power of M + dim (couplings).

Hence in a renormalizable theory (where couplings have non-negative
dimension) the only contracted graphs that have a non-vanishing value as
M — oo correspond to vertices whose couplings have non-negative dimen-
sion. These vertices give the difference between g*z*'? and g, etc. Thus the
couplings in the effective low-energy theory satisfy the dimensional
criterion for renormalizability. In a scalar theory, this implies actual
renormalizability, provided all the couplings are used that have non-
negative dimension and that obey the symmetries of the full theory.

8.4 Proof of decoupling

8.4.1 Renormalization prescription R* with manifest decoupling

Let us work with the theory defined by (8.1.1). We choose to renormalize
it according to a mass-independent prescription, which we will denote
by a symbol R. For definiteness we choose this to be minimal subtraction.
By deleting all heavy fields from (8.1.1) and by changing the values of the
couplings we obtain the form of expected low-energy theory (8.1.3). We
choose to renormalize the low-energy theory by a mass-independent
prescription R*, which we also take to be minimal subtraction.

Our proof will consist of extending R* to a renormalization of the full
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theory. The extension will satisfy manifest decoupling. Since different
renormalization prescriptions differ only by a reparametrization, the
statement (8.1.4) of the decoupling theorem will hold. The structure of R* in
the full theory will give a ‘mass-independent’ form for g*, m*? and z:

g* =9*91,92-M/n),
z=12(g,,9, M/, (84.1)
m*2 =m?z,(g,,9, M/u) + M?2,0(9,,92, M/p).
Mass independence means independence of the light mass. As before, to
save notational complication we choose to renormalize the linear coupling
f ¢, by the prescription that {0|¢,|0)> = 0. We then ignore both the linear
coupling and the tadpole graphs.

The reason we use mass-independent renormalization prescriptions for
all the couplings other than the term linear in ¢ is that we can thereby make
very clear the decoupling of phenomena at small mass scales from large
mass scales. In addition, the renormalization-group equations for (8.4.1) are
much simpler to work with than they would otherwise be.

It is convenient to define two concepts:

(1) Aheavy graph is one containing at least one heavy line (i.e. a line for the
heavy field ¢,).
(2) A light graph is one that contains no heavy lines.

For each basic graph I' in the full theory we have a series of counterterm
graphs that are used to cancel its divergences. If I" is a heavy graph, then we
also consider its counterterm graphs to be heavy graphs, even though they
may contain no explicit heavy lines.

We have chosen a renormalization prescription R* for the low-energy
theory. This defines the renormalized value of any graph in the low-energy
theory, and therefore of any light graph in the full theory. We now wish to
extend this prescription to heavy graphs, in such a way that it satisfies
manifest decoupling. That is, the renormalized value R*(I') of a heavy graph
goes to zero as M — oo. The basic idea is to subtract such graphs at zero
momentum. That this is a sensible procedure is easily seen by examining a
few of the graphs from Section 8.2.

For example, we saw that Fig. 8.2.3 diverges logarithmically when
M - oo, if we use minimal subtraction. But with zero-momentum sub-
traction we have

i 3 1 1-x zx 2 pzx

0 0
=0(p*/M?) as M— . (8.4.2)
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Clearly, the difference between the two renormalizations is just the
difference given by (8.2.4) for g*z32? — g. At high energy we would use
minimal subtraction — so M can be neglected compared with momenta —
but at low energy we would use the R* prescription —so that we can
simplify calculations by dropping heavy graphs.

LN

Fig. 8.4.1.

Consider next Fig. 8.4.1 for the self-energy of the heavy field. This graph
contains both light and heavy lines. It would behave like M2 In (M)for large
M, if we used minimal subtraction. Instead, let us define the subtraction by
ig3 T(2-4d/2)

R¥T, )= 647’:3@2‘)7/7?3' X

x Jldx{[M 2x +m(1 = x) — p*x(1 — x)]¥? 72 — (M?x)¥2 =2
0

~(d/2 = 2(M?x)"2 3 [m*(1 — x) - p*x(1 — x)]}

L3y
92 J dx{[M2x+m2(1—x)—pzx(l—x)]x

-6 ] ,
m*(1—-x) pX1—x)
x ln|:1 sy vl m3(1 — x) + p2x(1 — x)

=0(1/M?) asM- . (8.4.3)

Here, we observed that when M — oo the dependence of the unrenormalized
graph is linear in m? and p?. So we expanded about p=m=0 and
subtracted the terms up to quadratic in m and p. This means that the
counterterms are polynomial in m, i.e., ‘mass-independence’ holds good.
Normally subtractions at zero mass and momentum have infra-red
divergences, but the presence of a heavy line prevents this here.

As a final example let us examine the two-loop graph of Fig. 8.2.6. The
unrenormalized graph cannot be expanded about m=p=0 to give a
counterterm, because there are two light lines. At m, p ~ 0 they give m- and
p-dependence of the form

~ (p? + m¥)In(p? + m?).

46 k(value of heavy loop at p=k =0)
k~m~0 (k* —m*)[(p + k)* — m*]
(8.4.4)

The right-hand side of this equation is schematic and symbolizes the
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O O

(@) ®)
Fig. 8.4.2. Counterterms for Fig. 8.2.6.

maximum powers and logarithms of m and of p that occur. However, to
obtain the renormalized value of the graph we must first subtract
subdivergences by the counterterms Fig. 8.4.2, constructed by the R*-
scheme. Now, the counterterm graph (b) has infra-red behavior exactly
equal and opposite to that of (8.4.4), because the counterterm is minus the
value of the heavy loop at p = k = 0. Thus the sum of the two graphs has the
extra convergence we need. The overall counterterm is then linear in p? and
m?. There are no logarithms of m as M — .

8.4.2 Definition of R*

To define the renormalization prescription R* in general, we simply
summarize and generalize what we have just done for particular graphs.

We define the renormalization prescription R* in the full theory to be the
same as our chosen prescription for the low-energy theory whenever it acts
on a purely light graph. For a heavy graph I', we assume inductively that we
have defined the quantity R*(I') in the usual way to be the unrenormalized
value of I' plus counterterms in the R*-scheme to cancel its subdivergences.
If T has degree of divergence &(I') > 0, then its overall counterterm is
defined by subtraction at m=p=0. The renormalized value of I" is
R¥(I") = R¥I) + C*(I), as usual.

To define C*(I') precisely, we first expand R*(I') in a Taylor series about
the point where its external momenta and the light mass m are zero. Pick
out the terms where momenta and m? occur with dimension up to §(I'), and
let the counterterm C*(I') be the negative of these terms. Our examples tell
us to expect that with such a counterterm:

(1) the leading M — oo behavior is canceled,
(2) there are no IR singularities in the counterterm.

We must prove these statements in general. The proof will generalize from
the simplest non-trivial case, Fig. 8.2.6. There, the UV divergent
unrenormalized graph is not polynomial in m and p, but after subtraction of
subdivergences by the R*-scheme, it becomes polynomial. Then the R*-
prescription can legitimately generate the overall counterterm. Moreover,
after subtraction of the subdivergences, the leading large-M behavior is also
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polynomial in m and p with degree equal to the degree of divergence, so that
it is cancelled by the overall counterterm.

Even with the subtractions for subgraphs, there are in general IR
singularities in the Taylor expansion of a graph. For example, consider
Fig. 8.4.1 and expand its integrand — see (8.4.3) — in powers of m? and p?. All
the terms beyond the second give divergences at x = 0; it is only the terms
needed to cancel the UV divergence that are non-singular.

8.4.3 IR finiteness of C*(I')

Suppose I' is a heavy graph, 1PI in its light lines. Potential infra-red
divergences in C*(I') arise when m and the external momenta are made
small. They come from regions where some or all of the loop momenta are
of order m. The simplest case is where all the internal momenta are of order
m.

If T" were a light graph, we would obtain a contribution of order m*™),
where 6(I') is the UV degree of divergence. So let us call —§(T") the
canonical IR degree of divergence of I. If §(I") =0, this is a logarithmic
divergence. If §(I') > 0, then the graph is finite as m— 0. But to get the
coefficients of the polynomial counterterms we differentiate up to 6(I')
times with respect to m and the external momenta. The highest terms in the
polynomial are therefore always logarithmically IR divergent, for a light
graph.

However, I' is actually a heavy graph. So at least one of its propagators
counts as 1/M? instead of 1/m?. Thus all the counterterms have an IR finite
contribution from this region, where all its loop momenta are small.

This discussion is sufficient for all one-loop graphs. But multi-loop
graphs have IR divergences coming from regions where only some loops
have small momenta. For example, Fig. 8.2.6 has a divergence from the
region where p and k are small, i.e., order m, and [ is finite or large. This
corresponds to IR degree — 2, and is given by (8.4.4). As we saw, the IR
divergence is canceled by the graph with a counterterm for the heavy loop.

The general case is that some light lines carry momenta of order m and

(a) Fig. 8.4.1, with k and p of orderm ___, _Q_

(b) Fig. 8.2.6, all loop momenta large —> —o——

(c) Fig. 8.2.6, k and p of order m —_ _O_

Fig. 8.4.3. Examples of reduced graphs.
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the remainder of the lines either are heavy or carry large momentum. Each
such region is symbolized by a reduced graph in which the subgraphs
consisting of the lines with large momenta and of the heavy lines are
contracted to points. Examples of reduced graphs are shown in Fig. 8.4.3.
Note:

(1) Counterterm graphs can also have infra-red divergences. The counter-
terms are inside the vertices of the reduced graphs.

(2) All lines of reduced graphs are light, so at least one vertex of a reduced
graph corresponds to a heavy subgraph.

We can write the infra-red degree of divergence for the region cor-
responding to a particular reduced graph y as

or(Ty)= -6+ y [6(V)+ IR degree of R*(V)].  (8.4.5)
vetices
The meaning of this equation can be seen from an example. Consider
Fig. 8.2.6 when k and p are of order m. If the graph were purely light, we
would have IR degree equal to — 2, which is the negative of the UV degree.
This would imply that the m? and p? terms in the expansion about m = p =0
would be divergent. However, the single reduced vertex — as illustrated in
Fig. 8.4.3(c) — has a counterterm. This counterterm ensures that the vertex’s
value is of order m*/M? instead of m°. The IR degree for the whole graph is
thereby decreased by 2. The second termin (8.4.5), where the sum is over this
single vertex, indicates this reduction. The degree for the region is then — 4;
we can therefore expand up to order m? and p? without an infra-red
divergence. The terms of order m*, p*, etc., are infra-red divergent, but they
are not needed for ultra-violet renormalization.
In the general case of (8.4.5), each reduced vertex ¥ would contribute
— o(V)if it were light and all its internal lines had momenta of order m. But
it actually contributes what we will now prove is a smaller amount.
Remember that counterterm graphs also contribute, and we assume that
counterterm vertices are included inside reduced vertices. The IR degree of
R*(V) is its power as its external momenta are scaled like m. The possible
cases for V are:

(1) If Vis overall convergent and contains a heavy line, then its infra-red
degree is greater than its ultra-violet degree. Fig. 8.4.3(a) has a vertex
with UV degree — 2 and IR degree zero.

(2) If Vis overall divergent and contains a heavy line then ordinarily we
would expect it to behave as m°® when m — 0 with fixed M. But we make
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subtractions by the R* scheme so that its behavior is actually m**)*2,

By induction we may assume its subtractions have no IR divergence.

Hence, in every region of momenta a heavy graph I' always has at least
one mechanism to reduce its IR degree below — §(I') and none to increase it.
Thus the overall counterterm C*(I') is IR finite. It is crucial to our inductive
proof that we first subtract subdivergences by the R* scheme.

8.4.4 Manifest decoupling for R*

A purely light graph is a graph in both the full theory and in the low-energy
theory. It survives unaltered when we let M — co. We will now prove that all
the heavy graphs vanish when M — oo, given that we renormalize them by
the R* scheme.

To do this, decompose each heavy graph into its skeleton, i.e., a series of
1PI graphs connected by lines that are not part of any loop. Since a heavy
line that is outside a loop vanishes as M — oo, all heavy graphs vanish as
M — o, if the 1PI graphs vanish.

The M — oo limit of a 1PI graph can be related to an IR limit by scaling
all masses and momenta:

M->1, p—-p/M, m->m/M.
Then
I'(p,m, M) = M*OT(p/M, m/M, 1), (8.4.6)
where d(I') is the dimension of I'. So I" vanishes as M — oo provided the
infra-red behavior is less singular than m ~ 4T, But this is what we showed in
the proof of IR finiteness of the counterterms. (Note that the dimension of a
graph is greater than or equal to its UV degree of divergence.)

8.4.5 Decoupling theorem

We have constructed two renormalization prescriptions, labelled R and R*,
for the theory under consideration. The Green’s functions in the schemes R
and R* are equal provided we make appropriate changes in the parameters:

9—4g%
In—9h>

coefficient of 0¢p3/2 — z,
coefficient of 0¢2/2 — z,,, (8.4.7)
m2 N m*2,
M? > M*2,
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This is just a particular case of a renormalization-group transformation,
and is proved by Section 7.2. When M — co we may drop all heavy graphs
in the R* scheme (so also g, z,, M* drop out of consideration). This then
gives (8.1.4), which is the decoupling theorem.

Mass-independence is true because we have arranged all counterterms to
be polynomials in the light mass of the appropriate degree.

8.5 Renormalization-group analysis

When one computes a graph containing lines for fields with widely different
masses, one finds, in general, that its value gets large as a power of the
logarithm of the mass ratio. Such large coefficients are undesirable in a
perturbation expansion, for they mean that the reliability of using a few
low-order terms is worsened. This situation arises in both strong- and
weak-interaction physics. We will now show how to combine the decoup-
ling theorem and the renormalization group to do calculations without
their being made unreliable by the large logarithms.

A convenient method is to use a mass-independent scheme (specifically
minimal subtraction) for high-momentum calculations, where one often
wishes to neglect all masses, and to use the R* scheme, as defined in
Section 8.4, at low momenta, where one wishes to neglect heavy graphs. An
advantage of this method is a simplification of many of the calculations
needed to match high-energy and low-energy calculations. One needs only
the pole parts of graphs and the values at zero external momentum.

We will explain how to use this scheme in the toy theory (8.1.1). First let
us write the RG equations for the Green’s functions. For a Green’s function
of N, light and N, heavy fields, we have

d
(ya; +iNy + %Nhyh) Gy n, =0, (8.5.1)
where
d 0 0 5}
M=kt ﬂl(gl,gz)ga + ﬂz(gugz)@
2 2 a 2 2 a
—(M*yp+m Ymu)g‘m—(m Imt M YMm)En—z' (85.2)

The RG coefficients are obtained from the renormalization counterterms as
usual. Their lowest-order values are

1
B, = _W(%gi-'-glg%-'-gg)""""
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1
Br=— 55393 + 9193 49192 +

= 192,392 ’

1
yh=m(gf+g§).... (8.5.3)

In the effective low-energy theory, the RG equation is
a*
* —_
[#E + 3Ny ]G,’{: =0, (8.5.4)
with
a* 0
Haru ™ Hou
3 g*3
T 464n°
*2
9
384n?
To compare the low-energy theory and the full theory, we extended the

renormalization scheme of the low-energy theory to a renormalization
scheme R* for the full theory. In this scheme the RG operator has the form

&t 9 ) 3
= — *____ *____
Ko =t 4 g & g%

0
B T

p* = +ooy (8.5.5)

y*

0
v o

and the anomalous dimensions of the fields are y* and y¥. In fact §*, %, and
y* are identical to those in the low-energy theory (see (8.5.4) and (8.5.5)),
while 8% = y*,, = v%,.= 7% =y =0. This is easily seen by examining the
Green’s functions which provide the normalization conditions for the
renormalizations.

For example, consider the inverse of the heavy propagator when both p?
and m? are much less than M?:

— (M*2yf + m*2y%, ) — (m*2y% + M*2y% ) (8.5.6)

1/G, , = —i[p? — M*2 + O(p*, m*p?,m*)] (8.5.7)
which satisfies
d* 1 1
”EI;GO,Z =yGo2- (8.5.8)

This is only consistent if y = y¥ =y%,, =0.
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8.5.1 Sample calculation

We wish to start with the full theory renormalized by minimal subtraction.
In that version of the theory, we know the evolution of the couplings. Our
aimis to compute Green’s functions in the low-energy theory and the values
of the mass and coupling. The low-energy effective couplings are

12873
g*z(u)=m+
2t —fixed (8.5.9)
m*? = constant [In(u/A*)]~1/°,
M*2 = fixed.

The effective couplings for the full theory with minimal subtraction are
more complicated because they solve a coupled equation for two variables.
To make the transition between the schemes we compute the lowest-
order divergent graphs. We equate the self-energy for ¢, in the two schemes,
with use of the Lagrangian (8.1.3) for the low-energy theory. This gives

Fig. 8.2.4 + pole counterterm
= Fig. 8.2.4 + zero-momentum counterterm + i(z — 1)p? — i(m*?z — m?).

We thus obtain z and m*? as given by (8.2.6) and (8.2.7). To keep m** finite,
and not of order M2, we must replace m? by

m* + 1221;7?31” 2g3[y — 1+ In(M?/4mu?)]. (8.5.10)

Notice the presence of logarithms of M/u. If they are large enough, they
invalidate the use of perturbation theory to compute g*, m*? and z.
However, the equations we write are valid at any value of u, so we may
perform the calculations with u of order M. After computing g*, m*,and zin
terms of g,, g,, m,and M, we can evolve them to the value of u that we wish
to use for calculations in the low-energy theory.

A convenient point to do the matching is where g, = g*, i.e., at u? = ul,
where p2 = M?e?/4n. Then for a general value of u we have

1
*2 = .
9 = g2 o) + G/1287%) In (/o) +
A similiar equation holds for m*:
m*2(u) = m*[ (1287 /3g%) + In(u/po) + -]~ 1°. (8.5.11b)

The solution for z is more complicated since the renormalization-group
equation for both renormalization prescriptions is needed.

(8.5.11a)
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8.5.2 Accuracy

We compute g*(u) in the low-energy theory by matching to the full theory
at some u, of order M and then evolving to an arbitrary renormalization
mass u from y,. Given the accuracy in g*(u) that we need for a particular
calculation, we will find the order to which we must perform the matching
and to which we must know S.

The RG equation for g*(u) gives

9(n)

In (p/po) = j dg'/B(g"). (8.5.12)

9(uo)
So if there are small errors Ag(u,) and A(1/f) in g(u,) and 1/8 then the error
in g(u) is

A 1
Ag(p) ~ B[g(u)]{ﬁfg—((% - dg’A[mJ}

Ag(u, 1
S ol S il

Suppose we perform matching up to n,-loop order; then the error in g(u,) is
of order g(u,)*™**. Suppose fis computed to ng-loop order; then the error
in 1/B(g) is of order g>"#~3. These translate to errors in g(u) of order

9(1)*g(po)*™
and

9(u)*In[g(w)/g(uo) 1 if ny =1,
or

O[g(w)'*?"] + O[g(u)*g(uo)*™ = V]if ny >2.

For example, if we wish to perform reliable two-loop calculations, then
we need Ag to be much smaller than g3. This means that we need to do the
matching correct to one loop and that the f-function is needed to two loops.
This is the minimum accuracy needed to correspond to a fractional error on
A (defined in Chapter 7) which is much less than unity.
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9

Global symmetries

In this chapter we consider the impact of global symmetries of a field theory
on its renormalization. As an example consider the theory of a charged
scalar field:

& =0¢"0¢p —m’¢'¢ —g(¢"9)*/4. 6.0.1)

This classical Lagrangian is invariant under the transformation ¢ — e ™%,
The quantum theory is also invariant. For this particular theory, the
quantum invariance is not a very deep statement. However, symmetries do
not always survive quantization, as we will see in Chapter 13. Thus it is
useful to examine the consequences of the symmetry in this theory. One
consequence is that only invariant counterterms are needed; for example,
we do not need to use non-invariant counterterms proportional to

¢*+¢™ or i(¢?—¢").

Other consequences are the W /rd identities, which characterize the action
of the symmetry at the level 6f Green’s functions.

The main step in proving the statements is to impose an ultra-violet cut-
off. If this is done by putting the theory on a lattice or by using dimensional
regularization, the symmetry is preserved. The arguments given in Section
2.7 are sufficient to prove Ward identities in the bare theory. From the
invariance of Green’s functions follows invariance of the counterterms. As
we will see in Section 9.1 we can then write renormalized Ward identities in
the renormalized theory, which therefore exhibits the symmetry.

In more general cases this simple procedure fails.

One case is that the UV cut-off breaks the symmetry. For example,
putting the theory on a lattice breaks Poincaré invariance. Luckily, other
regulators, like dimensional continuation, preserve this invariance, and the
renormalized theory with no cut-off is Poincaré invariant. Some sym-
metries cannot be preserved after quantization. It must be true that no
regulator can preserve them. An example, to be treated in Chapter 13, is the
chiral invariance of QCD.

244

https://doi.org/10.1017/9781009401807 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401807

9.1 Unbroken symmetry 245

Another case, which we will treat later in this chapter, is of spontaneous
symmetry breaking, typified by the theory given by (9.0.1) with m? replaced
by — m?2. This is called the Goldstone model. In this case the ground-state —
the vacuum - is not invariant under the symmetry, and the field acquires a
vacuum expectation value:

<0|¢|0> =[2|m?|/g]""* + higher order.

If we use an invariant regulator, like dimensional continuation, we will still
be able to prove Ward identities. Hence, we will be able to prove that only
symmetric counterterms are needed, so that the symmetry is preserved.
From the Ward identities follows Goldstone’s theorem, that there is a
massless boson for each generator of a broken symmetry.

9.1 Unbroken symmetry

We first consider a totally unbroken internal symmetry. The fields carry a
matrix representation of the generators. Thus:

S.:= —i(t)’ ¢, (9.1.1)

in the notation of Section 2.6.
The proof that the symmetry can be preserved under quantization is
elementary. We spell out the steps so that we can see what needs to be done

in less trivial cases:

(1) Regulateinaway that preserves the symmetry. Lattice and dimensional
regularization both do this since the symmetry commutes with all
$pace-time transformations.

(2) Include in . all possible invariant counterterms up to the appropriate
dimension. Thus §, = 0. For the model (9.0.1) we replace .# by

£ =Z04'0¢ —mie'p — gu(¢'9)*/4. 9.12)

(3) To do perturbation theory, let the free Lagrangian be invariant:
6,2, =0. Then the interaction Lagrangian is also invariant.

(4) Ateach order, choose the counterterms to cancel the divergences in 1PI
Green’s functions. Since the free propagators and the interactions are
all invariant under the symmetry, the divergences are symmetric and
non-invariant counterterms are not needed.

(5) Remove the UV cut-off. The Green’s functions are symmetric:

8,C0|T;,(31)-..b;,3w)[0> =0. 9.13)

In the case of the model (9.0.1) the propagator for the charged field
carries an arrow indicating the direction of flow of charge. All vertices have
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equal numbers of ingoing and outgoing lines. In (9.1.3) we have 6¢ = —i¢
and 6¢'=i¢', so this equation is literally a statement of charge
conservation.

The current for a symmetry is defined by Noether’s theorem
(Section 2.6):

0
=308 2. 9.14
J Z P 0.5 (9.1.4)

In the case of the simple model (9.0.1) there is a single current
F =iz, (9.1.5)

We derived the Ward identities of the bare theory (2.7.6). For the theory
(9.0.1) these are

QO THIP) BN e 0

N
=1 Z [5(" - y]') —o(x — Zj)]<0| To(y,) - '¢(J’N)¢f(21)' ) '¢T(ZN)|0>'
l (9.1.6)

We showed in Section 6.6 that the current is in fact finite; no extra
renormalization counterterms are needed beyond those implied by the
factor Z in (9.1.5).

Itis of interest to see how the divergences that are present get cancelled by
the factor Z. For the two-point function of j* we have the 1PI graphs of
Fig. 9.1.1, up to order g2. Since Z = 1 + O(g?) in this theory, we may replace
Z by 1 everywhere except in the tree graph (a). Graph (b) could be
logarithmically divergent by power-counting, but is in fact zero, so no
counterterm is needed at order g. Graph (e) is also zero. Graphs (¢) and (d)
are finite after their subdivergences are cancelled by a counterterm; they
also cancel each other. These cancellations arise since these graphs have a

LXK
(@ (b) (c) (d)
() o)) (9)

Fig. 9.1.1. Graphs up to order g? for the two-point function of j*.
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subgraph which is a graph for

0| Tj*(x) $'$(»)]0.
In momentum space this is of the form g*f(¢?). The Ward identity implies
that its divergence is zero:

a—i;<0| T#0) $'9()]0 = i6(x — )<0|8($'$)[0> =0,

so that g2f(q%) =0.

Graphs (f) and (g) each have a subdivergence which is cancelled by a
graph of the form (b), which is zero. Their overall divergence must be
cancelled by using the order g2 term in Z in graph (a).

9.2 Spontaneously broken symmetry

To explain the renormalization of theories with spontaneously broken
symmetry it will be sufficient to consider the case of the Goldstone model:
L =20,4'0"¢p + m*¢'d — g(¢'$)*/4 + om’$'p — 3g(¢' )’ /4
=(091)*/2 + (04,)°/2 + m*($7 + ¢3)/2 — g(¢7 + $7)*/16

+ counterterms. 9.2.1)

Here we have written the complex scalar field in terms of real fields:

¢ =(¢, +1i¢,)2~ /2. The mass term is of the ‘wrong sign’. This will result in

spontaneous breaking of the symmetry under ¢ — ¢e . The Noether

current for this symmetry is

P =iZ¢ 0 = Z(p,0"p, — $,0",). 9.22)

For small couplings the Euclidean functional integral is dominated by
fields close to the minimum of the potential in (9.2.1). This is at

|¢| =2m/g" 2. (9.2.3)

The perturbation expansion amounts to a saddle point expansion about the
minimum. It is set up by making the substitution

¢, = ¢y +2m/g"?, 9.2.4)
to give
L =(001)7/2+(0¢,)* /2 —m* ¢ — g(¢ + $3)*/16
—mg'2pi (@7 + $3)/2 + Lo (9:2.5a)
where

Lo=—0g(d1* + $3)°/16 — gmg ™2 ¢ (¢ + $3)/2
— ¢*(3m’dg/g — om*)/2 — $3(m*3g/g — 5m?)/2
—2¢img™ 2(mdg/g — om®) +(Z — 1)(0}* + 0¢3)/2. (9.2.5b)
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The idea of making this perturbation expansion is that in the functional
integral we impose a boundary condition that fixes the phase of the field at
co. By the symmetry we may make this phase real, without loss of
generality. In three or more space-time dimensions, fields that have a
different phase over a large region have an action so much larger that
quantum fluctuations cannot destroy the boundary condition. Then ¢, is
forced to have a real vacuum expectation value close to 2m/g'/2.

In setting up the perturbation expansion we have tadpole graphs like
Fig. 9.2.1. These generate a vacuum expectation value for ¢}

<0]¢1|0) =6v
that starts at order g'/%. It means that ¢, has vacuum expectation value
2mg~'"? + Sv. There are then graphs like Fig. 9.2.2, where the tadpoles
appear as subgraphs. It is possible to recast the Feynman rules by writing
¢, = ¢ +2mg~? + Sv and requiring @7 to have zero vacuum expectation
value. A better practical approach is to impose év = 0 as a renormalization
condition on ém?.

DN

Fig. 9.2.1. Graphs for {0|¢}|0).

0 YS

Fig. 9.2.2. Graphs containing tadpoles as subgraphs.

If we start with the theory (9.0.1) without spontaneous symmetry
breaking and vary m? until it is negative, then we should pass through a
phase transition and thereby reach the Goldstone model (9.2.1). There must
be an actual phase transition because <0|¢|0) is exactly zero in the phase
with unbroken symmetry. Since this expectation value is non-zero in the
Goldstone phase there must be non-analyticity of the theory as a function
of m?,

Now, we must renormalize the theory: the continuation in the re-
normalized mass m? is sensible only if the counterterms are the same
functions of m? and g in the two phases. It is sensible to use a mass-
independent renormalization prescription, for then the dependence on m?
of the counterterms is the simplest possible. We will prove the following:
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(1) Renormalization of the Goldstone phase is accomplished by using only
symmetric counterterms in the Lagrangian (9.2.1).

(2) The dimensionless counterterms Z — 1, g, and ém?/m? can be chosen
to be the same as in the phase of unbroken symmetry (the so-called
Wigner phase).

(3) The current given by (9.2.2) is finite just as it is in the Wigner phase.
Since the bare Lagrangian is invariant under ¢ — ¢e '“, Ward
identities are valid and from them Goldstone’s theorem follows, that the
physical mass of ¢, is exactly zero.

We must also discuss the choice of a practical renormalization prescription.

9.2.1 Proof of invariance of counterterms

We will do perturbation theory by choosing the free Lagrangian

FLo=0072/2+ 0p%/2 —m?p,2, (9.2.6)
and the basic interaction
Ly=—g(¢7? + $3)/16 — mg' ¢ (¢}? + ¢3)/2. 9.2.7)

The counterterms are given the form (9.2.5b) and 8g, dm?/m?, and Z are

given the same values as in the unbroken theory with a mass-independent
renormalization scheme. We will prove that these counterterms are
sufficient to make the broken-symmetry theory finite.

Some of the interaction vertices are the same as in the Wigner phase. The
others are obtained by substituting 2m/g'/> for ¢,. Therefore graphs
involving the extra vertices are obtained by erasing external ¢, lines on
symmetric graphs. Examples are shown in Fig. 9.2.3. The only complication
is that mass terms generated from the basic interaction go into the free
rather than the interaction Lagrangian. This is the sole source of
complications in our proof.

1 2
(@) - +other terms
1 2

11
b) @ +><Ct. —»Q +)/+ other terms
1 1

Fig. 9.2.3. Generation of graphs in theory with spontaneously broken symmetry
from graphs in the symmetric theory.
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To relate the counterterms to those in the unbroken theory let us write
the free propagators as follows:

i iem-MY) | iemi— M)
¢1'P2*2m2 _Pz—M2+ (PP —M»? (P2~ M¥(p? —2m?)’
i i —iM? iM*
¢23? = = M2 + (7 = M?? + (2 = M?%p> (9.2.8)

Here M? is a arbitrary parameter. We substitute (9.2.8) for every line in a
graph.

Suppose we substitute the first term on the right of (9.2.8) for every line of
a basic graph which has only four-point basic vertices. Then we obtain a
graph in the symmetric theory with mass M.

The difference between these symmetric graphs and the true theory is
given by:

(1) graphs with one or more three-point vertices,
(2) graphs with the second or third term on the right of (9.2.8) substituted
for one or more propagators.

In either case the degree of divergence is reduced. Now the maximum
degree of divergence is two. So substitution of the third term in (9.2.8)
always makes a graph overall convergent. We are allowed at most one
substitution of the second term.

Let us now suppose that all graphs with fewer than N loops are
successfully renormalized by our symmetric counterterms. We will prove
inductively that all N-loop graphs are renormalized. The induction starts
because tree graphs need no renormalization. We decompose the mass
counterterm in &, as

— 30 2[3m*Sg/g + (Z,,— 1)(— m* — M) +(Z,,— )M?]
—3d3[m*og/g +(Z,,— )(—m* —MH)+(Z,— YUM?].  (9.29)

Here Z, = (m? + dm?)/m? is the mass renormalization factor.
After substitution of (9.2.8) for each propagator in a basic 1PI graph with
N-loop all subdivergences are cancelled by counterterms of lower order,

according to the inductive hypothesis. We are left with the following overall
divergences:

(1) Logarithmically divergent graphs for the four-point function with all
propagators set to i/(p2 — M?) and with only four-point vertices. Such
graphs have an overall divergence independent of M which is removed
by counterterms in dg for the symmetric theory. No other 1PI graph for
the four-point function has an overall divergence.
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(2) Self-energy graphs with four-point vertices only and with propagators
i/(p?> — M?). Field renormalization and the (Z,, — 1)M? terms in (9.2.9)
renormalize these, again exactly as in the symmetric theory.

(3) Self-energy graphs as in (2) but with one propagator replaced by a
second term in (9.2.8). In the numerators of (9.2.8) we write

2m? — M? =3m? — (m* + M?) = (2m/g'/?)*(3g/4) — (m* + M?),

— M?=m? — (m?* + M?)=(2m/g"'?)*(g/4) — (m* + M?). (9.2.10)
The terms with —(m?+ M?) are renormalized by the (Z,—1)
(— m? — M?) parts of the mass counterterms. They correspond to the
effect of differentiating the self-energy graphs with respect to M2. The
other terms in (9.2.10) we will regard as an insertion of a four-point
vertex on a line when two ¢, fields are replaced by 2m/g'/?. These terms
are considered under (4).

(4) Graphs of classes (1) and (2) in which one or more external ¢, fields are
deleted and replaced by 2m/g'/>. Examples are Fig. 9.2.3(b) and
Fig. 9.24. The same replacement generates the counterterm
Lagrangian (9.2.5b) from the symmetric theory, so we have counter-
terms for them.

This completes the proof.

5.0 v
Qe

Fig. 9.2.4. Generation of graphs with loops in theory with spontaneously broken
symmetry from graphs in the symmetric theory.

9.2.2 Renormalization of the current

The same procedure shows that the current

J=Z($10"b, — $,0"d}) +2Zmg ™ 120"¢, (9.2.11)
1 zm/gl/2 1
2 ; 20k
2 2 100p

Fig. 9.2.5. Renormalization of current in spontaneously broken theory.
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has finite Green’s functions. Note that the term 2Zmg ™ !/20*¢, contains the
counterterms that renormalize graphs like Fig. 9.2.5.
The Ward identities are then true and involve finite quantities. A typical
case is
0,<0| T*x)¢,(»)|0> =i<0[6,(y)[0>
= —i{0]¢,(»)0>
= —i(2m/g'/* + dv). 9.2.12)
By multiplying by the inverse propagator for ¢, and going to momentum
space, we find
P4 2(p) = 2m/g"'* + 60)(i/G5(P)), (92.13)

where I'%, is the set of graphs for (0|Tj*¢,{0) that are 1PI in ¢,. This
is illustrated in Fig. 9.2.6. Since T'* oc p* as p? -0, (9.2.13) implies that G ;'
has a zero at p? =0, in other words that ¢, is massless to all orders of
perturbation theory. This is the Goldstone theorem (Goldstone, Salam &
Weinberg (1962)).

e 1B OY

Fig. 9.2.6. The Ward identity that implies Goldstone’s theorem.

9.2.3 Infra-red divergences

Individual graphs with a self-energy insertion on a ¢, line have infra-red
divergences. Such a graph is illustrated in Fig. 9.2.7, and the divergence
comes from the region where the momentum k on the ¢, line is close to
zero:

1
d*k .
J ~o (K77

If uncancelled, this divergence indicates that the self-energy shifts the mass
to a value other than zero. But the Goldstone theorem tells us that the self-
energy is zero at k=0. So the infra-red divergence cancels against
divergences in other graphs of the same order.

Fig. 9.2.7. Graph with infra-red divergence.
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9.3 Renormalization methods

One of the practical problems that arises in making calculations in a theory
with spontaneous symmetry breaking is to find the most convenient
renormalization prescription. Fundamentally, there is no problem, for all
renormalization prescriptions are related by renormalization-group trans-
formations, and are therefore equally good. But, in practice, choice of one
prescription over another can save some labor. The problems become
particularly acute in gauge theories of weak interactions (Beg & Sirlin
(1982)).

Among the issues to be considered in choosing a renormalization
prescription are:

(1) If we ignore higher-order corrections, then some parameters are equal
to quantities, like particle masses, that are easily measurable. It is often
convenient to impose exact equality as a renormalization condition.

(2) One must treat tadpole graphs. Their effect is to provide an additional
shift dv in the vacuum expectation value of the field. Leaving these
graphs as they are considerably increases the number of graphs
contributing to a given Green’s function. Shifting the field by év gives
many extra terms in the formulae for the coefficients in (9.2.5a) and
(9.2.5b). One can impose dv =0 as a renormalization condition, at the
expense of removing the simple connection between the phases of
broken and unbroken symmetry (as was exploited in Section 9.2).

(3) It is necessary to relate calculations done by different people. Direct
comparisons can be made only if the same renormalizations are used. It
is evidently useful to agree on a standard.

(4) If the coupling is not very small or if there occur very large ratios of
masses and momenta, then one must choose a renormalization
prescription with the ability to remove the large logarithms.

One approach is to use dimensional regularization with minimal
subtraction. Graphs can be renormalized by the forest formula. At one-loop
