Bull. Aust. Math. Soc. 110 (2024), 234–243 doi[:10.1017/S0004972724000091](http://dx.doi.org/10.1017/S0004972724000091)

WEIERSTRASS ZETA FUNCTIONS AND *p*-ADIC LINEAR RELATION[S](#page-0-0)

DUC HIEP PHA[M](https://orcid.org/0000-0002-5405-1204)

(Received 13 October 2023; accepted 27 January 2024; first published online 11 March 2024)

Abstract

We discuss the *p*-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the *p*-adic domain. These results are extensions of the *p*-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, *Logarithmic Forms and Diophantine Geometry*, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions ['Sous-groupes à un paramètre *p*-adique de variétés de groupe', *Invent. Math.* 40(2) (1977), 171–193].

2020 *Mathematics subject classification*: primary 11J89; secondary 11G07, 11S99. *Keywords and phrases*: elliptic curve, Weierstrass zeta function, *p*-adic transcendence.

1. Introduction

Let K be a subfield of the field of complex numbers C . Let E be an elliptic curve defined over *K* by the Weierstrass form

$$
Y^2Z - 4X^3 + g_2XZ^2 + g_3Z^3 = 0,
$$

where g_2, g_3 are elements in *K* satisfying $g_2^3 - 27g_3^2 \neq 0$. Let e_1 and e_2 be two roots among the three (distinct) complex roots of the polynomial $4X^3 - g_2X - g_3$. Put $\Lambda = \mathbb{Z}\omega_1^* + \mathbb{Z}\omega_2^*$ with

$$
\omega_1^* = \int_{e_1}^{\infty} \frac{dx}{\sqrt{4x^3 - g_2x - g_3}}
$$
 and $\omega_2^* = \int_{e_2}^{\infty} \frac{dx}{\sqrt{4x^3 - g_2x - g_3}}$.

Then Λ is a lattice in C. The elliptic function $\varphi : \mathbb{C} \setminus \Lambda \to \mathbb{C}$ relative to Λ is defined by

$$
\wp(z) = \wp(z; \Lambda) := \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right).
$$

This research has been done under the research project QG.23.48 'Some selected topics in number theory' of Vietnam National University, Hanoi.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

This function is called the *Weierstrass elliptic function* associated with the elliptic curve *E* and Λ is called the *lattice of periods* of φ (or the lattice associated with *E*). The *Weierstrass zeta function* associated with *E* (or relative to Λ) is the function $\zeta : \mathbb{C} \setminus \Lambda \to \mathbb{C}$ defined by

$$
\zeta(z) = \zeta(z; \Lambda) := \frac{1}{z} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right).
$$

The Weierstrass zeta function is related to the Weierstrass elliptic function by $\zeta' = -\varphi$ and one can write the Laurent expansion at zero of ζ as

$$
\zeta(z) = \frac{1}{z} - \sum_{k \ge 1} \mathcal{G}_{2k+2}(\Lambda) z^{2k+1},
$$

where $G_{2k+2}(\Lambda)$ is the Eisenstein series of weight $2k + 2$ (with respect to the lattice Λ). By induction, $G_{2k+2}(\Lambda)$ can be represented as a polynomial in g_2, g_3 with rational coefficients (see [\[5,](#page-8-0) Ch. IV]). In other words,

$$
\zeta(z) = \frac{1}{z} + \sum_{k \ge 1} \alpha_k z^{2k+1}
$$

with $\alpha_k \in \mathbb{Q}[g_2, g_3]$ for all positive integers *k*.

Since φ is a periodic function, it follows that ζ is a quasiperiodic function, that is, for each $\omega \in \Lambda$, there exists a complex number $\eta = \eta(\omega)$ satisfying $\zeta(z + \omega) = \zeta(z) + \eta$ for all $z \in \mathbb{C} \setminus \Lambda$. The number η is called a *quasiperiod* of the elliptic curve *E*. If ($ω_1, ω_2$) is a pair of fundamental periods of Λ (that is, $ω_1$ and $ω_2$ are complex numbers generating Λ over \mathbb{Z}), one can show that $\eta(a\omega_1 + b\omega_2) = a\eta_1 + b\eta_2$ for any integers *a*, *b*, where $\eta_1 = \eta(\omega_1)$ and $\eta_2 = \eta(\omega_2)$. Furthermore, in the case when the ratio ω_2/ω_1 has positive imaginary part, we obtain the *Legendre relation* between the periods and the quasiperiods:

$$
\omega_2\eta_1-\omega_1\eta_2=2\pi i.
$$

Schneider was the first to give a transcendence result concerning linear relations between periods and quasiperiods, by showing that any nonvanishing linear combination of ω and η over \overline{Q} is transcendental (see [\[12\]](#page-8-1)). The result was extended by Coates to pairs of fundamental periods. He obtained a similar result for the numbers $2\pi i$, ω_1 , ω_2 , η_1 , η_2 , where (ω_1, ω_2) is a pair of fundamental periods (see [\[6\]](#page-8-2)). Masser established the dimension of the vector space generated by $1, 2\pi i, \omega_1, \omega_2, \eta_1, \eta_2$ over Q, proving that this dimension is either 4 if the elliptic curve *E* has complex multiplication, or 6 otherwise.

In the 1980s, Wüstholz formulated and proved a celebrated theorem in complex transcendental number theory which is called *the analytic subgroup theorem* (see [\[1\]](#page-8-3) or [\[15\]](#page-9-0)). The theorem states that an analytic subgroup defined over \overline{Q} of a commutative algebraic group defined over Q contains a nontrivial algebraic point if and only if it contains a nontrivial algebraic subgroup defined over Q. The analytic subgroup theorem has many significant consequences, some of which concern elliptic curves. 236 D. H. Pham [3]

In particular, Wüstholz himself used the theorem to deduce a result on linear relations for the values of the Weierstrass zeta function ζ at algebraic points of the Weierstrass elliptic function \wp . Here, a complex number $u \in \mathbb{C} \setminus \Lambda$ is called an *algebraic point of* φ if $\varphi(u) \in \mathbb{Q}$. Let End(*E*) denote the ring of endomorphisms of *E*. Then it is known that $K := \text{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ (*the field of endomorphisms of E*) is either \mathbb{Q} or an imaginary quadratic field. The following theorem was given by Wüstholz (see [\[1,](#page-8-3) Theorem 6.3]).

THEOREM 1.1. Let E be an elliptic curve defined over \overline{Q} and $\gamma_1, \ldots, \gamma_n$ algebraic *points of* \wp *. Denote by W the vector space generated by* $\gamma_1, \ldots, \gamma_n$ *over K and by V the vector space generated by* $1, 2\pi i$, $\gamma_1, \ldots, \gamma_n$, $\zeta(\gamma_1), \ldots, \zeta(\gamma_n)$ *over* $\overline{\mathbb{Q}}$ *. Then*

$$
\dim_{\overline{\mathbb{Q}}} V = 2 \dim_K W + 2.
$$

It is natural to extend this result to the *p*-adic case and the main goal of this paper is to establish an extension of the *p*-adic analogue of Theorem [1.1.](#page-2-0) To state it, let *E* be an elliptic curve given by

$$
Y^2Z - 4X^3 + g_2XZ^2 + g_3Z^3 = 0,
$$

now defined over \mathbb{C}_p (that is, $g_2, g_3 \in \mathbb{C}_p$). Here, \mathbb{C}_p denotes the completion of $\overline{\mathbb{Q}_p}$ with respect to the *p*-adic absolute value $|\cdot|_p$ as usual. Let φ_p be the *(Lutz–Weil) p-adic elliptic function* associated with the elliptic curve *E* (see [\[9,](#page-8-4) [14\]](#page-9-1)). The function \wp_p is analytic on the set $\mathscr{D}_p \setminus \{0\}$, where \mathscr{D}_p is the *p*-*adic domain of E* defined by

$$
\mathcal{D}_p := \{ z \in \mathbb{C}_p : |1/4|_p \max\{ |g_2|_p^{1/4}, |g_3|_p^{1/6} \} z \in B(r_p) \}
$$

with *B*(r_p) the set of all *p*-adic numbers *x* in \mathbb{C}_p such that $|x|_p < r_p := p^{-1/(p-1)}$. As in the complex case, we say that a nonzero *p*-adic number $u \in \mathcal{D}_p$ is an *algebraic point of* φ_p if $\varphi_p(u) \in \overline{\mathbb{Q}}$. Let ζ_p be the *p*-adic Weierstrass zeta function (*p*-adic analogue of the Weierstrass zeta function ζ) associated with E which is, by definition, the (unique) odd *p*-adic meromorphic function on \mathcal{D}_p satisfying $\zeta_p' = -\varphi_p$. Let $\text{Log}_p : \mathbb{C}_p \setminus \{0\} \to \mathbb{C}_p$ be the Iwasawa logarithm (see [11] Ch 5. Section 4.51). We now state our main theorem the Iwasawa logarithm (see [\[11,](#page-8-5) Ch. 5, Section 4.5]). We now state our main theorem.

THEOREM 1.2. Let E be an elliptic curve defined over \overline{Q} . Let u_1, \ldots, u_l be nonzero *algebraic numbers and* v_1, \ldots, v_n *algebraic points of* \wp_p *. Denote by U the vector space generated by* $Log_p(u_1), \ldots, Log_p(u_l)$ *over* $\mathbb Q$ *and by V the vector space generated by* v_1, \ldots, v_n *over the field K of endomorphisms of E. Then the dimension of the vector space W* generated by 1, $\text{Log}_p(u_1), \ldots, \text{Log}_p(u_l), v_1, \ldots, v_n, \zeta_p(v_1), \ldots, \zeta_p(v_n)$ over $\overline{\mathbb{Q}}$ *is determined by*

$$
\dim_{\overline{\mathbb{Q}}} W = 1 + \dim_{\mathbb{Q}} U + 2 \dim_K V.
$$

In the case when $l = n = 1$, we deduce at once from Theorem [1.2](#page-2-1) the following result which is an extension of a result given by Bertrand in 1977 (see [\[2,](#page-8-6) Proposition 1]).

COROLLARY 1.3. *Let E be an elliptic curve defined over* Q*. Let u be a nonzero algebraic number with* Log_{*p*}(*u*) ≠ 0 *and v an algebraic point of* \wp_p *. Let* α*,* β *and*
γ be algebraic numbers not all zero. Then the number αl og (*u*) + βν + γζ (ν) is γ *be algebraic numbers not all zero. Then the number* α Log_{*p}*(*u*) + β *v* + $\gamma \zeta_p$ (*v*) *is*</sub> *transcendental.*

2. Extensions of commutative algebraic groups

In this section, let K be a fixed algebraically closed field of characteristic 0. Let *A* and *B* be commutative algebraic groups defined over *K*. A commutative algebraic group *C* defined over *K* is called an *extension* of *A* by *B* if there is an exact sequence of commutative algebraic groups

$$
0 \longrightarrow B \xrightarrow{i} C \xrightarrow{\pi} A \longrightarrow 0.
$$

To give an extension *C* of *A* by *B* is equivalent to giving a pair $(i, \pi) \in Hom(B, C) \times$ $Hom(C, A)$ for which the above sequence is exact. Let

$$
0 \longrightarrow B \xrightarrow{i} C \xrightarrow{\pi} A \longrightarrow 0
$$

and

$$
0 \longrightarrow B' \xrightarrow{i'} C' \xrightarrow{\pi'} A' \longrightarrow 0
$$

be extensions of commutative algebraic groups. A homomorphism between the above two extensions is a triple of homomorphisms $\varphi : C \to C', \alpha : A \to A', \beta : B \to B'$ of algebraic groups such that the diagram algebraic groups such that the diagram

$$
0 \longrightarrow B \xrightarrow{i} C \xrightarrow{\pi} A \longrightarrow 0
$$

\n
$$
\downarrow^{\beta} \qquad \downarrow^{\varphi} \qquad \downarrow^{\alpha}
$$

\n
$$
0 \longrightarrow B' \xrightarrow{i'} C' \xrightarrow{\pi'} A' \longrightarrow 0
$$

commutes. Clearly, φ is an isomorphism if and only if α and β are isomorphisms. In the case $A = A'$, $B = B'$ and $\alpha = id_A$, $\beta = id_B$, we say that the two extensions *C* and *C'* are *equivalent* if there is a homomorphism between them. The set of equivalence *C* are *equivalent* if there is a homomorphism between them. The set of equivalence classes [C] of extensions forms a commutative group $Ext¹(A, B)$ with the neutral element $[A \times B]$ (via the Baer sum). We write C for its equivalence class [C] by abuse of notation. The bi-functor $Ext¹$ which assigns to the pair (A, B) the group $Ext¹(A, B)$ is contravariant in the first variable and covariant in the second one. This means that if $\alpha : A' \to A$ and $\beta : B \to B'$ are homomorphisms between commutative algebraic groups, then they induce homomorphisms $\alpha^* : \text{Ext}^1(A, B) \to \text{Ext}^1(A', B)$
and $\beta : \text{Ext}^1(A, B) \to \text{Ext}^1(A, B')$. The two homomorphisms α^* and β make the and $\beta_* : \text{Ext}^1(A, B) \to \text{Ext}^1(A, B')$. The two homomorphisms α^* and β_* make the diagram diagram

$$
\operatorname{Ext}^1(A, B) \xrightarrow{\alpha^*} \operatorname{Ext}^1(A', B)
$$

\n
$$
\downarrow_{\beta_*} \qquad \qquad \downarrow_{\beta_*}
$$

\n
$$
\operatorname{Ext}^1(A, B') \xrightarrow{\alpha^*} \operatorname{Ext}^1(A', B')
$$

commute. Furthermore, $Ext¹$ is additive in both variables, which implies that

$$
Ext1(A1 × A2, B) = Ext1(A1, B) × Ext1(A2, B)
$$

and

$$
Ext1(A, B1 \times B2) = Ext1(A, B1) \times Ext1(A, B2).
$$

For example, we describe the exponential map of *G* in the case where *G* is an extension of an elliptic curve by the additive group \mathbb{G}_a defined over $\overline{\mathbb{Q}}$ as given in [\[4\]](#page-8-7). (We refer the reader to [\[7\]](#page-8-8) for the general case.) Let *E* be an elliptic curve defined over \overline{Q} and let *G* be an extension of *E* by \mathbb{G}_a . By compactification,

$$
0 \longrightarrow \mathbb{P}_1 \xrightarrow{i} \overline{G} \xrightarrow{\pi} E \longrightarrow 0.
$$

Denote by 0 the identity element in *E*. The divisor $D = (\overline{G} - G) + 3\pi^*(0)$ is very ample for \overline{G} and $l(D) = 6$. Hence, there is an embedding of \overline{G} into \mathbb{P}_5 , and one can express the exponential map of *G* in terms of the Weierstrass elliptic and zeta functions $\wp(z)$, $\zeta(z)$ associated with *E*. One can identify the Lie algebra Lie($G(\mathbb{C})$) with \mathbb{C}^2 and the exponential map of *G* is expressed by

$$
\exp_{G(\mathbb{C})}(z,t) = (1:\wp(z):\wp'(z):f_1(z,t):f_2(z,t):f_3(z,t)) \text{ for } z \notin \Lambda
$$

and $exp(z, t) = (0 : 0 : 1 : 0 : 0 : t + b\eta(z))$ for $z \in \Lambda$, where

$$
f_1(z,t) = t + b\zeta(z), f_2(z,t) = \wp(z)f_1(z,t) + \frac{b}{2}\wp'(z), f_3(z,t) = \wp'(z)f_1(z,t) + 2b\wp^2(z)
$$

for some algebraic number *b*.

3. Analytic representation of exponential maps

In this section, we discuss the analytic representation of the complex and *p*-adic exponential maps of a commutative algebraic group defined over \overline{Q} (with respect to a fixed basis for its Lie algebra). Let *G* be a commutative algebraic group defined over \overline{Q} of positive dimension *n*. It is known that, by a compactification constructed by Serre, there is an embedding defined over \overline{Q} from *G* into the projective space \mathbb{P}^N with projective coordinates X_0, \ldots, X_N for some positive integer *N* (see [\[13\]](#page-9-2)). One can now describe the exponential maps of *G* (over $\mathbb C$ and $\mathbb C_p$) by analytic functions as follows. Let \overline{G} denote the Zariski closure of *G* in \mathbb{P}^N and let G_0 be the open affine subset defined by $G \cap \{X_0 \neq 0\}$. Then the affine algebra $\Gamma(G_0, O_{\overline{G}})$ of G_0 is generated over \overline{Q} by $\xi_i = X_i/X_0$ (the affine coordinates on G_0) for $i = 1, ..., N$, and we write it as $\mathbb{Q}[\xi_1,\ldots,\xi_N]$. It is known that any element in the Lie algebra Lie(*G*) of *G* maps

 $\overline{\mathbb{Q}}[\xi_1,\ldots,\xi_N]$ into itself. In particular, for each $D \in \text{Lie}(G)$, there exist polynomials $P_{1,D}, \ldots, P_{N,D}$ in *N* variables with algebraic coefficients such that

$$
D\xi_i = P_{i,D}(\xi_1, ..., \xi_N)
$$
 for $i = 1, ..., N$.

Let *v* be a place of \overline{Q} . Then there is a natural embedding from \overline{Q} into C_v , where $C_v = \mathbb{C}$ if *v* is infinite, and $C_v = \mathbb{C}_p$ if *v* is finite and lies above *p*. The set $G(C_v)$ is a *v*-adic Lie group whose Lie algebra Lie($G(C_v)$) = Lie(G) $\otimes_{\overline{O}} C_v$, and it is known that the *v*-*adic exponential map* $exp_{G(C_v)}$ of the Lie group $G(C_v)$ is a local diffeomorphism defined on a subgroup G_v of Lie($G(C_v)$) (see [\[3\]](#page-8-9)). From now on, we fix a basis D_1, \ldots, D_n for the Q-vector space Lie(*G*) which is also a basis for the C_v -vector space Lie($G(C_v)$) (by the identifications $D_i = D_i \otimes 1$ for $i = 1, ..., N$). Let $\delta_1, ..., \delta_n$ denote the canonical basis of Lie(C_v^n), that is, $\partial_i x_j = \delta_{ij}$ for $i = 1, ..., n$ and for $j = 1, ..., N$, where δ_v is Kronecker's delta and x_i , x_i are the coordinate functions of C^n . There where δ_{ij} is Kronecker's delta and x_1, \ldots, x_n are the coordinate functions of C_v^n . There exists an isomorphism $\phi : C^n \to \text{Lie}(G(C))$ with the property that the differential of exists an isomorphism $\phi: C_v^n \to \text{Lie}(G(C_v))$ with the property that the differential of the composition map exp_{anal} of satisfies the composition map $\exp_{G(C_v)} \circ \phi$ satisfies

$$
d(\exp_{G(C_v)} \circ \phi)(\partial_i) = D_i \quad \text{for } i = 1, \dots, n.
$$

Put $f_{i,y} = \xi_i \circ \exp_{G(C_v)} \circ \phi$ for $i = 1, ..., N$. The functions $f_{1,y}, ..., f_{N,y}$ are analytic on a neighbourhood \hat{C}_v of the origin in C_v^n , and the system $\{f_{1,v}, \ldots, f_{N,v}\}$ is called the *exponential* map $\exp_{\alpha \in \alpha}$ (with respectively) analytic representation of the exponential map $\exp_{\alpha \in \alpha}$ (with respe *(normalised) analytic representation of the exponential map* $exp_{G(C_i)}$ (with respect to *D*). By convention, for each $i \in \{1, \ldots, N\}$, we write $f_{i,p}$ for $f_{i,v}$ and C_p for C_v if $C_v = \mathbb{C}_p$, and we write f_i for $f_{i,v}$ and C for C_v if $C_v = \mathbb{C}$. (Note that in the complex case, the functions f_1, \ldots, f_N can be extended as meromorphic functions on the whole space \mathbb{C}^n .) For $i = 1, \ldots, N$ and $j = 1, \ldots, n$,

$$
\partial_j(f_{i,v}) = \partial_j(\xi_i \circ \exp_{G(C_v)} \circ \phi) = (d(\exp_{G(C_v)} \circ \phi)(\partial_i)\xi_i) \circ \exp_{G(C_v)} \circ \phi
$$

= $(D_j\xi_i) \circ \exp_{G(C_v)} \circ \phi = P_{i,D_j}(\xi_1,\ldots,\xi_N) \circ \exp_{G(C_v)} \circ \phi = P_{i,D_j}(f_{1,v},\ldots,f_{N,v}).$

By induction, one can show that for $j = 1, \ldots, N$ and for nonnegative integers i_1, \ldots, i_n , there exists a polynomial $P_{i_1,\dots,i_n,j}$ in *N* variables with coefficients in \overline{Q} such that

$$
(\partial_1^{i_1}\cdots\partial_n^{i_n})f_{j,v}=P_{i_1,\ldots,i_n,j}(f_{1,v},\ldots,f_{N,v}).
$$

Since $\exp_{G(C_v)}(0) = e \in G(\overline{\mathbb{Q}})$ (where *e* denotes the identity element of *G*), it follows that $f_i(0) = f_{i,p}(0) \in \overline{\mathbb{Q}}$ for $i = 1, ..., N$. Using the Taylor expansions of $f_{1,v}, ..., f_{N,v}$ at 0, we get the following proposition.

PROPOSITION 3.1. *There exist formal power series* $F_1, \ldots, F_N \in \overline{\mathbb{Q}}[[X_1, \ldots, X_N]]$ *converging both in* C *and* C*^p such that*

$$
f_1(x) = F_1(x), \dots, f_N(x) = F_N(x) \quad \text{for all } x \in C
$$

and

$$
f_{1,p}(x) = F_1(x), \dots, f_{N,p}(x) = F_N(x) \quad \text{for all } x \in C_p.
$$

240 **D. H. Pham** [7]

4. Proof of the main theorem

This section is devoted to the proof of Theorem [1.2](#page-2-1) which follows that of Theorem [1.1](#page-2-0) with some extensions.

PROOF OF THEOREM [1.2.](#page-2-1) Without loss of generality, we may assume that the elements $\text{Log}_p(u_1), \ldots, \text{Log}_p(u_l)$ are linearly independent over $\mathbb Q$ and the elements v_1, \ldots, v_n are linearly independent over *K*, that is, dim_Q $U = l$ and dim_{*K*} $V = n$. It is clear that there exists a positive integer *r* sufficiently large for which $w_i := u_i^{p^r} \in B(r_p)$ for all $i = 1, \ldots, l$. Let \log_n denote the *p*-adic logarithm function. Then

$$
\log_p(w_i) = \text{Log}_p(w_i) = \text{Log}_p(u_i^{p'}) = p' \text{Log}_p(u_i) \quad \text{for } i = 1, \dots, l.
$$

We have to show that the elements

$$
1, \log_p(w_1), \ldots, \log_p(w_l), v_1, \ldots, v_n, \zeta_p(v_1), \ldots, \zeta_p(v_n)
$$

are linearly independent over \overline{Q} . Suppose that this is not true. Then there exists a nonzero linear form *L* in $l + 2n + 1$ variables $T_0, T_1, \ldots, T_l, T'_1, \ldots, T'_n, T''_1, \ldots, T''_n$ with coefficients in \overline{Q} such that *L* vanishes on $1, \log_p(w_1), \ldots, \log_p(w_l), v_1, \ldots, v_n, \zeta_p(v_1)$, \ldots , $\zeta_p(v_n)$. We write *L* in the form $L = L_0 + L' + L''$, where $\overline{L}_0 = \alpha T_0 + \beta_1 T_1 + \cdots$ $\beta_l T_l$ with $\alpha, \beta_1, \ldots, \beta_l \in \overline{\mathbb{Q}}$ and where *L'*, *L''* are linear forms in T'_1, \ldots, T'_n and T''
 T'' respectively Let $G \in \text{Ext}^1(\mathbb{Q}^l \times F^n \mathbb{Q}^l)$ be the extension of $\mathbb{Q}^l \times F^n$ by *T*^{*n*}, ..., *T_n*^{*n*}, respectively. Let *G* ∈ Ext¹($\mathbb{G}_m^l \times E^n$, \mathbb{G}_a) be the extension of $\mathbb{G}_m^l \times E^n$ by $\mathbb{G}_m^l \times E^n$ by $\mathbb{G}_m^l \times E^n$ by $\mathbb{G}_m^l \times E^n$ by $\mathbb{G}_m^l \times E^n$ are components of the G_a ^{*d*} determined by *L*''. The components of the complex exponential map $\exp_{G(\mathbb{C})}$ of *G* are give by the functions

$$
x_0+L''(\zeta(y_1),\ldots,\zeta(y_n)),e^{x_1},\ldots,e^{x_l},\wp(y_1),\wp'(y_1),\ldots,\wp(y_n),\wp'(y_n)
$$

for complex variables $x_0, x_1, \ldots, x_l, y_1, \ldots, y_n$. By Proposition [3.1,](#page-5-0) the corresponding components of the *p*-adic exponential map $\exp_{G(\mathbb{C}_p)}$ are given by the functions

$$
z_0 + L''(\zeta_p(t_1),..., \zeta_p(t_n)), e_p(z_1),..., e_p(z_l), \varphi_p(t_1), \varphi'(t_1),..., \varphi_p(t_n), \varphi'_p(t_n))
$$

for *p*-adic variables $z_0, z_1, \ldots, z_l, t_1, \ldots, t_n$, where e_p denotes the *p*-adic exponential function. Consider the point

$$
\epsilon = (\beta_1 \log_p(w_1) + \dots + \beta_l \log_p(w_l) + L'(v_1, \dots, v_n), \log_p(w_1), \dots, \log_p(w_l), v_1, \dots, v_n).
$$

Then the point $\gamma := \exp_{G(\mathbb{C}_p)}(\epsilon)$ is

$$
(\beta_1 \log_p(w_1) + \dots + \beta_l \log_p(w_l) + L'(v_1, \dots, v_n) + L''(\zeta_p(v_1), \dots, \zeta_p(v_n)),
$$

$$
w_1, \dots, w_l, \wp_p(v_1), \wp_p'(v_1), \dots, \wp_p(v_n), \wp_p'(v_n)).
$$

Since

$$
L(1, \log_p(w_1), \ldots, \log_p(w_l), v_1, \ldots, v_n, \zeta_p(v_1), \ldots, \zeta_p(v_n)) = 0,
$$

it follows that

$$
\beta_1 \log_p(w_1) + \cdots + \beta_l \log_p(w_l) + L'(v_1, \ldots, v_n) + L''(\zeta_p(v_1), \ldots, \zeta_p(v_n)) = -\alpha \in \overline{\mathbb{Q}}.
$$

In particular, this means that the point γ is an algebraic point of *G*. Let $log_{G(\mathbb{C}_p)}$ be the *p*-adic logarithm map of *G* and let *S* be the \overline{Q} -vector subspace of Lie(*G*) (which is identified with $\overline{\mathbb{Q}}^{l+n+1}$) given by

$$
S = \{(s_0, s_1, \ldots, s_{l+n}) \in \overline{\mathbb{Q}}^{l+n+1} : s_0 - \beta_1 s_1 - \cdots - \beta_l s_l - L'(s_{l+1}, \ldots, s_{l+n}) = 0\}.
$$

We see that

$$
\log_{G(\mathbb{C}_p)}(\gamma) = \log_{G(\mathbb{C}_p)}(\exp_{G(\mathbb{C}_p)}(\epsilon)) = \epsilon \in S \otimes_{\overline{\mathbb{Q}}} \mathbb{C}_p.
$$

Thanks to the *p*-adic analytic subgroup theorem (see [\[8\]](#page-8-10) or [\[10\]](#page-8-11)), there exists a nontrivial connected algebraic subgroup *H* of *G* defined over \overline{Q} such that $\gamma \in H(\overline{Q})$ and Lie(*H*) \subseteq *S*. Let π be the composition of the homomorphism $G \to \mathbb{G}_m^l \times E^n$ and the canonical projection $\mathbb{G}^l \times F^n \to F^n$. Then the algebraic subgroup $\mathcal{E} := \pi(H)$ is the canonical projection $\mathbb{G}_m^l \times E^n \to E^n$. Then the algebraic subgroup $\mathcal{E} := \pi(H)$ is
isogenous (over $\overline{\mathbb{Q}}$) to E^m with $m \le n$. This gives a corresponding element $p : E^n$. isogenous (over \overline{Q}) to E^m with $m \leq n$. This gives a corresponding element $p : E^n \to$ $\mathcal{E} \hookrightarrow E^n$ in End(E^n). Note that $\pi : G \to E^n$ induces the differential $d\pi$ from the Lie algebra of *G* to that of E^n and the algebra of endomorphisms $End(E^n) \otimes_{\mathbb{Z}} \mathbb{Q}$ is identified with the matrix algebra $M_n(K)$. This means that the endomorphism $id_{F_n} - p$ can be written as an $n \times n$ matrix with entries in *K*. Furthermore, since $\gamma \in H$, one has

$$
\epsilon = \log_{G(\mathbb{C}_p)}(\gamma) = \log_{H(\mathbb{C}_p)}(\gamma) \in \text{Lie}(H) \otimes_{\mathbb{Q}} \mathbb{C}_p.
$$

It follows that the point $(v_1, \ldots, v_n) = d\pi(\epsilon) \in \text{Lie}(\mathcal{E})$ which turns out to be the kernel of the endomorphism given by the above matrix. However, the elements v_1, \ldots, v_n are linearly independent over *K*, so that this matrix must be trivial. In other words, $p = id_{E^n}$, that is, $\mathcal{E} = E^n$.

Next, we see that $G \cong \mathbb{G}_m^l \times G_0$, where $G_0 \in \text{Ext}^1(E^n, \mathbb{G}_a)$ since $\text{Ext}^1(\mathbb{G}_m, \mathbb{G}_a)$ is trivial (in fact, it is known more generally that the group extension of linear algebraic groups is trivial). Hence, without loss of generality, we may assume that the algebraic numbers β_1, \ldots, β_l are not all zero (since, if not, one can take the quotient of *G* by the multiplicative group \mathbb{G}_m , and we are in a simpler case with G_0). The intersection of *H* with $\mathbb{G}_a \times \mathbb{G}_m^l$ is an algebraic subgroup of $\mathbb{G}_a \times \mathbb{G}_m^l$, and therefore has the form $H_a \times H_m$, where H_a and H_m are (connected) algebraic subgroups of \mathbb{G}_a and \mathbb{G}_m^l , respectively (see [\[1,](#page-8-3) Proposition 4.3]). This leads to

$$
\begin{aligned} \text{Lie}(H_a) \times \text{Lie}(H_m) &= \text{Lie}(H_a \times H_m) \\ &= \text{Lie}(H) \cap (\text{Lie}(\mathbb{G}_a) \times \text{Lie}(\mathbb{G}_m^l)) = \text{Lie}(H) \cap (\overline{\mathbb{Q}} \times \overline{\mathbb{Q}}^l). \end{aligned}
$$

If H_m is a proper algebraic subgroup of the torus \mathbb{G}_m^l , it follows from [\[1,](#page-8-3) Lemma 4.4] that the Lie algebra Lie(H_m) is given by $L_1 = \cdots = L_d = 0$, where $d = l - \dim H_m \ge 1$ and L_1, \ldots, L_d are nonzero linear forms in *n* variables with integer coefficients. In particular, this means that $\log_p(w_1), \ldots, \log_p(w_l)$ are linearly dependent over \mathbb{Q} , or equivalently, $Log_p(u_1), \ldots, Log_p(u_l)$ are linearly dependent over $\mathbb Q$. This contradiction shows that $H_m = \mathbb{G}_m^l$ and then H_a must be trivial (since dim $H \le \dim_{\overline{\mathbb{Q}}} S = n + l$). This

enables us to conclude that $\beta_1 s_1 + \cdots + \beta_l s_l = 0$ for all $s_1, \ldots, s_l \in \overline{Q}$ and this happens if and only if $\beta_1 = \cdots = \beta_l = 0$, which is a contradiction. The theorem is proved. \Box if and only if $\beta_1 = \cdots = \beta_l = 0$, which is a contradiction. The theorem is proved.

As in the complex case, it is also possible to slightly extend the main theorem to the case of several *p*-adic Weierstrass zeta functions as follows. Let E_1, \ldots, E_n be elliptic curves defined over Q. For each $i \in \{1, \ldots, n\}$, denote by $\varphi_{n,i}$ and $\zeta_{n,i}$ the *p*-adic elliptic function and the *p*-adic Weierstrass zeta function associated with the elliptic curve *Ei*, respectively. Let v_i be an algebraic point of $\wp_{p,i}$ for $i = 1, \ldots, n$. Let I_v ($v = 1, \ldots, k$) be maximal sets of indices such that E_i are pairwise isogenous (over \overline{Q}) for all $i \in I_{\gamma}$. Fix an element $E^{(v)}$ in the set $\{E_i : j \in I_v\}$. The field of endomorphisms of $E^{(v)}$ is the same as that of E_i for any $j \in I_\nu$, and we denote it by K_ν . Let V_ν be the vector space generated by the set $\{v_j : j \in I_\nu\}$ over K_ν . Then we obtain the following theorem which is an extension of the *p*-adic analogue of [\[1,](#page-8-3) Theorem 6.4].

THEOREM 4.1. *Let u*1, ... , *ul be nonzero algebraic numbers and U the vector space generated by* $Log_p(u_1), \ldots, Log_p(u_l)$ *over* $\mathbb Q$ *. Then the dimension of the vector space W* generated by $1, \text{Log}_p(u_1), \ldots, \text{Log}_p(u_l), v_1, \ldots, v_n, \zeta_{p,1}(v_1), \ldots, \zeta_{p,n}(v_n)$ over $\overline{\mathbb{Q}}$ *is determined by*

 $\dim_{\overline{\mathbb{Q}}} W = 1 + \dim_{\mathbb{Q}} U + 2(\dim_{K_1} V_1 + \cdots + \dim_{K_k} V_k).$

References

- [1] A. Baker and G. Wüstholz, *Logarithmic Forms and Diophantine Geometry*, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007).
- [2] D. Bertrand, 'Sous-groupes à un paramètre *p*-adique de variétés de groupe', *Invent. Math.* 40(2) (1977), 171–193.
- [3] N. Bourbaki, *Elements of Mathematics. Lie groups and Lie algebras. Part I: Chapters 1–3*, Actualities scientifiques et industrielles (Herman, Paris, 1975); English translantion.
- [4] D. Caveny and R. Tubbs, 'Well-approximated points on linear extensions of elliptic curves', *Proc. Amer. Math. Soc.* 138 (2010), 2745–2754.
- [5] K. Chandrasekharan, *Elliptic Functions*, Grundlehren der mathematischen Wissenschaften, 281 (Springer-Verlag, Berlin, 1985).
- [6] J. Coates, 'The transcendence of linear forms in $\omega_1, \omega_2, \eta_1, \eta_2, 2\pi i'$, *Amer. J. Math.* 93 (1971), 385–397.
- [7] G. Faltings and G. Wüstholz, 'Einbettungen kommutativer algebraischer Gruppen und einige ihrer Eigenschaften', *J. reine angew. Math.* 354 (1984), 175–205.
- [8] C. Fuchs and D. H. Pham, 'The *p*-adic analytic subgroup theorem revisited', *p-Adic Numbers Ultrametric Anal. Appl.* 7 (2015), 143–156.
- [9] E. Lutz, 'Sur l'équation *Y*² = *AX*³ − *AX* − *B* dans les corps *p*-adiques', *J. reine angew. Math.* 177 (1937), 238–247.
- [10] T. Matev, 'The *p*-adic analytic subgroup theorem and applications', Preprint, 2010, [arXiv:1010.3156v1.](https://arxiv.org/abs/1010.3156v1)
- [11] A. M. Robert, *A Course in p*-*adic Analysis*, Graduate Texts in Mathematics, 198 (Springer-Verlag, New York, 2000).
- [12] T. Schneider, 'Transzendenzuntersuchungen periodischer Funktionen: I Transzendenz von Potenzen; II Transzendenzeigenschaften elliptischer Funktionen', *J. reine angew. Math.* 172 (1934), 65–74.

[10] Weierstrass zeta functions and *p*-adic linear relations 243

- [13] J. P. Serre, 'Quelques propriétés des groupes algébriques commutatifs', *Astérisque* 69–70 (1979), 191–202.
- [14] A. Weil, 'Sur les fonctions elliptiques p-adiques', *C. R. Hebdomadaires Séances L'Acad. Sci.* 203(1) (1936), 22–24.
- [15] G. Wüstholz, 'Algebraische Punkte auf Analytischen Untergruppen algebraischer Gruppen', *Ann. of Math. (2)* 129 (1989), 501–517.

DUC HIEP PHAM, University of Education,

Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam e-mail: phamduchiep@vnu.edu.vn