Bull. Aust. Math. Soc. **110** (2024), 234–243 doi:10.1017/S0004972724000091

WEIERSTRASS ZETA FUNCTIONS AND *p*-ADIC LINEAR RELATIONS

DUC HIEP PHAM

(Received 13 October 2023; accepted 27 January 2024; first published online 11 March 2024)

Abstract

We discuss the *p*-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the *p*-adic domain. These results are extensions of the *p*-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, *Logarithmic Forms and Diophantine Geometry*, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions ['Sous-groupes à un paramètre *p*-adique de variétés de groupe', *Invent. Math.* **40**(2) (1977), 171–193].

2020 *Mathematics subject classification*: primary 11J89; secondary 11G07, 11S99. *Keywords and phrases*: elliptic curve, Weierstrass zeta function, *p*-adic transcendence.

1. Introduction

Let *K* be a subfield of the field of complex numbers \mathbb{C} . Let *E* be an elliptic curve defined over *K* by the Weierstrass form

$$Y^2Z - 4X^3 + g_2XZ^2 + g_3Z^3 = 0,$$

where g_2, g_3 are elements in K satisfying $g_2^3 - 27g_3^2 \neq 0$. Let e_1 and e_2 be two roots among the three (distinct) complex roots of the polynomial $4X^3 - g_2X - g_3$. Put $\Lambda = \mathbb{Z}\omega_1^* + \mathbb{Z}\omega_2^*$ with

$$\omega_1^* = \int_{e_1}^{\infty} \frac{dx}{\sqrt{4x^3 - g_2 x - g_3}}$$
 and $\omega_2^* = \int_{e_2}^{\infty} \frac{dx}{\sqrt{4x^3 - g_2 x - g_3}}$.

Then Λ is a lattice in \mathbb{C} . The elliptic function $\wp : \mathbb{C} \setminus \Lambda \to \mathbb{C}$ relative to Λ is defined by

$$\wp(z) = \wp(z; \Lambda) := \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

This research has been done under the research project QG.23.48 'Some selected topics in number theory' of Vietnam National University, Hanoi.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

This function is called the *Weierstrass elliptic function* associated with the elliptic curve *E* and Λ is called the *lattice of periods* of \wp (or the lattice associated with *E*). The *Weierstrass zeta function* associated with *E* (or relative to Λ) is the function $\zeta : \mathbb{C} \setminus \Lambda \to \mathbb{C}$ defined by

$$\zeta(z) = \zeta(z; \Lambda) := \frac{1}{z} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right).$$

The Weierstrass zeta function is related to the Weierstrass elliptic function by $\zeta' = -\varphi$ and one can write the Laurent expansion at zero of ζ as

$$\zeta(z) = \frac{1}{z} - \sum_{k \ge 1} \mathcal{G}_{2k+2}(\Lambda) z^{2k+1},$$

where $\mathcal{G}_{2k+2}(\Lambda)$ is the Eisenstein series of weight 2k + 2 (with respect to the lattice Λ). By induction, $\mathcal{G}_{2k+2}(\Lambda)$ can be represented as a polynomial in g_2, g_3 with rational coefficients (see [5, Ch. IV]). In other words,

$$\zeta(z) = \frac{1}{z} + \sum_{k \ge 1} \alpha_k z^{2k+1}$$

with $\alpha_k \in \mathbb{Q}[g_2, g_3]$ for all positive integers *k*.

Since φ is a periodic function, it follows that ζ is a quasiperiodic function, that is, for each $\omega \in \Lambda$, there exists a complex number $\eta = \eta(\omega)$ satisfying $\zeta(z + \omega) = \zeta(z) + \eta$ for all $z \in \mathbb{C} \setminus \Lambda$. The number η is called a *quasiperiod* of the elliptic curve *E*. If (ω_1, ω_2) is a pair of fundamental periods of Λ (that is, ω_1 and ω_2 are complex numbers generating Λ over \mathbb{Z}), one can show that $\eta(a\omega_1 + b\omega_2) = a\eta_1 + b\eta_2$ for any integers *a*, *b*, where $\eta_1 = \eta(\omega_1)$ and $\eta_2 = \eta(\omega_2)$. Furthermore, in the case when the ratio ω_2/ω_1 has positive imaginary part, we obtain the *Legendre relation* between the periods and the quasiperiods:

$$\omega_2\eta_1 - \omega_1\eta_2 = 2\pi i.$$

Schneider was the first to give a transcendence result concerning linear relations between periods and quasiperiods, by showing that any nonvanishing linear combination of ω and η over $\overline{\mathbb{Q}}$ is transcendental (see [12]). The result was extended by Coates to pairs of fundamental periods. He obtained a similar result for the numbers $2\pi i$, ω_1 , ω_2 , η_1 , η_2 , where (ω_1 , ω_2) is a pair of fundamental periods (see [6]). Masser established the dimension of the vector space generated by 1, $2\pi i$, ω_1 , ω_2 , η_1 , η_2 over $\overline{\mathbb{Q}}$, proving that this dimension is either 4 if the elliptic curve *E* has complex multiplication, or 6 otherwise.

In the 1980s, Wüstholz formulated and proved a celebrated theorem in complex transcendental number theory which is called *the analytic subgroup theorem* (see [1] or [15]). The theorem states that an analytic subgroup defined over $\overline{\mathbb{Q}}$ of a commutative algebraic group defined over $\overline{\mathbb{Q}}$ contains a nontrivial algebraic point if and only if it contains a nontrivial algebraic subgroup defined over $\overline{\mathbb{Q}}$. The analytic subgroup theorem has many significant consequences, some of which concern elliptic curves.

In particular, Wüstholz himself used the theorem to deduce a result on linear relations for the values of the Weierstrass zeta function ζ at algebraic points of the Weierstrass elliptic function \wp . Here, a complex number $u \in \mathbb{C} \setminus \Lambda$ is called an *algebraic point of* \wp if $\wp(u) \in \overline{\mathbb{Q}}$. Let End(*E*) denote the ring of endomorphisms of *E*. Then it is known that $K := \text{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ (*the field of endomorphisms of E*) is either \mathbb{Q} or an imaginary quadratic field. The following theorem was given by Wüstholz (see [1, Theorem 6.3]).

THEOREM 1.1. Let *E* be an elliptic curve defined over $\overline{\mathbb{Q}}$ and $\gamma_1, \ldots, \gamma_n$ algebraic points of \wp . Denote by *W* the vector space generated by $\gamma_1, \ldots, \gamma_n$ over *K* and by *V* the vector space generated by $1, 2\pi i, \gamma_1, \ldots, \gamma_n, \zeta(\gamma_1), \ldots, \zeta(\gamma_n)$ over $\overline{\mathbb{Q}}$. Then

$$\dim_{\overline{\square}} V = 2 \dim_K W + 2$$

It is natural to extend this result to the *p*-adic case and the main goal of this paper is to establish an extension of the *p*-adic analogue of Theorem 1.1. To state it, let E be an elliptic curve given by

$$Y^2 Z - 4X^3 + g_2 X Z^2 + g_3 Z^3 = 0,$$

now defined over \mathbb{C}_p (that is, $g_2, g_3 \in \mathbb{C}_p$). Here, \mathbb{C}_p denotes the completion of $\overline{\mathbb{Q}_p}$ with respect to the *p*-adic absolute value $|\cdot|_p$ as usual. Let φ_p be the (*Lutz–Weil*) *p*-adic elliptic function associated with the elliptic curve *E* (see [9, 14]). The function φ_p is analytic on the set $\mathcal{D}_p \setminus \{0\}$, where \mathcal{D}_p is the *p*-adic domain of *E* defined by

$$\mathscr{D}_p := \{ z \in \mathbb{C}_p : |1/4|_p \max\{|g_2|_p^{1/4}, |g_3|_p^{1/6}\} z \in B(r_p) \}$$

with $B(r_p)$ the set of all *p*-adic numbers *x* in \mathbb{C}_p such that $|x|_p < r_p := p^{-1/(p-1)}$. As in the complex case, we say that a nonzero *p*-adic number $u \in \mathcal{D}_p$ is an *algebraic point of* \mathcal{P}_p if $\mathcal{P}_p(u) \in \overline{\mathbb{Q}}$. Let ζ_p be the *p*-adic Weierstrass zeta function (*p*-adic analogue of the Weierstrass zeta function ζ) associated with *E* which is, by definition, the (unique) odd *p*-adic meromorphic function on \mathcal{D}_p satisfying $\zeta'_p = -\varphi_p$. Let $\text{Log}_p : \mathbb{C}_p \setminus \{0\} \to \mathbb{C}_p$ be the Iwasawa logarithm (see [11, Ch. 5, Section 4.5]). We now state our main theorem.

THEOREM 1.2. Let *E* be an elliptic curve defined over $\overline{\mathbb{Q}}$. Let u_1, \ldots, u_l be nonzero algebraic numbers and v_1, \ldots, v_n algebraic points of \mathscr{D}_p . Denote by *U* the vector space generated by $\operatorname{Log}_p(u_1), \ldots, \operatorname{Log}_p(u_l)$ over \mathbb{Q} and by *V* the vector space generated by v_1, \ldots, v_n over the field *K* of endomorphisms of *E*. Then the dimension of the vector space *Q* and by 1, $\operatorname{Log}_p(u_1), \ldots, \operatorname{Log}_p(u_l), v_1, \ldots, v_n, \zeta_p(v_1), \ldots, \zeta_p(v_n)$ over $\overline{\mathbb{Q}}$ is determined by

$$\dim_{\overline{\mathbb{Q}}} W = 1 + \dim_{\mathbb{Q}} U + 2 \dim_{K} V.$$

In the case when l = n = 1, we deduce at once from Theorem 1.2 the following result which is an extension of a result given by Bertrand in 1977 (see [2, Proposition 1]). **COROLLARY 1.3.** Let *E* be an elliptic curve defined over \mathbb{Q} . Let *u* be a nonzero algebraic number with $\text{Log}_p(u) \neq 0$ and *v* an algebraic point of \wp_p . Let α , β and γ be algebraic numbers not all zero. Then the number $\alpha \text{Log}_p(u) + \beta v + \gamma \zeta_p(v)$ is transcendental.

2. Extensions of commutative algebraic groups

In this section, let K be a fixed algebraically closed field of characteristic 0. Let A and B be commutative algebraic groups defined over K. A commutative algebraic group C defined over K is called an *extension* of A by B if there is an exact sequence of commutative algebraic groups

$$0 \longrightarrow B \xrightarrow{i} C \xrightarrow{\pi} A \longrightarrow 0.$$

To give an extension *C* of *A* by *B* is equivalent to giving a pair $(i, \pi) \in \text{Hom}(B, C) \times \text{Hom}(C, A)$ for which the above sequence is exact. Let

$$0 \longrightarrow B \xrightarrow{i} C \xrightarrow{\pi} A \longrightarrow 0$$

and

 $0 \longrightarrow B' \xrightarrow{i'} C' \xrightarrow{\pi'} A' \longrightarrow 0$

be extensions of commutative algebraic groups. A homomorphism between the above two extensions is a triple of homomorphisms $\varphi : C \to C', \alpha : A \to A', \beta : B \to B'$ of algebraic groups such that the diagram

$$0 \longrightarrow B \xrightarrow{i} C \xrightarrow{\pi} A \longrightarrow 0$$
$$\downarrow_{\beta} \qquad \qquad \downarrow_{\varphi} \qquad \qquad \downarrow_{\alpha} \\0 \longrightarrow B' \xrightarrow{i'} C' \xrightarrow{\pi'} A' \longrightarrow 0$$

commutes. Clearly, φ is an isomorphism if and only if α and β are isomorphisms. In the case A = A', B = B' and $\alpha = id_A, \beta = id_B$, we say that the two extensions *C* and *C'* are *equivalent* if there is a homomorphism between them. The set of equivalence classes [*C*] of extensions forms a commutative group $\text{Ext}^1(A, B)$ with the neutral element $[A \times B]$ (via the Baer sum). We write *C* for its equivalence class [*C*] by abuse of notation. The bi-functor Ext^1 which assigns to the pair (A, B) the group $\text{Ext}^1(A, B)$ is contravariant in the first variable and covariant in the second one. This means that if $\alpha : A' \to A$ and $\beta : B \to B'$ are homomorphisms between commutative algebraic groups, then they induce homomorphisms $\alpha^* : \text{Ext}^1(A, B) \to \text{Ext}^1(A', B)$ and $\beta_* : \text{Ext}^1(A, B) \to \text{Ext}^1(A, B')$. The two homomorphisms α^* and β_* make the diagram

commute. Furthermore, Ext¹ is additive in both variables, which implies that

$$\operatorname{Ext}^{1}(A_{1} \times A_{2}, B) = \operatorname{Ext}^{1}(A_{1}, B) \times \operatorname{Ext}^{1}(A_{2}, B)$$

and

$$\operatorname{Ext}^{1}(A, B_{1} \times B_{2}) = \operatorname{Ext}^{1}(A, B_{1}) \times \operatorname{Ext}^{1}(A, B_{2}).$$

For example, we describe the exponential map of *G* in the case where *G* is an extension of an elliptic curve by the additive group \mathbb{G}_a defined over $\overline{\mathbb{Q}}$ as given in [4]. (We refer the reader to [7] for the general case.) Let *E* be an elliptic curve defined over $\overline{\mathbb{Q}}$ and let *G* be an extension of *E* by \mathbb{G}_a . By compactification,

$$0 \longrightarrow \mathbb{P}_1 \xrightarrow{i} \overline{G} \xrightarrow{\pi} E \longrightarrow 0.$$

Denote by 0 the identity element in *E*. The divisor $D = (\overline{G} - G) + 3\pi^*(0)$ is very ample for \overline{G} and l(D) = 6. Hence, there is an embedding of \overline{G} into \mathbb{P}_5 , and one can express the exponential map of *G* in terms of the Weierstrass elliptic and zeta functions $\wp(z), \zeta(z)$ associated with *E*. One can identify the Lie algebra $\text{Lie}(G(\mathbb{C}))$ with \mathbb{C}^2 and the exponential map of *G* is expressed by

$$\exp_{G(\mathbb{C})}(z,t) = (1:\varphi(z):\varphi'(z):f_1(z,t):f_2(z,t):f_3(z,t)) \quad \text{for } z \notin \Lambda$$

and $\exp(z, t) = (0 : 0 : 1 : 0 : 0 : t + b\eta(z))$ for $z \in \Lambda$, where

$$f_1(z,t) = t + b\zeta(z), f_2(z,t) = \wp(z)f_1(z,t) + \frac{b}{2}\wp'(z), f_3(z,t) = \wp'(z)f_1(z,t) + 2b\wp^2(z)$$

for some algebraic number b.

3. Analytic representation of exponential maps

In this section, we discuss the analytic representation of the complex and *p*-adic exponential maps of a commutative algebraic group defined over $\overline{\mathbb{Q}}$ (with respect to a fixed basis for its Lie algebra). Let *G* be a commutative algebraic group defined over $\overline{\mathbb{Q}}$ of positive dimension *n*. It is known that, by a compactification constructed by Serre, there is an embedding defined over $\overline{\mathbb{Q}}$ from *G* into the projective space \mathbb{P}^N with projective coordinates X_0, \ldots, X_N for some positive integer *N* (see [13]). One can now describe the exponential maps of *G* (over \mathbb{C} and \mathbb{C}_p) by analytic functions as follows. Let \overline{G} denote the Zariski closure of *G* in \mathbb{P}^N and let G_0 be the open affine subset defined by $\overline{G} \cap \{X_0 \neq 0\}$. Then the affine algebra $\Gamma(G_0, O_{\overline{G}})$ of G_0 is generated over $\overline{\mathbb{Q}}$ by $\xi_i = X_i/X_0$ (the affine coordinates on G_0) for $i = 1, \ldots, N$, and we write it as $\overline{\mathbb{Q}}[\xi_1, \ldots, \xi_N]$. It is known that any element in the Lie algebra Lie(*G*) of *G* maps $\mathbb{Q}[\xi_1, \dots, \xi_N]$ into itself. In particular, for each $D \in \text{Lie}(G)$, there exist polynomials $P_{1,D}, \dots, P_{N,D}$ in N variables with algebraic coefficients such that

$$D\xi_i = P_{i,D}(\xi_1, ..., \xi_N)$$
 for $i = 1, ..., N$.

Let *v* be a place of $\overline{\mathbb{Q}}$. Then there is a natural embedding from $\overline{\mathbb{Q}}$ into C_v , where $C_v = \mathbb{C}$ if *v* is infinite, and $C_v = \mathbb{C}_p$ if *v* is finite and lies above *p*. The set $G(C_v)$ is a *v*-adic Lie group whose Lie algebra $\text{Lie}(G(C_v)) = \text{Lie}(G) \otimes_{\overline{\mathbb{Q}}} C_v$, and it is known that the *v*-adic exponential map $\exp_{G(C_v)}$ of the Lie group $G(C_v)$ is a local diffeomorphism defined on a subgroup G_v of $\text{Lie}(G(C_v))$ (see [3]). From now on, we fix a basis D_1, \ldots, D_n for the $\overline{\mathbb{Q}}$ -vector space Lie(G) which is also a basis for the C_v -vector space $\text{Lie}(G(C_v))$ (by the identifications $D_i = D_i \otimes 1$ for $i = 1, \ldots, N$). Let $\delta_1, \ldots, \delta_n$ denote the canonical basis of $\text{Lie}(C_v^n)$, that is, $\partial_i x_j = \delta_{ij}$ for $i = 1, \ldots, n$ and for $j = 1, \ldots, N$, where δ_{ij} is Kronecker's delta and x_1, \ldots, x_n are the coordinate functions of C_v^n . There exists an isomorphism $\phi : C_v^n \to \text{Lie}(G(C_v))$ with the property that the differential of the composition map $\exp_{G(C_v)} \circ \phi$ satisfies

$$d(\exp_{G(C_{i})}\circ\phi)(\partial_i)=D_i$$
 for $i=1,\ldots,n$.

Put $f_{i,v} = \xi_i \circ \exp_{G(C_v)} \circ \phi$ for i = 1, ..., N. The functions $f_{1,v}, ..., f_{N,v}$ are analytic on a neighbourhood C_v of the origin in C_v^n , and the system $\{f_{1,v}, ..., f_{N,v}\}$ is called the *(normalised) analytic representation of the exponential map* $\exp_{G(C_v)}$ (with respect to *D*). By convention, for each $i \in \{1, ..., N\}$, we write $f_{i,p}$ for $f_{i,v}$ and C_p for C_v if $C_v = \mathbb{C}_p$, and we write f_i for $f_{i,v}$ and *C* for C_v if $C_v = \mathbb{C}$. (Note that in the complex case, the functions $f_1, ..., f_N$ can be extended as meromorphic functions on the whole space \mathbb{C}^n .) For i = 1, ..., N and j = 1, ..., n,

$$\begin{aligned} \partial_j(f_{i,\nu}) &= \partial_j(\xi_i \circ \exp_{G(C_\nu)} \circ \phi) = (d(\exp_{G(C_\nu)} \circ \phi)(\partial_i)\xi_i) \circ \exp_{G(C_\nu)} \circ \phi \\ &= (D_j\xi_i) \circ \exp_{G(C_\nu)} \circ \phi = P_{i,D_j}(\xi_1, \dots, \xi_N) \circ \exp_{G(C_\nu)} \circ \phi = P_{i,D_j}(f_{1,\nu}, \dots, f_{N,\nu}). \end{aligned}$$

By induction, one can show that for j = 1, ..., N and for nonnegative integers $i_1, ..., i_n$, there exists a polynomial $P_{i_1,...,i_n,j}$ in N variables with coefficients in $\overline{\mathbb{Q}}$ such that

$$(\partial_1^{i_1}\cdots\partial_n^{i_n})f_{j,\nu}=P_{i_1,\ldots,i_n,j}(f_{1,\nu},\ldots,f_{N,\nu}).$$

Since $\exp_{G(C_v)}(0) = e \in G(\overline{\mathbb{Q}})$ (where *e* denotes the identity element of *G*), it follows that $f_i(0) = f_{i,p}(0) \in \overline{\mathbb{Q}}$ for i = 1, ..., N. Using the Taylor expansions of $f_{1,v}, ..., f_{N,v}$ at 0, we get the following proposition.

PROPOSITION 3.1. There exist formal power series $F_1, \ldots, F_N \in \mathbb{Q}[[X_1, \ldots, X_N]]$ converging both in C and C_p such that

$$f_1(x) = F_1(x), \dots, f_N(x) = F_N(x)$$
 for all $x \in C$

and

$$f_{1,p}(x) = F_1(x), \dots, f_{N,p}(x) = F_N(x)$$
 for all $x \in C_p$.

D. H. Pham

4. Proof of the main theorem

This section is devoted to the proof of Theorem 1.2 which follows that of Theorem 1.1 with some extensions.

PROOF OF THEOREM 1.2. Without loss of generality, we may assume that the elements $\text{Log}_p(u_1), \ldots, \text{Log}_p(u_l)$ are linearly independent over \mathbb{Q} and the elements v_1, \ldots, v_n are linearly independent over K, that is, $\dim_{\mathbb{Q}} U = l$ and $\dim_K V = n$. It is clear that there exists a positive integer r sufficiently large for which $w_i := u_i^{p^r} \in B(r_p)$ for all $i = 1, \ldots, l$. Let \log_p denote the p-adic logarithm function. Then

$$\log_p(w_i) = \operatorname{Log}_p(w_i) = \operatorname{Log}_p(u_i^p) = p^r \operatorname{Log}_p(u_i) \quad \text{for } i = 1, \dots, l.$$

We have to show that the elements

$$1, \log_p(w_1), \ldots, \log_p(w_l), v_1, \ldots, v_n, \zeta_p(v_1), \ldots, \zeta_p(v_n)$$

are linearly independent over $\overline{\mathbb{Q}}$. Suppose that this is not true. Then there exists a nonzero linear form L in l + 2n + 1 variables $T_0, T_1, \ldots, T_l, T'_1, \ldots, T'_n, T''_1, \ldots, T''_n$ with coefficients in $\overline{\mathbb{Q}}$ such that L vanishes on $1, \log_p(w_1), \ldots, \log_p(w_l), v_1, \ldots, v_n, \zeta_p(v_1), \ldots, \zeta_p(v_n)$. We write L in the form $L = L_0 + L' + L''$, where $L_0 = \alpha T_0 + \beta_1 T_1 + \cdots + \beta_l T_l$ with $\alpha, \beta_1, \ldots, \beta_l \in \overline{\mathbb{Q}}$ and where L', L'' are linear forms in T'_1, \ldots, T'_n and T''_1, \ldots, T''_n , respectively. Let $G \in \text{Ext}^1(\mathbb{G}^l_m \times E^n, \mathbb{G}_a)$ be the extension of $\mathbb{G}^l_m \times E^n$ by \mathbb{G}_a determined by L''. The components of the complex exponential map $\exp_{G(\mathbb{C})}$ of G are give by the functions

$$x_0 + L''(\zeta(y_1), \dots, \zeta(y_n)), e^{x_1}, \dots, e^{x_l}, \wp(y_1), \wp'(y_1), \dots, \wp(y_n), \wp'(y_n)$$

for complex variables $x_0, x_1, ..., x_l, y_1, ..., y_n$. By Proposition 3.1, the corresponding components of the *p*-adic exponential map $\exp_{G(\mathbb{C}_n)}$ are given by the functions

$$z_0 + L''(\zeta_p(t_1), \dots, \zeta_p(t_n)), e_p(z_1), \dots, e_p(z_l), \varphi_p(t_1), \varphi'(t_1), \dots, \varphi_p(t_n), \varphi'_p(t_n)$$

for *p*-adic variables $z_0, z_1, \ldots, z_l, t_1, \ldots, t_n$, where e_p denotes the *p*-adic exponential function. Consider the point

$$\epsilon = (\beta_1 \log_p(w_1) + \dots + \beta_l \log_p(w_l) + L'(v_1, \dots, v_n), \log_p(w_1), \dots, \log_p(w_l), v_1, \dots, v_n).$$

Then the point $\gamma := \exp_{G(\mathbb{C}_p)}(\epsilon)$ is

$$(\beta_1 \log_p(w_1) + \dots + \beta_l \log_p(w_l) + L'(v_1, \dots, v_n) + L''(\zeta_p(v_1), \dots, \zeta_p(v_n)), w_1, \dots, w_l, \varphi_p(v_1), \varphi'_p(v_1), \dots, \varphi_p(v_n), \varphi'_p(v_n)).$$

Since

$$L(1, \log_p(w_1), \ldots, \log_p(w_l), v_1, \ldots, v_n, \zeta_p(v_1), \ldots, \zeta_p(v_n)) = 0,$$

it follows that

$$\beta_1 \log_p(w_1) + \dots + \beta_l \log_p(w_l) + L'(v_1, \dots, v_n) + L''(\zeta_p(v_1), \dots, \zeta_p(v_n)) = -\alpha \in \mathbb{Q}.$$

In particular, this means that the point γ is an algebraic point of G. Let $\log_{G(\mathbb{C}_p)}$ be the *p*-adic logarithm map of G and let S be the $\overline{\mathbb{Q}}$ -vector subspace of Lie(G) (which is identified with $\overline{\mathbb{Q}}^{l+n+1}$) given by

$$S = \{(s_0, s_1, \dots, s_{l+n}) \in \overline{\mathbb{Q}}^{l+n+1} : s_0 - \beta_1 s_1 - \dots - \beta_l s_l - L'(s_{l+1}, \dots, s_{l+n}) = 0\}.$$

We see that

$$\log_{G(\mathbb{C}_p)}(\gamma) = \log_{G(\mathbb{C}_p)}(\exp_{G(\mathbb{C}_p)}(\epsilon)) = \epsilon \in S \otimes_{\overline{\mathbb{O}}} \mathbb{C}_p$$

Thanks to the *p*-adic analytic subgroup theorem (see [8] or [10]), there exists a nontrivial connected algebraic subgroup *H* of *G* defined over $\overline{\mathbb{Q}}$ such that $\gamma \in H(\overline{\mathbb{Q}})$ and Lie(*H*) \subseteq *S*. Let π be the composition of the homomorphism $G \to \mathbb{G}_m^l \times E^n$ and the canonical projection $\mathbb{G}_m^l \times E^n \to E^n$. Then the algebraic subgroup $\mathcal{E} := \pi(H)$ is isogenous (over $\overline{\mathbb{Q}}$) to E^m with $m \leq n$. This gives a corresponding element $p : E^n \to \mathcal{E} \hookrightarrow E^n$ in End(E^n). Note that $\pi : G \to E^n$ induces the differential $d\pi$ from the Lie algebra of *G* to that of E^n and the algebra of endomorphisms End(E^n) $\otimes_{\mathbb{Z}} \mathbb{Q}$ is identified with the matrix algebra $M_n(K)$. This means that the endomorphism $\mathrm{id}_{E^n} - p$ can be written as an $n \times n$ matrix with entries in *K*. Furthermore, since $\gamma \in H$, one has

$$\epsilon = \log_{G(\mathbb{C}_p)}(\gamma) = \log_{H(\mathbb{C}_p)}(\gamma) \in \operatorname{Lie}(H) \otimes_{\mathbb{Q}} \mathbb{C}_p.$$

It follows that the point $(v_1, \ldots, v_n) = d\pi(\epsilon) \in \text{Lie}(\mathcal{E})$ which turns out to be the kernel of the endomorphism given by the above matrix. However, the elements v_1, \ldots, v_n are linearly independent over *K*, so that this matrix must be trivial. In other words, $p = \text{id}_{E^n}$, that is, $\mathcal{E} = E^n$.

Next, we see that $G \cong \mathbb{G}_m^l \times G_0$, where $G_0 \in \text{Ext}^1(E^n, \mathbb{G}_a)$ since $\text{Ext}^1(\mathbb{G}_m, \mathbb{G}_a)$ is trivial (in fact, it is known more generally that the group extension of linear algebraic groups is trivial). Hence, without loss of generality, we may assume that the algebraic numbers β_1, \ldots, β_l are not all zero (since, if not, one can take the quotient of *G* by the multiplicative group \mathbb{G}_m , and we are in a simpler case with G_0). The intersection of *H* with $\mathbb{G}_a \times \mathbb{G}_m^l$ is an algebraic subgroup of $\mathbb{G}_a \times \mathbb{G}_m^l$, and therefore has the form $H_a \times H_m$, where H_a and H_m are (connected) algebraic subgroups of \mathbb{G}_a and \mathbb{G}_m^l , respectively (see [1, Proposition 4.3]). This leads to

$$\operatorname{Lie}(H_a) \times \operatorname{Lie}(H_m) = \operatorname{Lie}(H_a \times H_m)$$
$$= \operatorname{Lie}(H) \cap (\operatorname{Lie}(\mathbb{G}_a) \times \operatorname{Lie}(\mathbb{G}_m^l)) = \operatorname{Lie}(H) \cap (\overline{\mathbb{Q}} \times \overline{\mathbb{Q}}^l).$$

If H_m is a proper algebraic subgroup of the torus \mathbb{G}_m^l , it follows from [1, Lemma 4.4] that the Lie algebra Lie (H_m) is given by $L_1 = \cdots = L_d = 0$, where $d = l - \dim H_m \ge 1$ and L_1, \ldots, L_d are nonzero linear forms in n variables with integer coefficients. In particular, this means that $\log_p(w_1), \ldots, \log_p(w_l)$ are linearly dependent over \mathbb{Q} , or equivalently, $\log_p(u_1), \ldots, \log_p(u_l)$ are linearly dependent over \mathbb{Q} . This contradiction shows that $H_m = \mathbb{G}_m^l$ and then H_a must be trivial (since dim $H \le \dim_{\mathbb{Q}} S = n + l$). This

enables us to conclude that $\beta_1 s_1 + \cdots + \beta_l s_l = 0$ for all $s_1, \ldots, s_l \in \overline{\mathbb{Q}}$ and this happens if and only if $\beta_1 = \cdots = \beta_l = 0$, which is a contradiction. The theorem is proved.

As in the complex case, it is also possible to slightly extend the main theorem to the case of several *p*-adic Weierstrass zeta functions as follows. Let E_1, \ldots, E_n be elliptic curves defined over $\overline{\mathbb{Q}}$. For each $i \in \{1, \ldots, n\}$, denote by $\wp_{p,i}$ and $\zeta_{p,i}$ the *p*-adic elliptic function and the *p*-adic Weierstrass zeta function associated with the elliptic curve E_i , respectively. Let v_i be an algebraic point of $\wp_{p,i}$ for $i = 1, \ldots, n$. Let I_v ($v = 1, \ldots, k$) be maximal sets of indices such that E_i are pairwise isogenous (over $\overline{\mathbb{Q}}$) for all $i \in I_v$. Fix an element $E^{(v)}$ in the set $\{E_j : j \in I_v\}$. The field of endomorphisms of $E^{(v)}$ is the same as that of E_j for any $j \in I_v$, and we denote it by K_v . Let V_v be the vector space generated by the set $\{v_j : j \in I_v\}$ over K_v . Then we obtain the following theorem which is an extension of the *p*-adic analogue of [1, Theorem 6.4].

THEOREM 4.1. Let u_1, \ldots, u_l be nonzero algebraic numbers and U the vector space generated by $\text{Log}_p(u_1), \ldots, \text{Log}_p(u_l)$ over \mathbb{Q} . Then the dimension of the vector space W generated by $1, \text{Log}_p(u_1), \ldots, \text{Log}_p(u_l), v_1, \ldots, v_n, \zeta_{p,1}(v_1), \ldots, \zeta_{p,n}(v_n)$ over $\overline{\mathbb{Q}}$ is determined by

 $\dim_{\overline{\mathbb{O}}} W = 1 + \dim_{\mathbb{Q}} U + 2(\dim_{K_1} V_1 + \dots + \dim_{K_k} V_k).$

References

- [1] A. Baker and G. Wüstholz, *Logarithmic Forms and Diophantine Geometry*, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007).
- [2] D. Bertrand, 'Sous-groupes à un paramètre *p*-adique de variétés de groupe', *Invent. Math.* 40(2) (1977), 171–193.
- [3] N. Bourbaki, *Elements of Mathematics. Lie groups and Lie algebras. Part I: Chapters 1–3*, Actualities scientifiques et industrielles (Herman, Paris, 1975); English translantion.
- [4] D. Caveny and R. Tubbs, 'Well-approximated points on linear extensions of elliptic curves', Proc. Amer. Math. Soc. 138 (2010), 2745–2754.
- [5] K. Chandrasekharan, *Elliptic Functions*, Grundlehren der mathematischen Wissenschaften, 281 (Springer-Verlag, Berlin, 1985).
- [6] J. Coates, 'The transcendence of linear forms in $\omega_1, \omega_2, \eta_1, \eta_2, 2\pi i$ ', Amer. J. Math. 93 (1971), 385–397.
- [7] G. Faltings and G. Wüstholz, 'Einbettungen kommutativer algebraischer Gruppen und einige ihrer Eigenschaften', J. reine angew. Math. 354 (1984), 175–205.
- [8] C. Fuchs and D. H. Pham, 'The *p*-adic analytic subgroup theorem revisited', *p*-Adic Numbers Ultrametric Anal. Appl. 7 (2015), 143–156.
- [9] E. Lutz, 'Sur l'équation $Y^2 = AX^3 AX B$ dans les corps *p*-adiques', *J. reine angew. Math.* 177 (1937), 238–247.
- [10] T. Matev, 'The *p*-adic analytic subgroup theorem and applications', Preprint, 2010, arXiv:1010.3156v1.
- [11] A. M. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics, 198 (Springer-Verlag, New York, 2000).
- [12] T. Schneider, 'Transzendenzuntersuchungen periodischer Funktionen: I Transzendenz von Potenzen; II Transzendenzeigenschaften elliptischer Funktionen', J. reine angew. Math. 172 (1934), 65–74.

[10] Weierstrass zeta functions and *p*-adic linear relations

- [13] J. P. Serre, 'Quelques propriétés des groupes algébriques commutatifs', Astérisque 69–70 (1979), 191–202.
- [14] A. Weil, 'Sur les fonctions elliptiques p-adiques', C. R. Hebdomadaires Séances L'Acad. Sci. 203(1) (1936), 22–24.
- [15] G. Wüstholz, 'Algebraische Punkte auf Analytischen Untergruppen algebraischer Gruppen', Ann. of Math. (2) 129 (1989), 501–517.

DUC HIEP PHAM, University of Education,

Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam e-mail: phamduchiep@vnu.edu.vn