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Hydraulic fracturing for oil and gas production from shale formations, as well as natural
geological phenomena, involve the propagation of thin viscous films within elastic media.
For viscous fluids, stress diverges as the thickness of the film tends to zero, arresting
the propagation of the film, and thus implying the contact line paradox. For free-surface
films, this paradox is resolved by considering a precursor film, leading to Tanner’s law.
This approach was extended recently for viscous films between a thin elastic plate and a
rigid solid, allowing calculation of the film propagation rate. In this work, we examine
the effect of a pre-wetting layer on the rate of propagation of a viscous flow within an
infinitely deep and long domain. We analyse the linear and nonlinear dynamic problems,
and perform a self-similarity analysis. We find that peeling front propagation scales as
time to the power of 1/9 and 1/3 for thin and thick pre-wetting layer limits, respectively.
Our results contribute to the understanding of the contact line paradox in elastic media and
the crucial role of the pre-wetting layer in resolving it.
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1. Introduction

Natural geological phenomena, such as the formation of laccoliths by the lateral flow
of lava beneath an elastic sediment layer (Michaut 2011; Lister, Peng & Neufeld 2013;
Pihler-Puzović et al. 2015) and gravity-driven surface lava flows under solidified crusts
(Pihler-Puzović et al. 2015), as well as human-made applications, such as hydraulic
fracturing for production of oil and gas from shale formations that releases fluid waste
(Dana et al. 2018), formation and growth of blisters (Pihler-Puzović et al. 2015),
manufacture of flexible electronics and micro-electromechanical systems, the reopening of
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airways, and the suppression of viscous fingering in a deformable Hele-Shaw cell (Lister
et al. 2013), involve viscous spreading of fluids beneath elastic surfaces.

It is known that in surface-tension-driven problems, in the limit of length scales smaller
than the capillary length, an assumption that the thickness of a droplet tends to zero at the
contact line leads to divergent viscous stresses, and thus to the arresting of the contact line
propagation (Huh & Scriven 1971). This apparent paradox, which conflicts with everyday
experience of spreading droplets, was resolved by considering the development of a thin
precursor film due to intermolecular interactions (e.g. van der Waals) in advance of the
contact line (de Gennes 1985). Thus a local balance between viscous dissipation and the
rate of change of surface energy gives rise to Tanner’s law (Tanner 1979; Bonn et al. 2009),
in which the droplet radius advances with speed dR/dt ∝ θ3 for apparent contact angle θ ,
thus using droplet volume conservation, one obtains readily that R increases as t1/10 (de
Gennes, Brochard-Wyart & Quéré 2004).

This approach was extended recently by employing the pre-wetting layer to study a
propagation of a viscous flow between elastic plates and a rigid solid. For example,
Lister et al. (2013) examined an elastic peeling problem in the distinct limits of peeling
by bending and peeling by pulling, and applied their results to the radial spread of a
fluid blister over a thin pre-wetting film. Pihler-Puzović et al. (2015) investigated single-
and two-phase displacement flows in which the injection of fluid is accommodated by
the inflation of the sheet and the outward propagation of an axisymmetric front beyond
which the cell remains approximately undeformed. Peng & Lister (2020) investigated the
spreading of viscous fluid injected under an elastic sheet, where initially the viscous liquid
fills the narrow gap, and is driven by gravity and by elastic bending and tension forces,
resisted by viscous forces. By identifying all of the possible asymptotic combinations,
they revealed a rich variety of different behaviours. Hewitt, Balmforth & De-Bruyn
(2015) considered a nonlinear diffusion equation describing the planar spreading of a
viscous fluid injected between an elastic sheet and an underlying rigid plane, where the
dynamics was assumed to depend on the physical conditions at the contact line where
the sheet is lifted off the plane by the fluid. Bunger & Detournay (2007) proposed
a small-time asymptotic solution for a penny-shaped fluid-driven fracture, which was
obtained semi-analytically. In particular, they concluded that the similarity solution is
unusual since the two length scales of the problem – the radius of the fracture and the
radius of the fluid front – evolve according to two different power laws of time.

Other works concentrated on the propagation of cracks in infinite domains, in the
two limits of a thin or thick elastic plate. For example, Lai et al. (2015) performed an
experimental investigation of a fluid-driven crack in a gelatin matrix, and verified the
influence of different experimental parameters such as the injection flow rate, Young’s
modulus of the matrix, and fluid viscosity on the shape of crack. Different governing
physical mechanisms of the peeling process were also studied extensively. Considerable
work was done taking into account the adhesive interaction between the solid and the
fluid (McEwan & Taylor 1966; Hosoi & Mahadevan 2004). Some studies concentrated
on investigating systems with gravitation-governed peeling processes (Buckmaster 1977;
Huppert 1982; Momoniat 2006; Howell, Robinson & Stone 2013; Balmforth, Craster &
Hewitt 2015; Hewitt et al. 2015).

In this work, we examine the effect of a pre-wetting layer on the rate of propagation
of a viscous flow within an infinitely deep and long domain. Our model, which aims to
explain fluid dynamics that occurs when a crack already exists, is commonly denoted
in the context of hydraulic fracturing as ‘flowback’ or ‘produced water’ (see e.g. Dana
et al. 2018). Specifically, our model problem is governed by the equations of elasticity,
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Figure 1. Illustrations of the cross-sectional view of the considered system, where a thin layer of fluid is
situated (a) between a rigid solid and a semi-infinite elastic domain, and (b) in the centre of an infinite elastic
domain. The two configurations are equivalent since if k1 and k2 are the material constants of h1 and h2,
respectively, defining h̃ = h1 + h2 and the effective material constant k to be k̃ = 1/(1/k1 + 1/k2), we get in
(b) the same problem formulation as in (a), but with h̃ and k̃ instead of h and k, respectively. For simplicity,
hereafter we focus on configuration (a).

where the lubrication theory is used to describe the fluid dynamics in the whole region
(close to the peeling front and away from it). In this sense, considerable work was done
on infinite elastic spaces and half-spaces in the context of hydraulic fracturing. Various
models of hydraulically driven crack propagation were suggested (Spence & Sharp 1985;
Lister 1990; Savitski & Detournay 2002; Lai et al. 2015, 2016a,b). Most of the analytic
works implement known solutions for general axisymmetric problems of stress functions,
e.g. Love’s bi-harmonic equations (Sneddon 1995). The integral relation between the fluid
film pressure and the surface deformation, derived by Spence & Sharp (1985), together
with Reynolds equation obtained from the fluid analysis, completes the definition of the
integro-differential problem and allows us to gain insight into the behaviour of the system
under consideration. More specifically, in § 2, we present the model problem, and in § 3,
we discuss the self-similarity solutions in the two limits of thick and thin pre-wetting
layers, where a thin pre-wetting layer represents a precursor film. In § 4, we discuss our
results, including a comparison between the solutions for the dynamic linear and nonlinear
problems, and the corresponding solutions obtained by self-similarity analysis in these two
limits. We conclude our findings in § 5, give the details of our numerical algorithms in the
various cases in Appendix A, and present additional details and comparisons between our
results and the results known from the literature in Appendix B.

2. Problem formulation

In this work, we consider the configurations that are shown in figure 1, where a fluid layer
with initial thickness h0 is situated between infinitely deep and long elastic and rigid solids,
or between two elastic solids. Hereafter, we will focus only on the configuration shown in
figure 1(a), since the two configurations are equivalent. The configuration in figure 1 is
assumed to be axisymmetric, where the radial coordinate, denoted by r, is in the plane
of the solids’ surfaces, and the z-axis is traversing the solids perpendicularly. An inlet is
located at r = 0, which allows the introduction of a controlled fluid flux into the film,
and the peeling front is located at rF(t). The fluid is a non-compressible Newtonian fluid
with viscosity μ, and the solid is a Hookean isotropic material with shear modulus G and
Poisson’s ratio ν.
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We denote the overall thickness of the fluid by h. Using the lubrication assumption –
namely, assuming a small ratio between the characteristic film thickness and the length
scale (h∗/r∗ � 1) – we get the Reynolds equation, describing the dynamics of the fluid,

∂h
∂t

= 1
12μ

1
r

∂

∂r

(
rh3 ∂p

∂r

)
, (r, t) ∈ (0, r∗) × (0, Tfin), (2.1)

where our assumption that there exists a pre-wetting layer of thickness 0 < h0 �
max{h(r, t)} implies that there exists a function d(r, t), so that

h(r, t) = h0 + d(r, t). (2.2)

In addition, in (2.1), the following notations are used: p(r, t) denotes the pressure of the
fluid, r∗ � 1 is the ‘far’ boundary of our domain, and Tfin is some final time. We neglect
the shear stress exerted by the fluid on the solid, since the ratio between the shear stress
and the pressure is very small due to the lubrication assumption: τ/p ≈ (d∗/r∗)2 � 1,
where d∗ can be defined as d∗ := maxr∈(0,r∗){d(r, 0)}.

Moreover, we use the general relation between the deformation of the surface, d, and
the fluid pressure, p, as derived by Spence & Sharp (1985), which may be expressed as

p(r, t) = −k
∫ ∞

0
M
(r

s

) ∂

∂s
d(s, t)

ds
s

, (2.3)

where

k = G
1 − ν

= E
2(1 − ν2)

(2.4)

is a material constant, and M(m) is a kernel function that is given by

m M(m) =

⎧⎪⎪⎨
⎪⎪⎩

2m E(m)

π(1 − m2)
, m < 1,

2m2 E(1/m)

π(1 − m2)
+ K

(
1
m

)
, m > 1.

(2.5)

In (2.5), K(m) and E(m) denote the complete elliptic integrals of the first and second kind,
respectively.

For the boundary conditions, which depend on the specific case (linear problem,
nonlinear problem, self-similar problem in the linear case, or self-similar problem in the
nonlinear case), see § 3.

To render the problem dimensionless, we employ the transformations

R = r
r∗ , RF = rF

r∗ , T = t
t∗

, H(R, T) = h(r, t)
h∗ , D(R, T) = d(r, t)

d∗ , P(R, T) = p(r, t)
p∗ ,

(2.6)

where rF = minr∈(0,r∗){d(r, t)} denotes the fluid front at time t. Lowercase letters,
uppercase letters and superscript asterisks denote dimensional variables, dimensionless
variables and characteristic values, respectively. Requiring that the dimensionless problem
will be free of dimensionless numbers implies the following relations between the
characteristic values:

p∗ = kd∗

r∗ and t∗ = μ(r∗)3

k(h∗)2 d∗ . (2.7a,b)

In our numerical computations for the dynamic problem, ‘∞’ in the upper boundary of
the integral in (2.3) will be replaced by the finite characteristic value r∗, which is assumed
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to satisfy r∗ � rF(Tfin), which is sufficiently large, so that the pressure gradients vanish
for all r > r∗ and thus the thickness h(r, t) is constant for all r > r∗ and t � Tfin. Thus,
after rendering the problem dimensionless, the upper boundary of (2.3), which is scaled
by r∗, becomes 1. Moreover, in the self-similar cases, which will be discussed in the next
section, the upper boundary of the integral in (2.3) is the contact line position RF , which
serves also as the rescaling factor for obtaining the self-similar variable η, namely η =
r/RF. Thus also in the case of self-similar solutions, the upper boundary of this integral
in dimensionless form is equal to 1. This allows us to avoid singularity in computations
by following Peck et al. (2018), so that in the continuation of this study, we will use the
following inverted version of (2.3) in dimensionless terms:

D(R, T) = 8
π

∫ 1

0

∂P
∂Y

K(Y, R) dY + 8
√

1 − R2

π

∫ 1

0

Y P(Y, T)√
1 − Y2

dY, (2.8)

where the kernel K(Y, R) is given by

K(Y, R) = Y
[

E
(

arcsin(Y)

∣∣∣∣R2

Y2

)
− E

(
arcsin(χ)

∣∣∣∣R2

Y2

)]
, (2.9)

with χ := min(1, Y/R), and where E(φ|m) = ∫ φ

0

√
1 − m sin2(θ) dθ denotes the

incomplete elliptic integral of the second kind. Note that contrary to the kernel M, defined
in (2.5), the kernel K is not singular for (Y, R) ∈ [0, 1]2 (Peck et al. 2018).

We present our numerical algorithm for the solution of this dynamic problem in
the linear and nonlinear cases in §§ A.1 and A.3, respectively. In § 3, we present the
self-similar solution for both relatively thick and relatively thin pre-wetting layer limits,
and then in § 4, we compare the results of our dynamic simulations with the corresponding
self-similar solution in each of the two limits. Moreover, in § 4, we show and discuss
our results for the contribution of the pre-wetting layer thickness to the peeling front
propagation rate.

3. Self-similarity analysis

The pre-wetting layer thickness, namely the magnitude of h0 in h(r, t) = h0 + d(r, t), has
two distinct limits that lead to different regimes of the solution. If the pre-wetting layer
thickness h0 is much greater than the characteristic deformation, then the equation in
(2.1) can be approximated at leading order by a linear partial differential equation (PDE).
Otherwise, if the pre-wetting layer thickness h0 is much smaller than the characteristic
deformation, then the equation in (2.1) becomes strongly nonlinear. Note that in a general
case of the equation in (2.1), the answer to the question of whether a similarity solution
does or does not exist depends on the differential operator in the pressure p. For tension
or bending (p = −hxx or p = hxxxx), there is no similarity solution to connect to the
pre-wetted film (Hewitt et al. 2015). Indeed, tending h0 to zero in these cases results
in a singular limit, so that in order to get an advancing contact line, a regularisation,
such as a pre-wetted film, is required (Flitton & King 2004). On the other hand, in the
case of gravity (p = h), a similarity solution exists (Huppert 1982). Moreover, also for an
advancing contact line in an elastic half-space, it has been shown previously that solutions
converge as h0 tends to zero (Touvet et al. 2011), so that a similarity solution exists.

In this work, we investigate the dependence of the peeling front velocity on the thickness
of the pre-wetting layer, h0, where as we will discuss in this section, the self-similar

962 A24-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.283


A. Zigelman, P. Breitman and A.D. Gat

analysis provides us with the power law of time for the peeling front propagation, with
the different powers for both these limits. In this section, both limits will be analysed
separately. The self-similar solutions that will be obtained in the current section will be
found in the range R ∈ (0, RF(T)).

3.1. Linear case – obtained for d∗ � h0

In this case, let us set the characteristic film thickness h∗ to be the thickness of the
pre-wetting layer, namely h∗ = h0, and let us denote by ε the ratio

ε = d∗

h0
� 1. (3.1)

Using (2.6) to transform dimensional variables to the dimensionless notation, and
substituting this ratio into the definition of H, we get, in the case of a relatively large
pre-wetting layer thickness, that

H(R, T) = 1 + ε D(R, T). (3.2)

It is easy to verify that substituting the dimensionless variables in (2.6) into (2.1) and (2.3),
and using the definitions in (2.7a,b) as well as the assumption that ε � 1, we get at the
leading order with respect to ε the following linear equation for D:

∂D
∂T

= 1
12R

∂

∂R

(
R

∂P
∂R

)
, R ∈ (0, 1), (3.3a)

P(R, T) = −
∫ 1

0
M
(

R
S

)
∂D
∂S

dS
S

. (3.3b)

These equations are solved subject to the following boundary and initial conditions:

∂P
∂R

∣∣∣∣
R=0

= 0, T ∈ (0, Tfin), (3.4a)

P(R = 1, T) = 0, T ∈ (0, Tfin), (3.4b)

D(R, T = 0) =
{

Hmax(1 − q2R2), for R ∈ [0, 1/q],
0, for R ∈ (1/q, 1],

(3.4c)

where Hmax and q � 1 are some prescribed constants. Note that R = 1 is located far from
the peeling front, so that the interface is flat there, and the conditions P(R = 1, T) = 0,
∂P/∂R|R=1 = 0, D(R = 1, T) = 0, and ∂D/∂R|R=1 = 0 are equivalent. We prescribed
P(R = 1, T) = 0 in (3.4b) for numerical convenience. Moreover, note that the problem
in (3.3) satisfies volume conservation, namely, there exists 
V > 0 that is independent of
time such that

2π

∫ RF(T)

0
D(R, T) R dR ≈ 
V. (3.5)

For details regarding the numerical algorithm for solving the dynamic problem in
(3.3)–(3.4), see § A.1.

In order to obtain a self-similar formulation for this problem up to the boundary R =
RF(T), rather than up to R = 1 (which is based on an assumption that the film thickness
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is undisturbed for R > RF(T) and implies in particular that the upper boundary of the
integral in (3.3b) is also replaced by RF(T)), let us follow Spence & Sharp (1985) and
assume that the velocity of the front propagation is proportional to a power law of time.
More specifically, let us assume that

RF(T) = LTα, (3.6)

where L and α are some constants. Furthermore, reasonable candidates for the
self-similarity variable and the solution are

η = L−1RT−α, P = L3Tβ P̃(η), D = LTγ D̃(η), (3.7a–c)

where P̃(η) and D̃(η) are self-similar functions to be determined. Substituting these
transformations into (3.3), and requiring the elimination of explicit time dependency in the
integro-differential system, we obtain the following system of equations for α, β and γ :

β − 2α − γ + 1 = 0,

γ − α − β = 0,

γ + 2α = 0,

⎫⎪⎬
⎪⎭ (3.8)

which yields the powers

α = 1
3 , β = −1, γ = −2

3 . (3.9a–c)

Thus we obtain the following integro-differential problem for P̃ and D̃:

8D̃ + 4η
dD̃
dη

+ 1
η

d
dη

(
η

dP̃
dη

)
= 0, (3.10a)

P̃(η) = −L−3
∫ 1

0
M
(

η

ξ

)
dD̃
dξ

dξ

ξ
, (3.10b)

where ξ = L−1ST−α . As mentioned previously, for computational purposes, we will
replace (3.10b) by its inverted form

D̃(η) = L3

[
8
π

∫ 1

0

∂P̃
∂ξ

K(ξ, η) dξ + 8
√

1 − η2

π

∫ 1

0

ξ P̃(ξ)√
1 − ξ2

dξ

]
, (3.10c)

where the kernel K is given in (2.9).
The equations in (3.10a) and (3.10c) are solved subject to the boundary conditions and

constraints

dD̃
dη

∣∣∣∣∣
η=0

= 0, (3.11a)

dD̃
dη

∣∣∣∣∣
η=1

= 0, (3.11b)

L =
⎛
⎝ 
V

2π

∫ 1

0
D̃η dη

⎞
⎠

1/3

, (3.11c)
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where 
V is some given volume, and in order to compare the self-similar solution with the
solution to the dynamic problem, it is chosen according to (3.5) (calculated with e.g. the
initial condition for the dynamic problem). Note that although the boundary condition in
(3.11a) differs from (3.4a), they are equivalent since both of them are obtained from the
corresponding integral equations if sufficient regularity of the pressure and the thickness
are assumed. This follows from the observation that the kernels M(R/S) and K(Y, R),
which were defined in (2.5) and (2.9), respectively, satisfy dK/dR|R=0 = dM/dR|R=0 = 0.
Moreover, it can be observed that the condition in (3.11b) differs from the condition in
(3.4b). The reason for this discrepancy is that the domains for the dynamic and self-similar
problems are different. While in the dynamic problem the end of the domain is sufficiently
far from the centre of symmetry, where the pre-wetting film remains unperturbed, the end
of the domain in the self-similar problem is at the peeling front itself (which in the case
h0 � d is a region, rather than a specific point), so that the condition in (3.11b) follows
from the definition of the position of the peeling front. More specifically, we found that the
self-similar solution oscillates around 0 as it reduces in magnitude, and we thus chose that
first location in which ∂D̃/∂η = 0 as the location of the front. The power-law relations are
not affected by this choice, and the magnitude of D̃ after this point is approximately 1 %
of the maximal value.

For details regarding the numerical algorithm for finding the solution for the self-similar
problem in (3.10)–(3.11), see § A.2.

3.2. Nonlinear case – obtained for d∗ � h0

In the limit as h0 → 0, the viscous resistance to flow in the thin pre-wetting region tends
to infinity, thus the characteristic time scale diverges as well. This inhibits information
from passing beyond the peeling front. These solutions, often referred to as compactly
supported solutions, are common to these peeling problems (see discussion in Lister et al.
2013).

In this case, let us set the characteristic film thickness h∗ to be d∗, and let us define

H0 = h0

d∗ � 1, (3.12)

so that now we get that

H(R, T) = H0 + D(R, T). (3.13)

In this case, substituting the dimensionless variables in (2.6) into (2.1) and (2.3), and using
the definitions in (2.7a,b) as well as the assumption that H0 � 1, we get at the leading
order with respect to H0 the following nonlinear PDE for D:

∂D
∂T

= 1
12R

∂

∂R

(
RD3 ∂P

∂R

)
, R ∈ (0, 1), (3.14a)

which is accompanied as previously by the integral equation

P(R, T) = −
∫ 1

0
M
(

R
S

)
∂D
∂S

dS
S

. (3.14b)
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We solve the problem in (3.14) subject to the following boundary and initial conditions:

∂P
∂R

∣∣∣∣
R=0

= 0, T ∈ (0, Tfin), (3.15a)

∂P
∂R

∣∣∣∣
R=1

= 0, T ∈ (0, Tfin), (3.15b)

D(R, T = 0) =
{

(Hmax − H0)(1 − q2R2), for R ∈ [0, 1/q],
0, for R ∈ (1/q, 1],

(3.15c)

where, as in the linear case, Hmax and q � 1 are some prescribed constants, and
H0 denotes the thickness of the pre-wetting layer whose influence on the power-law
dynamics of the peeling front we are interested to investigate. Although the conditions
in (3.15) look somewhat different to the conditions in (3.4), they are equivalent,
and this difference is only for numerical purposes. Specifically, as stated previously,
P(R = 1, T) = dP/dR|R=1 = 0, so we may chose any of them according to numerical
convenience.

In addition, similarly to the linear case, the volume is conserved also in the nonlinear
problem, namely, there exists 
V > 0 such that (3.5) is satisfied. For further details
regarding the numerical solution of (3.14) subject to (3.15), see § A.3.

In order to obtain a self-similar solution for the problem in (3.14) up to the boundary
R = RF(T) (so that also the upper boundary of the integral in (3.14b) is RF(T)), we use
again the transformation in (3.6) and define

η = L−1RT−α, P = Tβ P̃(η), D = LTγ D̃(η), (3.16a–c)

where, in order to eliminate the time dependency in the nonlinear case, we get that α, β

and γ should satisfy the system

2γ − 2α + β + 1 = 0,

γ − α − β = 0,

γ + 2α = 0,

⎫⎪⎬
⎪⎭ (3.17)

which yields the powers

α = 1
9 , β = −1

3 , γ = −2
9 . (3.18a–c)

Thus in this case, we obtain the following nonlinear integro-differential problem for P̃
and D̃:

8D̃ + 4η
dD̃
dη

+ 3
η

d
dη

(
ηD̃3 dP̃

dη

)
= 0, (3.19a)

P̃(η) = −
∫ 1

0
M
(

η

ξ

)
dD̃
dξ

dξ

ξ
, (3.19b)

or equivalently,

D̃(η) = 8
π

∫ 1

0

∂P̃
∂ξ

K(ξ, η) dξ + 8
√

1 − η2

π

∫ 1

0

ξ P̃(ξ)√
1 − ξ2

dξ, (3.19c)

where ξ = L−1ST−α .
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The equations in (3.19) are solved subject to the boundary conditions

dD̃
dη

∣∣∣∣∣
η=0

= 0, (3.20a)

D̃(1) = 0. (3.20b)

Note that the condition in (3.20a) is exactly as in the linear case, namely in (3.11a) (and
contrary to the nonlinear dynamic problem, we do not need to prescribe here explicitly
the condition for dP/dη|η=0, since we use a different methodology to solve this problem,
rather than finite differences.) Moreover, similarly to our discussion in the linear case, the
condition in (3.20b) is prescribed at the peeling front, thus it differs from the condition in
(3.15b), which is prescribed at the far end of the domain. However, note that the condition
in (3.20b) also differs from the boundary condition in (3.11b), which was prescribed at the
peeling front in the linear case. The reason for this difference is that in the nonlinear case,
the function D̃ is monotone decreasing and the derivative dD̃/dη diverges at η = 1 (and
attains a global minimum at the peeling front, rather than a local one, as in the linear case).
Since we cannot prescribe now that dD̃/dη|η=1 = 0, we use an alternative definition of the
peeling front, which is that the thickness of the film must vanish at η = 1. Note that in the
linear case, D̃(η) is not a monotone decreasing function, but oscillates around the η-axis.
Thus we cannot prescribe the boundary condition D̃(1) = 0 in the linear case, since it is
ambiguous.

The volume conservation constraint in the nonlinear case expressed in terms of
self-similar variables yields the following formula for the length scale L:

L =
⎛
⎝ 
V

2π

∫ 1

0
D̃η dη

⎞
⎠

1/3

. (3.21)

For details regarding the solution of the self-similar problem in this case, see § A.4.

4. Results

In figure 2, we show a comparison between the dynamic solution for the linear
problem (under the assumption that h0 � d∗) and the corresponding self-similar solution,
according to the discussion in § 3.1. Specifically, in figures 2(a) and 2(c), we show the
film thickness D and the pressure P, respectively, versus R for various time instances,
where the samples of the solution at different time instances obtained by solving the
linear dynamic problem are marked by solid lines, and the samples of the solution at the
same time instances obtained by solving the linear self-similar problem and transferring
the result to the dynamic solution are marked by dashed lines of the corresponding
colours. In figures 2(b) and 2(d), we show the film thickness D̃ and the pressure P̃,
respectively, versus η for various time instances, where the self-similar solution is marked
by a dashed black line, and the coloured curves correspond to the samples of the dynamic
solution (at the same time instances as in figures 2a,c) that were transferred to self-similar
variables. It can be seen that although initially there is a large difference between the
dynamic and self-similar solutions, as the time increases, the dynamic solution converges
to the self-similar one. In particular, this confirms that at the limit of a thick pre-wetting
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(d )(c)

Figure 2. Linear case where the initial conditions are as prescribed in (3.4c), with Hmax = 1 and q = 400.
(a) The film thickness D versus R for different time instances T ∈ [5 × 10−6, 0.001]. (b) The self-similar
function D̃ versus η. (c) The pressure P versus R. (d) The self-similar function P̃ versus η. In the insets of
(a,c), we show an increased view of the same graphs. The legend in (d) represents the time instances for all
of the plots, where the solid lines represent the samples of the solution of the dynamic linear problem (in
(a,c) and their transformation to self-similar variables in (b,d)), the dashed lines of the corresponding colour
represent the samples of the self-similar solution transferred to the corresponding time levels (in (a,c)), and the
black dashed lines (in b,d) show the solution of the self-similar problem. To transform the dynamic solution to
self-similar variables, we used L ≈ 1.1987, which was obtained by using (3.11c) with 
V ≈ 1.1027 × 10−5.

layer, the front propagation behaves as RF(T) ∼ LT1/3, where L is a constant. For an
additional comparison between the dynamic and self-similar solutions in the linear case,
see figure 5(a) in Appendix B.

In figure 3, we show a comparison between the dynamic solution for the nonlinear
problem (under the assumption that h0 � d∗) and the corresponding self-similar solution,
according to the discussion in § 3.2. Specifically, in figures 3(a) and 3(c), we show the film
thickness D and the pressure P, respectively, versus R for various time instances, where
the samples of the solution at different time instances obtained by solving the nonlinear
dynamic problem are marked by solid lines, and the samples of the solution at the same
time instances obtained by solving the nonlinear self-similar problem and transferring the
result to the dynamic solution are marked by dashed lines of the corresponding colours.
In figures 3(b) and 3(d), we show the film thickness D̃ and the pressure P̃, respectively,
versus η for various time instances, where the self-similar solution is marked by a dashed
black line, and the coloured curves correspond to the samples of the dynamic solution (at
the same time instances as in figures 3a,c) that were transferred to self-similar variables.
It can be seen that although initially there is a large difference between the dynamic and
self-similar solutions, as the time increases, the dynamic solution becomes very close to
the self-similar one. Note that the agreement (in figure 3d) for the pressure near the contact
line is worse for T = 1.6 × 10−4 than for T = 10−5 because the pre-wetting layer thickness
is approximately 1 % of the maximal film thickness at time T = 10−5, whereas at time
T = 1.6 × 10−4, it increases up to 2 %. This discrepancy between the pressure obtained
via a dynamical simulation and by self-similar solution is larger near the peeling front,
since the ratio of the pre-wetting layer thickness to the film thickness increases even more
in the vicinity of the peeling front, so that the dynamic solution in this region gets closer to
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1.6 × 10–4

Self-similar

5.5 × 10–5

8.5 × 10–5

1.15 × 10–4

Figure 3. Nonlinear case where the initial conditions are as prescribed in (3.15c), with H0 = 0.02, Hmax = 2.3
and q = 50. (a) The film thickness D versus R for different time instances T ∈ [10−5, 1.6 × 10−4]. (b) The
self-similar function D̃ versus η. (c) The pressure P versus R. (d) The self-similar function P̃ versus η. In the
inset of (a), we show an increased view of the same graph. The legend in (d) represents the time instances for
all of the plots, where the solid lines represent the samples of the solution of the dynamic nonlinear problem (in
(a,c) and their transformation to self-similar variables in (b,d)), the dashed lines of the corresponding colour
represent the samples of the self-similar solution transferred to the corresponding time levels (in (a,c)), and the
black dashed lines (in b,d) show the solution of the self-similar problem. To transform the dynamic solution to
self-similar variables, we used L ≈ 0.0722, which was obtained by using (3.21) with 
V ≈ 1.5 × 10−3.

the ‘thick’ pre-wetting layer limit (which is equivalent to a linear problem). In particular,
the results shown in figure 3 confirm that at the limit of a very thin pre-wetting layer,
the front propagation behaves as RF(T) ∼ LT1/9, where L is a constant. For an additional
comparison between the dynamic and self-similar solutions in the nonlinear case, as well
as a comparison between the dynamic solution in the nonlinear case in the vicinity of
the peeling front and the expected power-law asymptotics in that region (Spence & Sharp
1985; Desroches et al. 1994), see figures 5(b) and 8 in Appendix B.

In figure 4, we show the dependence of the power α in the approximation of the
front propagation, RF(T, H0) ∼ LTα(H0), on the normalized pre-wetting layer thickness
H0 = h0/d∗. It can be seen that at the limits of thin (H0 → 0) and thick (H0 → H(0, 0))
pre-wetting layer thickness, the power α(H0) tends to the analytically expected (obtained
by self-similarity analysis) powers α = 1/9 and 1/3, respectively. Our main result is that
the dependence of α on H0 is given approximately by

α(H0) ≈ A exp (−BH0) + C, (4.1)

where A = −0.2253, B = 1.195 and C = 0.3348. In the inset of figure 4 we show the
dependence of the normalized (divided by its maximal value) velocity at different time
instances on the normalized (divided by its maximal value) pre-wetting layer thickness. It
can be seen that the velocity of the peeling front V := dRF/dT , which is approximately a
linear function of H0, tends (for all examined time instances) to non-vanishing constants,
as H0 tends to 0. Although, the sequence of these constants constitutes a monotone
decreasing function of time, in our simulation the constants do not vanish.
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H0

RF(T )∼LT α
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0.30

Analytic solution – thick pre-wetting layer limit

Analytic solution – thin pre-wetting layer limit

0.25

0.20

0.15

0.10
0 1.0 1.5

0.5
V

1.0

0

max(V )

H0/max(H0)

0.5 1.0

H0

2.00.5

α

Figure 4. The power α in the approximation of the peeling front propagation RF(T, H0) ∼ LTα(H0), versus
H0. The blue dots represent values of α, which were obtained from fitting of RF(T, H0) (calculated by our
simulations) versus T to the function LTα(H0) (for a series of examples of this fitting, see figures 6 and 7 in
Appendix B). All of the simulations were performed with the initial conditions prescribed in (3.15c), where we
have set Hmax = 2.3 and q = 50. The blue curve was obtained by fitting the results obtained by simulation to the
function F = A exp (−BH0) + C, which yielded A = −0.2253, B = 1.195 and C = 0.3348, with limH0→0 F =
0.1095 ≈ 1/9, limH0→∞ F = 0.3348 ≈ 1/3, and with the goodness of fit satisfying R-square 0.9989. The red
and black dashed lines represent the powers 1/3 and 1/9 (obtained by self-similarity analysis) at the two limits
of a very thick and a very thin pre-wetting layer, respectively. In the insets, we show a simplified sketch of
our system that should illustrate the meaning of our results, and a normalized velocity of the contact line
V/ max{V} versus the normalized thickness of the pre-wetting layer H0/ max{H0}, for various values of time
instances T ∈ [9.6 × 10−6, 1.596 × 10−4], where the uppermost curve corresponds to T = 9.6 × 10−6, the
lowermost curve corresponds to T = 1.596 × 10−4, and the time difference between any two adjacent curves
(the time corresponding to any curve minus the time corresponding to the curve just above it) is 10−6.

5. Conclusions

In this work, we studied the effect of the pre-wetting layer thickness on the propagation
rate of the peeling front of fluid that is situated between two infinitely deep and long
elastic solids or between an elastic solid and a rigid substrate. We solved the dynamic
problem numerically in two limits, a relatively thin and a relatively thick pre-wetting layer.
Moreover, we found the corresponding self-similar solution in each of these two limits,
and obtained excellent agreement between the dynamic and self-similar solutions in both
cases.

Our findings show that in the linear limit, the peeling front propagates at rate t1/3, while
in the nonlinear case, it propagates at rate t1/9. When compared to the results of Lister
et al. (2013), who found that the peeling front propagates at rates t7/22 and t3/8 (for pulling
and bending limits, respectively), it is clear that the front propagation is slower for the
limit of very thick elastic layers. In order to obtain a dependence of the peeling front
propagation rate on the pre-wetting layer thickness, we simulated our dynamic nonlinear
solver for a range of pre-wetting layer thicknesses, between the limits of a relatively thin
and a relatively thick pre-wetting layer. We found that the peeling front propagation scales
as time to the powers that constitute a monotone increasing function of the pre-wetting
layer thickness, and accept the values within the range [1/9, 1/3], where limH0→0 α(H0) ≈
1/9 and limH0→H(0,0) α(H0) ≈ 1/3, exactly as expected by the self-similarity analysis.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Numerical procedure

A.1. Case 1: linear dynamic problem (under the assumption that h0 � d∗)
In this case, we solve the non-dimensional linear problem

∂D
∂T

= 1
12R

∂

∂R

(
R

∂P
∂R

)
, R ∈ (0, 1), (A1a)

D(R, T) = 8
π

∫ 1

0

∂P
∂Y

K(Y, R) dY + 8
√

1 − R2

π

∫ 1

0

Y P(Y, T)√
1 − Y2

dY, (A1b)

subject to the boundary and initial conditions

∂P
∂R

∣∣∣∣
R=0

= 0, T ∈ (0, Tfin), (A2a)

P(R = 1, T) = 0, T ∈ (0, Tfin), (A2b)

D(R, T = 0) =
{

Hmax(1 − q2R2), for R ∈ [0, 1/q],
0, for R ∈ (1/q, 1],

(A2c)

where Hmax and q � 1 are some constants, and where the kernel K(Y, R) in (A1b) is given
in (2.9).

From (A1a), we get that

∂D
∂T

= 1
12

∂2P
∂R2 + 1

12R
∂P
∂R

, R ∈ (0, 1). (A3)

We solve the coupled system in (A1a,b) by using implicit finite difference scheme. More
specifically, we define an equispaced grid in R that is staggered near R = 0 and regular near
R = 1, with increment size 
R and number of nodes I (the node 1 is located at R = 
R/2,
and the node I + 1 is located on the boundary R = 1), and step forward in time with time
step size 
T . For brevity, we use the notation

Dn
i := D(i ΔR, n 
T). (A4)

Thus at each time level, we solve a linear system with 2I unknowns:

u = (Dn+1
1 , Dn+1

2 , . . . , Dn+1
I , Pn+1

1 , Pn+1
2 , . . . , Pn+1

I ). (A5)

More specifically, discretising (A3), we get that for i = 2, . . . , I − 1, the scheme is given
by

Dn+1
i − 
T

12 
R2 (Pn+1
i+1 − 2Pn+1

i + Pn+1
i−1 ) − 
T

24Ri 
R
(Pn+1

i+1 − Pn+1
i−1 ) = Dn

i ,

n = 0, 1, . . . , N, (A6)
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where D0
i , i = 1, . . . , I, is determined according to the initial conditions in (A2c). These

equations yield entries in rows i = 2, . . . , I − 1 in the mass matrix and the forcing vector
as follows:

Mi,i = 1,

Mi,i+I = 
T
6 
R2 ,

Mi,i+I+1 = − 
T
12 
R2 − 
T

24Ri 
R
,

Mi,i+I−1 = − 
T
12 
R2 + 
T

24Ri 
R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A7)

and

Fi = Dn
i for all i = 1, 2, . . . , I. (A8)

For i = 1, we use the no-flux boundary condition (∂P/∂R)|R=0 = 0, and because we
employ a staggered grid, we readily get that

Dn+1
1 − 
T

12 
R2 (Pn+1
2 − Pn+1

1 ) − 
T
24R1 
R

(Pn+1
2 − Pn+1

1 ) = Dn
1, n = 0, 1, . . . , N,

(A9)
so that

M1,1 = 1,

M1,I+1 = 
T
12 
R2 + 
T

24R1 
R
,

M1,I+2 = − 
T
12 
R2 − 
T

24R1 
R
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A10)

For i = I, we use the boundary condition near R = 1, namely that PI+1 = 0, so that we
get

Dn+1
I − 
T

12 
R2 (−2Pn+1
I + Pn+1

I−1 ) + 
T Pn+1
I−1

24RI 
R
= Dn

I , n = 0, 1, . . . , N, (A11)

which yields

MI,I = 1,

MI,2I = 
T
6 
R2 ,

MI,2I−1 = − 
T
12 
R2 + 
T

24Ri 
R
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A12)
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To discretise the equation in (A1b), we use the trapezoidal rule, which results in

Dn+1
i − 4 ΔR

π

[
K1,i

(
∂P
∂Y

)∣∣∣∣
Y=Y1

+ 2K2,i

(
∂P
∂Y

)∣∣∣∣
Y=Y2

+ · · · + 2KI−1,i

(
∂P
∂Y

)∣∣∣∣
Y=YI−1

+ 2KI,i

(
∂P
∂Y

)∣∣∣∣
Y=YI

+ KI+1,i

(
∂P
∂Y

)∣∣∣∣
Y=YI+1

+ 1
2
K1,i

(
∂P
∂Y

)∣∣∣∣
Y=Y1

]

−
4 
R

√
1 − R2

i

π

⎛
⎝ R1Pn+1

1√
1 − R2

1

+ 2R2Pn+1
2√

1 − R2
2

+ · · · + 2RI−1Pn+1
I−1√

1 − R2
I−1

+ RIPn+1
I√

1 − R2
I

+ R1Pn+1
1

2
√

1 − R2
1

+ RIPn+1
I

2
√

1 − R2
I

⎞
⎠ = 0. (A13)

Note that the term

1
2
K1,i

(
∂P
∂Y

)∣∣∣∣
Y=Y1

(A14)

that appears on the second line of (A13) accounts for the contribution to the integral from
the interval [0, Y1], whose length is 
R/2, and where we use the boundary conditions
according to which (∂P/∂R)|R=0 = 0, and assume that (approximately) the derivative
∂P/∂R is a linear function on [0, Y1] (similar assumption to the trapezoidal rule). For
the same reason, the terms

R1Pn+1
1

2
√

1 − R2
1

and
RIPn+1

I

2
√

1 − R2
I

(A15a,b)

appear on the fourth line of (A13), where implicit here is the assumption that the function
R P(R)/

√
1 − R2 is sufficiently regular near R = 0 and R = 1, and tends to 0 as R → 0

and R → 1 (because of the boundary condition near R = 1, by which P(R = 1, T) = 0).
To simplify the expression in (A13), we use central differences for the first-order

derivative of P at interior nodes, no-flux boundary conditions near R = 0, which imply
that (

∂P
∂Y

)∣∣∣∣
Y=Y1

= 1
2 
Y

(P2 − P1) + O(
Y2), (A16)

and backward difference near the boundary R = 1, subject to the boundary condition that
P(R = 1, T) = 0, namely(

∂P
∂Y

)∣∣∣∣
Y=YI+1

= 1

Y

(
3
2

PI+1 − 2PI + 1
2

PI−1

)
+ O(
Y2)

= 1

Y

(
−2PI + 1

2
PI−1

)
+ O(
Y2). (A17)
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Role of pre-wetting layer in resolving the contact line paradox

Thus we get from (A13) that

Dn+1
i − 2

π

[
3
2
K1,i(Pn+1

2 − Pn+1
1 ) + 2K2,i(Pn+1

3 − Pn+1
1 ) + · · · + 2KI−1,i(Pn+1

I − Pn+1
I−2 )

− 2KI,iPn+1
I−1 + 2KI+1,i

(
−2Pn+1

I + 1
2

Pn+1
I−1

)]

−
4 
R

√
1 − R2

i

π

⎛
⎝ 3R1Pn+1

1

2
√

1 − R2
1

+ 2R2Pn+1
2√

1 − R2
2

+ · · · + 2RI−1Pn+1
I−1√

1 − R2
I−1

+ 3RIPn+1
I

2
√

1 − R2
I

⎞
⎠ = 0, i = 1, . . . , I. (A18)

This results in an additional I equations (for the Pi), i.e. for i = 1, . . . , I, we may fill the
rows I + i of the mass matrix as follows:

MI+i,i = 1,

MI+i,I+1 = 1
π

⎛
⎝3K1,i + 4K2,i −

6R1 
R
√

1 − R2
i√

1 − R2
1

⎞
⎠ ,

MI+i,I+2 = 1
π

⎛
⎝−3K1,i + 4K3,i −

8R2 
R
√

1 − R2
i√

1 − R2
2

⎞
⎠ ,

MI+i,I+s = 1
π

⎛
⎝−4Ks−1,i + 4Ks+1,i −

8Rs 
R
√

1 − R2
i√

1 − R2
s

⎞
⎠ , s = 3, 4, . . . , I − 2,

MI+i,2I−1 = 1
π

⎛
⎝−4KI−2,i + 4KI,i − 2KI+1,i −

8RI−1 
R
√

1 − R2
i√

1 − R2
I−1

⎞
⎠ ,

MI+i,2I = 1
π

⎛
⎝−4KI−1,i + 8KI+1,i −

6RI 
R
√

1 − R2
i√

1 − R2
I

⎞
⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A19)
and the forcing vector vanishes, FI+i = 0, for all i = 1, 2, . . . , I.

Then using (A7), (A8), (A10), (A12) and (A19), we solve the linear system

Mun+1 = F, (A20)

update D by setting Dn+1
i = un+1

i , i = 1, . . . , I, and move to the next time level.

962 A24-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.283


A. Zigelman, P. Breitman and A.D. Gat

A.2. Case 2: linear self-similar problem (under the assumption that h0 � d∗)
In this case, we solve the problem

8D̃ + 4η
dD̃
dη

+ 1
η

d
dη

(
η

dP̃
dη

)
= 0,

D̃(η) = L3

[
8
π

∫ 1

0

∂P̃
∂ξ

K(ξ, η) dξ + 8
√

1 − η2

π

∫ 1

0

ξ P̃(ξ)√
1 − ξ2

dξ

]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A21)

subject to the following boundary conditions and constraints:

dD̃
dη

∣∣∣∣∣
η=0

= 0, (A22)

dD̃
dη

∣∣∣∣∣
η=1

= 0, (A23)

L =
⎛
⎝ 
V

2π

∫ 1

0
D̃η dη

⎞
⎠

1/3

. (A24)

In practice, we find the solution to (A21) subject to (A22)–(A24) iteratively. First, we
replace the constraint in (A23) by

D̃(η = 0) = D̃0, (A25)

where D̃0 will be determined by using a bisection method during the solution process, as
we will explain in the sequel, so that the condition in (A23) will be satisfied.

We have iterations of two types. In the first type, we start with some initial guess for D̃0,
such that D̃0 > 0, and perform the iterative procedure, which converges to the solution of
(A21), so that the boundary conditions in (A22)–(A24) are satisfied. In the iterations of
the second type, for each given D̃0, such that D̃0 > 0, we solve (A21), subject to (A22) and
an artificial boundary condition

P̃(η = 1) = C, (A26)

rather than (A24), where C is some initial guess for which the solution exists, C /= 0. Note
that according to our verification, the specific choice of C does not affect the solution, and
the only reason for prescribing it is to prevent the solver from convergence to a trivial
solution (namely, D̃ = 0). These iterations of the second type proceed as follows. We
denote the solution of the system in (A21) subject to (A22) and (A26) (and with some
initial guess for L denoted by L(0)) by D̃temp(η). Next, we move to the next iteration by
updating the solution, which we denote by D̃(1)(η), by using

D̃(1)(η) = D̃0

D̃temp(0)
D̃temp(η). (A27)

Note that since the problem in (A21) is linear and D̃temp(η) satisfies it, also D̃(1)(η)

satisfies (A21), because D̃temp(η) and D̃(1)(η) differ only by multiplication by a constant.
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Role of pre-wetting layer in resolving the contact line paradox

Moreover, since D̃temp(η) satisfies the boundary condition in (A22), so does D̃(1)(η).
Furthermore, D̃(1)(η) satisfies the condition in (A25) (which follows by the construction).
However, in order to satisfy the volume constraint in (A24), we update L at the current
iteration by using (A24) with D̃(1)(η) substituted instead of D̃(η), and denote the result
by L(1). Now, having found L(1), we repeat the same procedure: calculate a new D̃temp(η),
then by using (A27), we find D̃(2)(η), and then calculate L(2), and so on, until convergence
is achieved (that is, the difference between L obtained at adjacent iterations satisfies
|L(k) − L(k−1)| < δ, where 0 < δ � 1 denotes some prescribed tolerance.)

Note that the limiting solution, which we denote by D̃(η; D̃0) (which was obtained in
the iterations of the second type), satisfies the problem in (A21), the boundary conditions
(A22) and (A25), and the volume constraint in (A24), so that the only condition that is still
needed to be satisfied is (A23). Since we have one degree of freedom, which is D̃0 in the
condition in (A25), we may modify D̃0 so that the condition in (A23) will be satisfied (and
this constitutes the first type of iterations). This is because according to our verification,
for a sufficiently large D̃0 we have dD̃(η; D̃0)/dη > 0, for a sufficiently small D̃0 we have
dD̃(η; D̃0)/dη < 0, and dD̃(η; D̃0)/dη is a continuous and monotone increasing function
of D̃0. Thus there exists D̃0 such that dD̃(η; D̃0)/dη = 0. Numerically, it is possible to
find D̃0 by e.g. the bisection method, where we request that |dD̃(η; D̃0)/dη| < δ1, where
0 < δ1 � 1 is some prescribed tolerance.

In our results presented in figure 2, the tolerances that we have set were δ = 10−5 and
δ1 = 10−6.

Now we will explain in detail our methodology for the solution of the system in (A21)
subject to (A22) and (A26). Specifically, we solve the system in (A21) in a manner similar
to the method discussed in the previous section. That is, by using finite differences, we
discretise the ODE in (A21) for i = 2, . . . , I − 1 as

8D̃i + 2ηi


η

(
D̃i+1 − D̃i−1

)
+ 1


η2

(
P̃i+1 − 2P̃i + P̃i−1

)
+ 1

2ηi 
η

(
P̃i+1 − P̃i−1

)
= 0.

(A28)

This results in the following rows of the mass matrix:

Mi,i = 8,

Mi,i+1 = 2ηi


η
,

Mi,i−1 = −2ηi


η
,

Mi,I+i = − 2

η2 ,

Mi,I+i+1 = 1

η2 + 1

2ηi 
η
,

Mi,I+i−1 = 1

η2 − 1

2ηi 
η
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A29)
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A. Zigelman, P. Breitman and A.D. Gat

Near the boundary η = 0, we use the boundary condition in (A22) for D̃ and a one-sided
derivative for P̃. Thus for i = 1, we get that

8D̃1 + 2η1


η

(
D̃2 − D̃1

)
+ 1


η2

(
2P̃1 − 5P̃2 + 4P̃3 − P̃4

)

+ 1
η1 
η

(
−1.5P̃1 + 2P̃2 − 0.5P̃3

)
= 0. (A30)

This results in the following entries in the first row of the mass matrix:

M1,1 = 8 − 2η1


η
,

M1,2 = 2η1


η
,

M1,I+1 = 2

η2 − 3

2η1 
η
,

M1,I+2 = − 5

η2 + 2

η1 
η
,

M1,I+3 = 4

η2 − 1

2η1 
η
,

M1,I+4 = − 1

η2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A31)

As to the forcing vector, we get that

Fi = 0, i = 1, . . . , I − 1. (A32)

Near the boundary η = 1, we use a one-sided derivative for D̃ and the boundary
condition in (A26) for P̃. Thus for i = I, we get that

8D̃I + 4ηI


η

(
1.5D̃I − 2D̃I−1 + 0.5D̃I−2

)
+ 1


η2

(
C − 2P̃I + P̃I−1

)

+ 1
2ηI 
η

(
C − P̃I−1

)
= 0. (A33)

This results in the following entries in the Ith row of the mass matrix:

MI,I = 8 + 6ηI


η
,

MI,I−1 = −8ηI


η
,

MI,I−2 = 2ηI


η
,

MI,2I = − 2

η2 ,

MI,2I−1 = 1

η2 − 1

2ηI 
η
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A34)
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Role of pre-wetting layer in resolving the contact line paradox

The forcing vector term is

FI = − C

η2 − C

2ηI 
η
. (A35)

A.3. Case 3: nonlinear dynamic problem (under the assumption that h0 � d∗)
In this case, we solve the problem

∂H
∂T

= 1
12R

∂

∂R

(
RH3 ∂P

∂R

)
, R ∈ (0, 1), (A36a)

D(R, T) = 8
π

∫ 1

0

∂P
∂Y

K(Y, R) dY + 8
√

1 − R2

π

∫ 1

0

Y P(Y, T)√
1 − Y2

dY, (A36b)

subject to the boundary and initial conditions

∂P
∂R

∣∣∣∣
R=0

= 0, T ∈ (0, Tfin),

∂P
∂R

∣∣∣∣
R=1

= 0, T ∈ (0, Tfin),

D(R, T = 0) =
{

(Hmax − H0)(1 − q2R2), for R ∈ [0, 1/q],
0, for R ∈ (1/q, 1],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A37)

where Hmax and q � 1 are some prescribed constants.
In order to allow simulations with small values of H0, namely 0 < H0 � Hmax, one

needs to use a very dense grid in the vicinity of the front. However, in the rest of
the domain, such a dense grid is not needed. In this subsection, let us explain our
methodology for solving the above problem over an adjustable grid, which is dense near
R = 0 (including the front), and which becomes less dense as we move towards R = 1.

To set an adjustable grid, let us define the transformation

R =
(

X − 1
q

)2b+1

− a, 0 < a � 1, b ∈ N, (A38)

where we will prescribe an equispaced grid on X. A convenient choice for a is a = 1/q.
From (A38), we get that

X = 1
q

+ (R + a)1/(2b+1), (A39)

and in order to obtain R ∈ (0, 1), the boundaries of X should be

1
q

+ a1/(2b+1) � X � 1
q

+ (1 + a)1/(2b+1). (A40)

It is easy to verify that when we set an equispaced grid in the X-coordinate, this results in
a non-uniform grid in R that is the most dense near R = 0 and becomes less dense towards
R = 1, as desired.
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In order to solve our problem on a uniform grid, we need to transform our problem to
the X-coordinate, and then solve it on an equispaced grid in X. For this, we will use the
derivatives

dX
dR

= 1
2b + 1

(R + a)1/(2b+1)−1,

d2X
dR2 = 1

2b + 1

(
1

2b + 1
− 1

)
(R + a)1/(2b+1)−2.

⎫⎪⎪⎬
⎪⎪⎭ (A41)

Note that since a > 0, these derivatives are not singular in the range R ∈ (0, 1).
Substituting this into the PDE in (A36), we get that for X ∈ (1/q + a1/(2b+1), 1/q +
(1 + a)1/(2b+1)),

∂H
∂T

= H3 ∂2P
∂X2

(
dX
dR

)2

+ H3 ∂P
∂X

d2X
dR2 + 3H2 ∂H

∂X
∂P
∂X

(
dX
dR

)2

+ H3

R
∂P
∂X

dX
dR

. (A42)

In other words, this equation may be expressed for X ∈ (1
q + a1/(2b+1), 1

q +
(1 + a)1/(2b+1)) as,

∂H
∂T

= AH3 ∂2P
∂X2 + BH3 ∂P

∂X
+ 3AH2 ∂H

∂X
∂P
∂X

+ C
H3

R
∂P
∂X

, (A43)

where

A :=
(

dX
dR

)2

=
[

1
2b + 1

(R + a)1/(2b+1)−1
]2

,

B := d2X
dR2 = 1

2b + 1

(
1

2b + 1
− 1

)
(R + a)1/(2b+1)−2,

C := dX
dR

= 1
2b + 1

(R + a)1/(2b+1)−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A44)

Following, a known methodology (see e.g. Ozawa, Nishitani & Doi 2005; Zigelman &
Novick-Cohen 2021), we linearise the equation given in (A43) about the solution at some
given current time level, taking in each nonlinear term the highest-order derivative on the
next time level, and the remaining terms, which involve derivatives of the same or lower
orders, on the current time level; here, we regard P as a function with higher priority than
H to be evaluated on the next time level, because P is expected to have higher singularity
near the peeling front. More specifically, we evaluate all of the lower-order derivatives at
the previous time level, and the higher-order derivatives at the current time level. Thus we
get

Hn+1 − A 
T (Hn)3 ∂2Pn+1

∂X2 − B 
T (Hn)3 ∂Pn+1

∂X

− 3A 
T (Hn)2 ∂Hn

∂X
∂Pn+1

∂X
− C 
T

(Hn)3

R
∂Pn+1

∂X
= Hn, n = 0, 1, . . . , N.

(A45)

To obtain the mass matrix, it remains to discretise the equation in (A45) in space, for which
we use central differences, as discussed previously.
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Role of pre-wetting layer in resolving the contact line paradox

As to the boundary conditions in terms of X, we get, for example, that

∂P
∂X

∣∣∣∣
X=1/q+a1/(2b+1)

= ∂P
∂R

∣∣∣∣
R=0

dR
dX

∣∣∣∣
X=1/q+a1/(2b+1)

= 0, (A46)

and similarly for all other boundary conditions.
It remains to discuss how this change of variables affects the integral equation. However,

before transforming the coordinates, let us rewrite the second integral in (A36b) in a more
convenient manner, applying integration by parts, as

∫ 1

0

Y P(Y, T)√
1 − Y2

dY = −
√

1 − Y2 P|10 +
∫ 1

0

∂P
∂Y

√
1 − Y2 dY

= P(0, T) +
∫ 1

0

∂P
∂Y

√
1 − Y2 dY. (A47)

Now let us substitute (A47) into (A36b) and transform the variable Y to Z, where Z is
defined in a similar manner to X, namely

Z = 1
q

+ (R + a)1/(2b+1). (A48)

Thus we may regard the kernel K as a function of X, Z. In other words, we may define
K̃(Z, X) := K(Y(Z), R(X)). Hence changing variables from R, Y to X, Z in (A36b), we
get that

D(X, T) = 8
π

∫ 1/q+(1+a)1/2b

1/q+a1/2b

∂P
∂Z

K̃(Z, X) dZ

+ 8
π

√
1 − R(X)2

[
P(0, T) +

∫ 1

0

∂P
∂Z

√
1 − Y(Z)2 dZ

]
. (A49)

Next, using an equispaced grid for X, so that our nodal points are Xi, i = 1, . . . , I,
employing the ‘no-flux’ boundary conditions at R = 0, 1, and discretising the equation
in (A49), we get that

Dn+1
i − 2

π

[
3
2
K̃1,i(Pn+1

2 − Pn+1
1 ) + 2K̃2,i(Pn+1

3 − Pn+1
1 ) + · · · + 2K̃I−1,i(Pn+1

I − Pn+1
I−2 )

+ 3
2
K̃I,i(Pn+1

I − Pn+1
I−1 )

]

−
2
√

1 − R2
i

π

[
4Pn+1

1 + 3
2

(Pn+1
2 − Pn+1

1 )

√
1 − R2

1 + 2(Pn+1
3 − Pn+1

1 )

√
1 − R2

2

+ · · · + 2(Pn+1
I − Pn+1

I−2 )

√
1 − R2

I−1 + 3
2

(Pn+1
I − Pn+1

I−1 )

√
1 − R2

I

]
= 0, i = 1, . . . , I. (A50)
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This results in the following rows of the mass matrix:

MI+i,i = 1,

MI+i,I+1 = 1
π

(
3K̃1,i + 4K̃2,i − 8

√
1 − R2

i + 3
√

(1 − R2
i )(1 − R2

1) + 4
√

(1 − R2
i )(1 − R2

2)

)
,

MI+i,I+2 = 1
π

(
−3K̃1,i + 4K̃3,i − 3

√
(1 − R2

i )(1 − R2
1) + 4

√
(1 − R2

i )(1 − R2
3)

)
,

MI+i,I+s = 1
π

(
−4K̃s−1,i + 4K̃s+1,i − 4

√
(1 − R2

i )(1 − R2
s−1) + 4

√
(1 − R2

i )(1 − R2
s+1)

)
,

s = 3, 4, . . . , I − 2,

MI+i,2I−1 = 1
π

(
−4K̃I−2,i + 3K̃I,i − 4

√
(1 − R2

i )(1 − R2
I−2) + 3

√
(1 − R2

i )(1 − R2
I )

)
,

MI+i,2I = 1
π

(
−4K̃I−1,i − 3K̃I,i − 4

√
(1 − R2

i )(1 − R2
I−1) − 3

√
(1 − R2

i )(1 − R2
I )

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A51)

A.4. Case 4: nonlinear self-similar problem (under the assumption that h0 � d∗)
In this case, we solve the nonlinear self-similar problem

8D̃ + 4η
dD̃
dη

+ 3
η

d
dη

(
ηD̃3 dP̃

dη

)
= 0, (A52a)

D̃(η) = 8
π

∫ 1

0

∂P̃
∂ξ

K(ξ, η) dξ + 8
√

1 − η2

π

∫ 1

0

ξ P̃(ξ)√
1 − ξ2

dξ, (A52b)

subject to the boundary conditions

dD̃
dη

∣∣∣∣∣
η=0

= 0, (A53a)

D̃(1) = 0. (A53b)

To solve this problem numerically, we follow the methodology developed by Peck et al.
(2018) and define an auxiliary variable

U(η) = ηD̃2 ∂P̃
∂η

, (A54)

so that the problem in (A52) may be expressed as

8D̃ + 4η
dD̃
dη

+ 3
η

d
dη

(
D̃U

)
= 0, (A55a)

D̃(η) = 8
π

∫ 1

0

∂P̃
∂ξ

K(ξ, η) dξ + 8
√

1 − η2

π

∫ 1

0

ξ P̃(ξ)√
1 − ξ2

dξ. (A55b)
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Equation (A55a) may be expressed as

d
dη

(D̃U) = −4
3

d
dη

(η2D̃), (A56)

which, integrated with respect to η̂ in the interval 0 � η̂ < η, yields that

U(η) = −4
3η2. (A57)

Thus from the definition of U in (A54), it follows that as far as D̃ is known, ∂P̃/∂η may
be obtained via

∂P̃
∂η

= −4
3

η

D̃2
, (A58)

and P̃ may be evaluated by integrating (A58) with respect to η. More specifically,
integrating (A58), we get that

P̃(η) = −4
3

∫ η

0

η̂

D̃2
dη̂ + P̃(0), (A59)

where P̃(0) is a constant of integration, which is determined according to the explanation
that follows.

We find D̃ and P̃ iteratively. Specifically, we start the iterations with some guess for D̃
that has the expected behaviour at η = 0, 1, e.g. we started our simulations with the initial
guess D̃(0) = const./

√
1 − η2, where const. is some arbitrary constant, which does not

affect the solution. In addition, we set some initial guess for P̃(0). We solve the problem
with these D̃(0)(η) and P̃(0) values as follows. In the first iteration, we substitute D̃(0)(η)

and P̃(0) into (A59) and thus find P̃(1)(η). Then we substitute P̃(1)(η) into (A55b) and
find D̃(1)(η). We continue in the same manner, by alternately substituting D̃ into (A59),
substituting the obtained P̃ into (A55b), and so on. We stop this iterative process when the
differences in the L∞-norm between the D̃ values and P̃ values in the current and previous
iterations are smaller than a prescribed tolerance.

By using this iterative process, we find a solution to (A55) that satisfies the boundary
condition in (A53a), but it does not necessarily satisfy the boundary condition in (A53b).
Requesting that (A53b) is satisfied implies a constraint on P̃(0). This is because, as it is
possible to verify, D̃(1) is a continuous and monotone increasing function of P̃(0) that
satisfies D̃(1) > 0 for sufficiently large P̃(0), and D̃(1) < 0 for sufficiently small P̃(0).
Thus there exists a unique value of P̃(0) such that D̃(1) = 0. We have found this value
numerically, and obtained that P̃(0) ≈ 0.754.

Appendix B. Additional comparisons between dynamic and self-similar solutions
and asymptotic behaviour

In figure 5, we show a comparison between the functions D(0, T), P(0, T) and RF(T)

obtained by numerical simulations of the dynamic problems (in linear and nonlinear
cases) and the corresponding functions obtained by self-similar analysis shown in log-log
plot. It can be seen that in all cases, except probably for RF(T) in the linear case, there
is a good agreement between dynamic and self-similar solutions, which becomes even
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10–3

2 × 10–4 5 × 10–4

log(T ) log(T )

5 × 10–510–3 10–410–5

10–2

10–2

102

100

10–1

P(0, T ) P(0, T )RF (T ) RF (T )D(0, T ) D(0, T )

L3T –1P�(0) T –1/3P(0)LT 2/3D�(0) LT –2/9D�(0)LR1/3 LT1/9

(b)(a)

Figure 5. The comparison between the functions D(0, T), P(0, T) and RF(T) obtained by numerical
simulations of the dynamic problems and the corresponding functions obtained by self-similar analysis
shown in log-log plot in (a) the linear case, with 
V ≈ 1.1027 × 10−5, and (b) the nonlinear case, with

V ≈ 1.5 × 10−3. The values of Hmax, q and H0 that determine the initial conditions are as given in figures 2
and 3, respectively.

better with time. Note that although in the linear case the approximately linear functions
log(RF(T)) versus log(T), and log(LR1/3) versus log(T), differ by a constant, they have
approximately the same slope. Thus the difference between the two functions, which we
attribute to the existence of the pre-wetting layer in the dynamic problem (and integration
beyond the peeling front position), affects only the prefactor of T in RF(T), but not the
power of time. In particular, this shows that our methodology for extracting the powers of
T from the dynamic solutions of RF(T) with pre-wetting layers of different thicknesses is
a legitimate procedure, since the integration over the pre-wetting layer beyond the peeling
front may have only a small effect on the prefactor L of Tα(H0) in RF(T) ∼ LTα(H0), but
not on α(H0).

In figures 6 and 7, we show a series of examples for the fitting results for the positions
of the peeling front RF(T) versus time T , for different pre-wetting layer thicknesses H0 ∈
[0.02, 2.2], which were fitted to the function LTα , where the pre-wetting layer thicknesses
H0 and the corresponding powers α are as given in the legends. These values were used to
produce figure 4. It can be seen that in all cases, there is very good agreement between the
numerical results and the fitting, which becomes even better at larger times (prior to the
final time of simulation).

In the existing literature on crack propagation (see e.g. Spence & Sharp 1985; Desroches
et al. 1994), the thickness of the fluid film near the peeling front, H(s, T), varies as s2/3,
where s denotes here the dimensionless distance from the peeling front, and the fluid
pressure P(s, T) becomes weakly singular as s−1/3. In order to verify if the same power-law
asymptotics holds in our case, we show in figure 8 a comparison between our simulation
results for the nonlinear case, which were shown in figure 3, near the peeling front and
the expected asymptotic power laws. It can be seen that for the three time instances T ∈
{5 × 10−5, 10−4, 2 × 10−4} that we have checked, there is a region in the vicinity of the
peeling front (not including the peeling front itself and its very close vicinity, which is
affected by the pre-wetting layer) such that H(s, T) ∝ s2/3 and P(s, T) − b ∝ s−1/3 in this
region, where b is a constant analogous to p0 (in Desroches et al. 1994).
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(×10–5)

15
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0.08
H0 = 0.02

H0 = 0.04

H0 = 0.15

H0 = 0.20

H0 = 0.25

H0 = 0.30

H0 = 0.35

H0 = 0.40

H0 = 0.45

H0 = 0.50

H0 = 0.55

H0 = 0.60
H0 = 0.65

H0 = 0.10

H0 = 0.08

H0 = 0.06

α = 0.1166

α = 0.1223

α = 0.1296

α = 0.1371

α = 0.1493

α = 0.1607

α = 0.1715

α = 0.1806

α = 0.1895

α = 0.1978

α = 0.2050

α = 0.2125

α = 0.2189

α = 0.2255

α = 0.2311

α = 0.1078

Figure 6. The positions of the peeling front RF versus time T that were obtained by numerical simulation of
the dynamic nonlinear problem with various thicknesses of the pre-wetting layer H0 ∈ [0.02, 0.65], where the
rest of the parameters (Hmax and q) of the initial conditions are as given in figure 4, are marked by circles of
different colours, and the corresponding fitting results (obtained by using ‘cftool’ in Matlab) to the function
LTα (which are overlayed on the simulation results) are denoted by continuous curves of the same colours
(where the values of α appear in the legend). In the inset, we show the increased view of the same graph in
the vicinity of the final time of simulation, in order to visualise the accuracy of the fitting results for various
values of H0 at sufficiently large times, for which the dynamic solution already achieves the corresponding
self-similar behaviour.

0.05

0.10

0.15

0.20

5 10

(×10–5)

15

T

RF

H0 = 0.7

H0 = 0.8

H0 = 0.9

H0 = 1.0

H0 = 1.1

H0 = 1.2

H0 = 1.3

H0 = 1.4

H0 = 1.5

H0 = 1.6

H0 = 1.7

H0 = 1.8

H0 = 1.9

H0 = 2.0

H0 = 2.1
H0 = 2.2

α = 0.2370

α = 0.2469

α = 0.2564

α = 0.2651

α = 0.2726

α = 0.2795

α = 0.2858

α = 0.2941

α = 0.2966

α = 0.3013

α = 0.3054

α = 0.3089

α = 0.3124

α = 0.3151

α = 0.3179

α = 0.3203

Figure 7. The positions of the peeling front RF versus time T that were obtained by numerical simulation of
the dynamic nonlinear problem with various thicknesses of the pre-wetting layer H0 ∈ [0.7, 2.2], where the
rest of the parameters (Hmax and q) of the initial conditions are as given in figure 4, are marked by circles of
different colours, and the corresponding fitting results (obtained by using ‘cftool’ in Matlab) to the function
LTα (which are overlayed on the simulation results) are denoted by continuous curves of the same colours
(where the values of α appear in the legend). In the inset, we show the increased view of the same graph in
the vicinity of the final time of simulation, in order to visualise the accuracy of the fitting results for various
values of H0 at sufficiently large times, for which the dynamic solution already achieves the corresponding
self-similar behaviour.
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0 0.005 0.010 0.015 0.020
–80

–40

0
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as2/3T = 10–4

3
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(b)(a)

Figure 8. (a) The film thickness H(s, T), and (b) the pressure P(s, T), versus s, where s denotes the
dimensionless distance from the peeling front, at three different time instances, T ∈ {5 × 10−5, 10−4, 2 ×
10−4}, are marked by solid lines. The results for H(s, T) and P(s, T) are of the same simulation as shown in
figure 3. In (a), the functions of the form as2/3, where the coefficients a ∈ {20.72, 16.77, 13.7} were obtained by
using the ‘cftool’ fitting in Matlab of H(s, T) for s ∈ (0, 0.01), are marked by dashed lines of the corresponding
colour. In (b), the functions of the form as2/3 + b, where the coefficients a ∈ {−4.276, −4.663, −3.485} and
b ∈ {40.22, 38.65, 28.82} were obtained by using the ‘cftool’ fitting in Matlab of P(s, T) for s ∈ (0, 0.01), are
marked by dashed lines of the corresponding colour. In the insets, we show the increased view of the same
graphs in log-log scale, presented over the interval s ∈ [0.005, 0.01].
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