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A b s t r a c t . We s tudy the format ion of elliptical galaxies a n d the bulges of disk galaxies as a result 
of the collisionless collapse of a ro ta t ing s tar cloud. At small amoun t s of ro ta t ion , this process 
is accompanied by the b a r mode of the radial orbit instabil i ty slightly modif ied by ro ta t ion . 
We refer this case to (giant) ellipticals. For mode ra t e ro ta t ion , when the radia l orbit instabil i ty is 
suppressed, ano ther mode takes over, which is the direct cont inuat ion of a s trongly damping m o d e 
at the limit of almost radial orbits; it tu rns into a practical ly non-damping a n d long-lived m o d e 
(for m a n y revolutions), and even a slowly ro ta t ing b a r may eventually be formed. It is n a t u r a l to 
refer this case to bulges and dwarf elipticals. Then spirals could be formed f rom the clouds with 
large amoun t s of ro ta t ion . 

1. Intro duct ion 

There exists a very natural question: to what extent may the principal differences 
between galaxies (or their components) be attributed only to rotation. We drew at-
tention to this problem a long time ago, see Polyachenko, Synakh, Fridman (1972) 
where we suggested to classify all galaxies according to their specific angular mo-
mentum. The general scheme might be like this: 

giant ellipticals dwarf ellipticals spirals 
slow bars bulges fast bars 

specific momentum (L/M) 

In this scheme, slow and fast bars are Lynden-Bell's bars and those in "stan-
dard" N-body simulations, respectively. 
As the first step to solving the problem, it is useful to consider the possible eigen-
modes in rotating gravitational systems. Here we study the eigenmodes of the sim-
plest model of a rotating collisionless sphere with elongated orbits. In particular by 
studying the properties of modes in such a model, one may hope to understand what 
modes and instabilities can lead to formation of giant elliptical galaxies (practically, 
non-rotating) and bulges of spiral galaxies (with moderate rotation). 

2. Modes of rotating spheres 

Within the frame of our model (Polyachenko, 1989, 1992a), which represents strongly 
elongated orbits as rotating "needles", the simplest equilibrium distribution func-
tion for a rotating sphere is 

/ο (Ω, a) = Fo(i1, «)(1 + /< ^j) (1) 

where the function FQ is the distribution function of a nonrotating sphere, Ω the 
precession velocity of an orbit-needle, a its size, J and Jz the orbital angular mo-
mentum and its z-component, respectively, μ a dimensionless parameter (0 < // < 1) 
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responsible for the rotation. Note that a distribution function of the same form (1) 
was first used by Synakh, Fridman, Shukhman (1971) in their study of a rotating 
sphere with circular orbits (but the sense of the distribution function in the case 
under consideration is different). It we also assume that the radial energy of each 
star is fixed (a =const), then one can easily derive the following dispersion relation 
for a small barlike perturbation of (1) (Polyachenko, 1992a,b) 

i 1 + a . 2 f l _ ( a : ) ] + μ = 0 (2) 

where we assumed for ,Ρο(Ω,α) a Maxwellian distribution 

Fo(fi) = 6Χ'Ρ(-Ω2/Ω^)/ΤΓΩ|, (3) 

and denoted by χ — ω / ΐ ύ τ the dimensionless frequency (the time dependence of 
perturbation ~ exp(—ιωί), ω is the usual frequency). Further we have g± = / _ ±/+, 
with 

poo 
U= dtexp(-t2)/(**t), (4) 

Jo 

with Q — 2 Ω τ / u g the dimensionless precession velocity dispersion, ιüq the growth 
rate in the limit of a cold (Ωτ = 0) non-rotating (μ = 0) sphere. The quantity 
Q is so defined that Q = 1 corresponds to a marginally stable model at Ωχ = 0, 
μ — 0; it is similar to Toomre's (1964) stability parameter Q in the stability theory 
of rotating disks. Table 1 shows the growth of critical values of Q (at the onset of 
the radial orbit instability) when the rotation of the sphere increases. Fig.l shows 
real and imaginary parts of the frequency χ against Q, for μ — 0, 0.1, 0.5. 

Table 1 

μ 0.0 0.1 0.2 0.3 0.4 
Qcr 1.000 1.145 1.220 1.280 1.335 

μ 0.5 0.6 0.7 0.8 0.9 1.0 
Qcr 1.385 1.430 1.475 1.520 1.560 1.600 

3. Discussion 

As is seen from Fig.la and Table 1, the growing mode finishes at some critical 
value of Q: Q — Qc r(//), the latter being dependent on the amount of rotation 
(//). In the region Q < Qcr, the radial orbit instability (somewhat modified by 
rotation) dominates. Rather many facts are accumulated to date which support 
this scenario for the formation of elliptical galaxies (Polyachenko, 1981) as a dis-
sipationless collapse accompanied by the radial orbit instability. All oscillations at 
Q > Qcr (μ) a re damping (see Fig. lb). But we would like to draw attention to 
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Fig. 1. Eigen frequencies (χ ) of the rotating sphere (1) against Q (a) growing mode, 
(b) damping mode 

the fac t that s trongly d a m p i n g e igenmodes at smal l Q ' s turn into pract ica l ly non-

d a m p i n g m o d e s at larger Q ' s when the radial orbit instabi l i ty is suppressed. T h e 

decrement of the m o d e 7 goes to values m u c h less t h a n the p a t t e r n ' s angular ve-

locity Ω ρ : at Q > Qcr, y/Q,p = 2y/ïrΩρ/Ωτ <C 1. So in this l imit we have a s lowly 

rotat ing , long-l ived bar. O n c e such a bar is f o r m e d due to sui table init ial condit ions, 

then it can exist for a long t ime. Possibly, such condit ions occur when bulges are 

formed. 
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