CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 192

Editorial Board

J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO

AN INTRODUCTION TO PROBABILISTIC NUMBER THEORY

Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years, the links have become much deeper and better understood.

Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums, and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis, and probability, making it a readable and incisive introduction to this beautiful area of mathematics.

Emmanuel Kowalski is Professor in the Mathematics Department of the Swiss Federal Institute of Technology, Zurich. He is the author of five previous books, including the widely cited *Analytic Number Theory* (2004) with H. Iwaniec, which is considered to be the standard graduate textbook for analytic number theory.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board

J. Bertoin, B. Bollobás, W. Fulton, B. Kra, I. Moerdijk, C. Praeger, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Already Published

- 152 V. I. Paulsen & M. Raghupathi An Introduction to the Theory of Reproducing Kernel Hilbert Spaces
- 153 R. Beals & R. Wong Special Functions and Orthogonal Polynomials
- 154 V. Jurdjevic Optimal Control and Geometry: Integrable Systems
- 155 G. Pisier Martingales in Banach Spaces
- 156 C. T. C. Wall Differential Topology
- 157 J. C. Robinson, J. L. Rodrigo & W. Sadowski The Three-Dimensional Navier-Stokes Equations
- 158 D. Huybrechts Lectures on K3 Surfaces
- 159 H. Matsumoto & S. Taniguchi Stochastic Analysis
- 160 A. Borodin & G. Olshanski Representations of the Infinite Symmetric Group
- 161 P. Webb Finite Group Representations for the Pure Mathematician
- 162 C. J. Bishop & Y. Peres Fractals in Probability and Analysis
- 163 A. Bovier Gaussian Processes on Trees
- 164 P. Schneider Galois Representations and (φ, Γ) -Modules
- 165 P. Gille & T. Szamuely Central Simple Algebras and Galois Cohomology (2nd Edition)
- 166 D. Li & H. Queffelec Introduction to Banach Spaces, I
- 167 D. Li & H. Queffelec Introduction to Banach Spaces, II
- 168 J. Carlson, S. Müller-Stach & C. Peters Period Mappings and Period Domains (2nd Edition)
- 169 J. M. Landsberg Geometry and Complexity Theory
- 170 J. S. Milne Algebraic Groups
- 171 J. Gough & J. Kupsch Quantum Fields and Processes
- 172 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Discrete Harmonic Analysis
- 173 P. Garrett Modern Analysis of Automorphic Forms by Example, I
- 174 P. Garrett Modern Analysis of Automorphic Forms by Example, II
- 175 G. Navarro Character Theory and the McKay Conjecture
- 176 P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt & D. Persson Eisenstein Series and Automorphic Representations
- 177 E. Peterson Formal Geometry and Bordism Operators
- 178 A. Ogus Lectures on Logarithmic Algebraic Geometry
- 179 N. Nikolski Hardy Spaces
- 180 D.-C. Cisinski Higher Categories and Homotopical Algebra
- 181 A. Agrachev, D. Barilari & U. Boscain A Comprehensive Introduction to Sub-Riemannian Geometry
- 182 N. Nikolski Toeplitz Matrices and Operators
- 183 A. Yekutieli Derived Categories
- 184 C. Demeter Fourier Restriction, Decoupling and Applications
- 185 D. Barnes & C. Roitzheim Foundations of Stable Homotopy Theory
- 186 V. Vasyunin & A. Volberg The Bellman Function Technique in Harmonic Analysis
- 187 M. Geck & G. Malle The Character Theory of Finite Groups of Lie Type
- 188 B. Richter Category Theory for Homotopy Theory
- 189 R. Willett & G. Yu Higher Index Theory
- 190 A. Bobrowski Generators of Markov Chains
- 191 D. Cao, S. Peng & S. Yan Singularly Perturbed Methods for Nonlinear Elliptic Problems

An Introduction to Probabilistic Number Theory

EMMANUEL KOWALSKI Swiss Federal Institute of Technology, Zürich

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108840965 DOI: 10.1017/9781108888226

© Emmanuel Kowalski 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-84096-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.