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Abstract We investigate the asymptotic behaviour of the entropy numbers of the compact embed-
ding Bs1

p1,q1 (Rd, w1) ↪→ Bs2
p2,q2 (Rd, w2). Here Bs

p,q(Rd, w) denotes a weighted Besov space. We present a
general approach which allows us to work with a large class of weights.
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1. Introduction

Nowadays the entropy numbers en(T : X → Y ), n = 1, 2, . . . , of bounded linear operators
T ∈ L(X, Y ) between quasi-Banach spaces are a well-established field of research (see,
for example, the monographs [6,8,21,33]). The decay of the numbers en(T : X → Y )
describes the compactness of T in a qualitative way. In particular, T is compact if and
only if

lim
n→∞

en(T : X → Y ) = 0.

In this article we study the entropy numbers of identity operators

id : Bs1
p1,q1

(Rd, w1) → Bs2
p2,q2

(Rd, w2)

mapping a weighted Besov space into another. In the case

w1(x)
w2(x)

= (1 + |x|2)α/2
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this problem has a certain history, for which we refer to [8]. The interesting phenomenon
observed in this situation is the following. There is an interplay between the difference δ

of the differential dimensions of the involved spaces

δ :=
(

s1 − d

p1

)
−

(
s2 − d

p2

)
(1.1)

and the ratio of the weights, represented by the power α. In fact, it is known that

en(id : Bs1
p1,q1

(Rd, w1) → Bs2
p2,q2

(Rd, w2)) ∼ n− min(α,δ)/d−1/p1+1/p2 (1.2)

as long as

δ �= α and min(α, δ) > d max
(

0,
1
p2

− 1
p1

)
(see [8,15,16,23]). Here we present a new approach to this problem for a much more
general class of weights. There are two different types of condition that our weights have
to satisfy. One set of restrictions originates from the definition of the weighted Besov
spaces and our method of discretization. We do not want to go into the details of this
question here, instead we simply looked for the most convenient reference. A second
set of restrictions is connected with our conditions on the weight functions, which will
be expressed in terms of the upper and lower indices of the ratio w1/w2. These indices
describe the behaviour of the function near infinity in some qualitative way. Under certain
restrictions, the asymptotic behaviour of the entropy numbers is given by

en(id : Bs1
p1,q1

(Rd, w1) → Bs2
p2,q2

(Rd, w2)) ∼ n−1/p1+1/p2
w2(n1/d, . . . , n1/d)
w1(n1/d, . . . , n1/d)

(1.3)

(roughly speaking, if w1/w2 is growing not too fast near infinity) or

en(id : Bs1
p1,q1

(Rd, w1) → Bs2
p2,q2

(Rd, w2)) ∼ n−δ/d−1/p1+1/p2 (1.4)

(if w1/w2 is growing fast enough near infinity).
Our main tools for proving the estimate from above in (1.3) and (1.4), respectively, will

be the use of operator ideals (see [6,21,33]) and the basic estimates of entropy numbers
en(id : �N

p1
→ �N

p2
) due to Schütt, Triebel, Edmunds and Kühn.

The paper is organized as follows. In § 2 we recall the definition of the weighted Besov
spaces and discuss a few of their properties. There are several standard techniques for
relating Besov spaces to sequence spaces—we will use a characterization by wavelets. This
enables us to deal with weighted sequence spaces instead of weighted function spaces.
In § 3 we give a new elementary proof of the characterization of those parameters for
which a continuous (or compact, respectively) embedding exists. Section 4 represents
the heart of the paper; here we investigate entropy numbers of embeddings of weighted
sequence spaces. In § 4.1 we recall some basic properties of operator ideals. Section 4.2
is devoted to the investigation of a certain set of weight functions and in § 4.3 we prove
our main result. Several examples are investigated in § 4.4. Finally, in § 5 we shift these
results from the sequence space level to the function spaces and formulate some open
problems.
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Notation

The symbol ‘id’ always refers to an identity operator. If it is clear from the context,
we do not indicate the spaces between which id is considered, and likewise for other
operators. Let T be a linear operator which maps the quasi-Banach space X into the
quasi-Banach space B. If no confusion is possible, we feel free to write ‖T‖ instead of
the more exact versions ‖T | L(X, Y )‖ or ‖T : X → Y ‖. We define a � b if there exists
a constant c > 0 (independent of the context-dependent relevant parameters) such that

c−1a � b � ca.

All unimportant constants will be denoted by c, sometimes with additional indices.

Agreement

If no further restrictions are stated, then the parameters p, p1, p2, q, q1 and q2 may
vary in (0,∞] and the parameters s, s1 and s2 in R.

2. Weighted Besov spaces

In this section we recall a few of the properties of weighted Besov spaces.

2.1. Definition and preliminaries

We are interested in compact embeddings of weighted Besov spaces into unweighted
ones. In such a situation it seems to be natural to concentrate on the behaviour of the
weight near infinity and to ignore local singularities of the weight. So we restrict ourselves
to smooth weights. For our purposes it will be convenient to work with the following class
W1 of weights (see [8]).

Definition 2.1. We say that a function w : R
d → (0,∞) belongs to W1 if it satisfies

the following conditions.

(i) The function w is infinitely differentiable.

(ii) There exist a constant c > 0 and a number α � 0 such that

0 < w(x) � cw(y)(1 + |x − y|)α (2.1)

holds for all x, y ∈ R
d.

(iii) For all multi-indices α ∈ N
d
0 the quantities

cw,α := sup
x∈Rd

|Dαw(x)|
w(x)

are finite.

Remark 2.2. Restriction (ii) implies that the weight grows at most polynomially near
infinity. As will become clear later on, weights that increase faster are not interesting in
our context (see Remark 5.17).
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For the definition of the (unweighted) Besov spaces we refer to the monographs [31,
41,42]. As usual, S ′(Rd) denotes the collection of all tempered distributions. For us it
will be convenient to introduce weighted Lebesgue and weighted Besov spaces as follows.

Definition 2.3. Let w ∈ W1.

(i) We define Lp(Rd, w) to be the set of all Lebesgue-measurable functions f such that
wf ∈ Lp(Rd). The norm is then given by

‖f | Lp(Rd, w)‖ = ‖fw | Lp(Rd)‖.

(ii) The space Bs
p,q(R

d, w) is the collection of all tempered distributions f ∈ S ′(Rd)
such that fw ∈ Bs

p,q(R
d). We put

‖f | Bs
p,q(R

d, w)‖ = ‖fw | Bs
p,q(R

d)‖.

Remark 2.4. If no confusion is possible, then we drop R
d from the notation.

Remark 2.5. There are different ways to introduce weighted Besov spaces (see, for
example, [40], [29], [4], [10], [36], [5], [37], [38] or [35]). In all these references the
definitions are Fourier analytic. For the class W1 these different approaches coincide
(see [10,29,35–38]).

Remark 2.6. An alternative way to introduce Besov spaces with weights is as follows.
For a natural number M , a weight function w and f ∈ Lp(Rd, w) we put

ωM (f, t, w)p := sup
|h|<t

‖∆M
h f | Lp(Rd, w)‖, t > 0.

Let 0 < s < M and 0 < p, q � ∞. Parallel to the unweighted case one defines f ∈
Λs

p,q(R
d, w) if and only if f ∈ Lp(Rd, w) and

( ∫ 1

0
[t−sωM (f, t, w)p]q

dt

t

)1/q

< ∞.

Under the restrictions w ∈ W1 and s > d max(0, 1/p − 1) the spaces Λs
p,q(R

d, w) and
Bs

p,q(R
d, w) coincide (with equivalent norms). For s < d max(0, 1/p − 1) the classes

Bs
p,q(R

d, w) contain singular distributions, and hence they are different from Λs
p,q(R

d, w).
We do not have a direct reference for the claimed coincidence. In [36, Theorem 5.1.4] a
characterization by differences is proved. However, some standard manipulations based
on maximal functions of Peetre–Fefferman–Stein type (see, for example, [36, 5.1]) com-
bined with the identification of Bs

p,q(R
d, w) with the above-mentioned Fourier-analytic

counterpart yield the result.

Remark 2.7. Our definition has some advantages, e.g. embeddings carry over from
the unweighted to the weighted case.
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2.2. Besov spaces and sequence spaces

We use the discrete wavelet transform for discretizing the quasi-norms in the weighted
Besov spaces. First of all we need to fix some notation. The symbol ‘ ↪→’ is used for
continuous embeddings. By N we denote the set of natural numbers, by N0 the set
N ∪ {0}, and by Z

d the set of all lattice points in R
d having integer coordinates.

Let φ̃ be an orthogonal scaling function on R with compact support and of sufficiently
high regularity. Let ψ̃ be a corresponding wavelet. Then the tensor product ansatz yields
a scaling function φ and associated wavelets ψ1, . . . , ψ2d−1, now all defined on R

d and
having compact support. Let φ̃ ∈ CN (R); then φ, ψi ∈ CN (Rd) as well. We will use the
standard abbreviations

φj,�(x) = 2jd/2φ(2jx − �) and ψi,j,�(x) = 2jd/2ψi(2jx − �).

Proposition 2.8. Let w ∈ W1. Suppose N > max(s, (2d/p) + 1
2d − s). Then a distri-

bution f ∈ S ′ belongs to Bs
p,q(w) if and only if

‖f | Bs
p,q(w)‖♣ =

( ∑
�∈Zd

|〈f, φ0,�〉w(�)|p
)1/p

+
2d−1∑
i=1

{ ∞∑
j=0

2j(s+d(1/2−1/p))q
( ∑

�∈Zd

|〈f, ψi,j,�〉w(2−j�)|p
)q/p}1/q

< ∞.

Furthermore, ‖f | Bs
p,q(w)‖♣ is an equivalent quasi-norm on Bs

p,q(w).

Remark 2.9. A proof of this proposition may be found in [17]. But it has several
forerunners in the Banach space situation (i.e. p, q � 1). We refer to [30], [45] and [2].
Further we mention [26], see also [19, II.6.4], [11] and [34], which are primarily interested
in the homogeneous spaces. In this context they worked with more general weights.

3. The characterization of continuous and compact embeddings of weighted
sequence spaces

The aim of this section is to characterize all constellations of parameters where either
a continuous embedding or a compact embedding exists. By Proposition 2.8 we can do
this on the side of the sequence spaces.

3.1. Some preliminaries

Motivated by Proposition 2.8 we introduce the following sequence spaces. For a given
function w : R

d → (0,∞) we define

�q(2js�p(w)) :=
{

λ = {λj,k}j,k : λj,k ∈ C,

‖λ | �q(2js�p(w))‖ =
( ∞∑

j=0

2jsq

( ∑
k∈Zd

|λj,kw(2−jk)|p
)q/p)1/q

< ∞
}
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(with the usual modifications if p = ∞ and/or q = ∞). Hence, for the question of
embeddings we may concentrate on the spaces �q(2js�p(w)). Let w1, w2 : R

d → (0,∞) be
given functions. Observe that

�q1(2
j(s1+d(1/2−1/p1))�p1(w1)) ↪→ �q2(2

j(s2+d(1/2−1/p2))�p2(w2))

is equivalent to

�q1(2
j(s1−s2+d(1/p2−1/p1))�p1(w1/w2)) ↪→ �q2(�p2).

So it is sufficient to consider unweighted spaces as target spaces.

3.2. Continuous and compact embeddings of weighted sequence spaces

We switch to a general point of view, picked up from [28]. Let β = {βj}∞
j=0 and

w = {wj,k}j,k be sequences of positive numbers. Then we put

�q(βj�p(w)) :=
{

λ = {λj,k}j,k : λj,k ∈ C,

‖λ | �q(βj�p(w))‖ =
( ∞∑

j=0

βq
j

( ∑
k∈Zd

|λj,kwj,k|p
)q/p)1/q

< ∞
}

(with the usual modifications if p = ∞ and/or q = ∞). For a real number a we define
a+ := max(a, 0).

Theorem 3.1.

(i) There is an embedding �q1(βj�p1(w)) ↪→ �q2(�p2) if and only if

{β−1
j ‖{(wj,k)−1}k | �p∗‖}j ∈ �q∗,

where
1
p∗ :=

(
1
p2

− 1
p1

)
+

and
1
q∗ :=

(
1
q2

− 1
q1

)
+
.

Moreover, the following expression holds:

‖id : �q1(βj�p1(w)) → �q2(�p2)‖ = ‖{β−1
j ‖{(wj,k)−1}k | �p∗‖}j | �q∗‖. (3.1)

(ii) The embedding �q1(βj�p1(w)) ↪→ �q2(�p2) is compact if and only if

{β−1
j (wj,k)−1}j,k ∈ �q∗(�p∗),

and in addition

lim
j→∞

β−1
j ‖{(wj,k)−1}k | �p∗‖ = 0 if q∗ = ∞ (3.2)

and
lim

|k|→∞
wj,k = ∞ for all j ∈ N0 if p∗ = ∞. (3.3)
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Proof.

Step 1. Proof of (i).
The proof of the sufficiency of the condition {β−1

j ‖{(wj,k)−1}k | �p∗‖}j ∈ �q∗ is a simple
exercise, using Hölder’s inequality together with the monotonicity of the �r-spaces with
respect to r. So we concentrate on the proof of the necessity.

Substep 1.1. Let p∗ = ∞ and assume that there exists a non-negative integer j∗ such
that ‖{(wj∗,k)−1}k | �∞‖ = ∞. Hence there is a sequence {kν}∞

ν=1 ⊂ Z
d such that

lim
ν→∞

(wj∗,kν
)−1 = ∞.

We define a sequence of elements in �q1(βj�p1(w)) by

(λν)j,k :=

{
(wj∗,kν )−1 if j = j∗ and k = kν ,

0 otherwise.
(3.4)

Then

‖λν | �q1(βj�p1(w))‖ = βj∗ , ν ∈ N,

and

‖λν | �q2(�p2)‖ = (wj∗,kν
)−1, ν ∈ N.

Letting ν → ∞, this contradicts the embedding �q1(βj�p1(w)) ↪→ �q2(�p2). Hence
‖{(wj,k)−1}k | �∞‖ < ∞ for all j ∈ N0.

Substep 1.2. Let p∗ < ∞ and assume that there exists a non-negative integer j∗ such
that ‖{(wj∗,k)−1}k | �p∗‖ = ∞. Then there exists a sequence {�ν}∞

ν=1 ⊂ N such that∑
|k|�2�ν−1

(wj∗,k)−p∗
+ 2ν �

∑
|k|�2�ν

(wj∗,k)−p∗
.

To shorten the notation we put

a1 :=
∑

|k|�2�1

(wj∗,k)−p∗
and aν :=

∑
2�ν−1<|k|�2�ν

(wj∗,k)−p∗
, ν � 2.

Defining, moreover,

λj,k :=

⎧⎪⎨
⎪⎩

(wj∗,k)−p∗/p2a
−1/p2
ν if j = j∗, 2�ν−1 < |k| � 2�ν and ν � 2

or |k| � 2�1 and ν = 1,

0 otherwise,

we get
‖λ | �q2(�p2)‖ = ∞.
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Let p1 < ∞. Due to the fact that
∞∑

ν=2

∑
2�ν−1<|k|�2�ν

((wj∗,k)−p∗/p2a−1/p2
ν wj∗,k)p1

=
∞∑

ν=2

a−p1/p2
ν

∑
2�ν−1<|k|�2�ν

(wj∗,k)p1−(p1p∗)/p2

=
∞∑

ν=2

a1−p1/p2
ν

�
∞∑

ν=2

2ν(1−p1/p2) < ∞,

where we used
aν � 2ν , ν � 2 and p2 < p1,

it follows that ‖λ | �q1(βj�p1(w))‖ < ∞. But this contradicts the embedding

�q1(βj�p1(w)) ↪→ �q2(�p2).

Hence ‖{(wj,k)−1}k | �p∗‖ < ∞ for all j ∈ N0 The case p1 = ∞ can be treated similarly.

Substep 1.3. To finish the proof of (i) we exploit the fact that the best constant c in

‖τk | �p2‖ � c‖{(wj,k)−1}k | �p∗‖ ‖τk | �p1(w)‖, {τk}k ∈ �p1(w),

is c = 1. Hence, for all ε > 0 and all j ∈ N0 there exists a sequence {τj,k}k ∈ �p1(w) such
that ‖{τj,k}k | �p2‖ = 1 and

‖{τj,k}k | �p2‖ � (1 − 2−jε)‖{(wj,k)−1}k | �p∗‖ ‖{τj,k}k | �p1(w)‖.

We put

µj := β−1
j ‖{(wj,k)−1}k | �p∗‖ and νj := βj‖{τj,k}k | �p1(w)‖, j ∈ N0.

By Substeps 1.1 and 1.2 we know that the µj are finite. Then

‖{τj,k}k | �p2‖ � (1 − 2−jε)µjνj .

By the same reasoning as before we obtain that for every ε > 0 there exists a sequence
{γj}j such that ‖{γj}j | �q2‖ = 1 and

‖{γj}j | �q2‖ � (1 − ε)‖{µj}j | �q∗‖ ‖{µ−1
j γj}j | �q1‖.

Setting δj := γj/(µjνj) for j ∈ N0, we arrive at( M∑
j=0

(δj‖{τj,k}k | �p2‖)q2

)1/q2

� (1 − ε)‖{δjµjνj}j | �q2‖

� (1 − ε)2‖{µj}j | �q∗‖ ‖{δjνj}j | �q1‖

� (1 − ε)2‖{µj}j | �q∗‖ ‖{δjτj,k}j,k | �q1(βj�p1(w))‖

if M is chosen sufficiently large. This proves the claim.
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Step 2. Proof of (ii).

Substep 2.1. Proof of sufficiency. We are going to prove that, under the given restric-
tions in (ii), the identity id : �q1(βj�p1(w)) → �q2(�p2) is the limit (in the operator norm)
of a sequence of finite-rank operators. To this end we introduce a certain decomposition
of the identity which will also be of great use to us later. Let

Λ := {λ = (λj,k)j∈N0, k∈Zd : λj,k ∈ C, j ∈ N0, k ∈ Z
d},

and consider the index sets Ij,i ⊂ N0 × Z
d given by

Ij,0 := {(j, k) : |k| � 2j}, j ∈ N0, (3.5)

Ij,i := {(j, k) : 2j+i−1 < |k| � 2j+i}, i ∈ N, j ∈ N0. (3.6)

Furthermore, let Pj,i : Λ → Λ be the canonical projection onto the coordinates in Ij,i,
i.e. for λ ∈ Λ we put

(Pj,iλ)u,v :=

{
λu,v (u, v) ∈ Ij,i,

0 otherwise,
u ∈ N0, v ∈ Z

d.

Observe that

Mj,i := |Ij,i| ∼ 2(j+i)d, (3.7)

and

idΛ =
∞∑

j=0

∞∑
i=0

Pj,i. (3.8)

For all natural numbers J and M and j ∈ N0, we set

PJ :=
∞∑

j=J

∞∑
i=0

Pj,i and Qj,M :=
∞∑

i=M+1

Pj,i.

Hölder’s inequality yields

‖PJλ | �q2(�p2)‖ � ‖{β−1
j ‖{(wj,k)−1}k | �p∗‖}∞

j=J | �q∗‖ ‖λ | �q1(βj�p1(w))‖.

By assumption (3.2), for any ε > 0 there exists some J such that

‖{β−1
j ‖{(wj,k)−1}k | �p∗‖}∞

j=J | �q∗‖ < ε.

Furthermore, for any sequence {Mj}j of natural numbers we have

∥∥∥∥
J−1∑
j=0

Qj,Mj λ

∣∣∣∣ �q2(�p2)
∥∥∥∥

�
∥∥∥∥
{

β−1
j

( ∑
|k|>2j+Mj

|(wj,k)−1|p∗
)1/p∗}J−1

j=0

∣∣∣∣ �q∗

∥∥∥∥ ‖λ | �q1(βj�p1(w))‖.
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We put β := β(J) = ‖{β−1
j }J−1

j=0 | �q∗‖. Because of (3.3) we have

‖{(wj,k)−1}|k|>2j+Mj | �p∗‖ � β−1ε

if all numbers Mj are chosen sufficiently large. Hence, for those Mj we obtain

∥∥∥∥idΛ −
J−1∑
j=0

Mj∑
i=0

Pj,i

∣∣∣∣ �q1(βj�p1(w)) → �q2(�p2)
∥∥∥∥ � 21/ min(1,p∗,q∗)ε.

Since the range space of
∑J−1

j=0
∑Mj

i=0 Pj,i is obviously finite dimensional we are done.

Substep 2.2. Proof of necessity.
If max(q∗, p∗) < ∞, necessity is already proved in (i).
Now let p∗ = ∞. Assume that there are a number j∗ ∈ N0 and a sequence {kν}ν ⊂ Z

d

such that
lim

ν→∞
|kν | = ∞ and (wj∗,kν

)−1 � c > 0 for all ν.

Now we use the same sequence λν as in Step 1 (see (3.4)). Recall that for all ν ∈ N it
holds that ‖λν | �q1(βj�p1(w))‖ = βj∗ . But for ν �= µ we have

‖λν − λµ | �q2(�p2)‖ = ((wj∗,kν
)−p2 + (wj∗,kµ

)−p2)1/p2 � c > 0.

It remains to consider the case q∗ = ∞. Let us assume that there exists a sequence {jν}ν

of natural numbers tending to infinity and such that

β−1
jν

‖{(wjν ,k)−1}k | �p∗‖ � c > 0 for all ν.

We define

(λν)j,k :=

{
β−1

jν
‖{(wjν ,k)−1}k | �p∗‖ if j = jν and k = (0, . . . , 0),

0 otherwise.

Then
‖λν | �q1(βj�p1(w))‖ = ‖{(wjν ,k)−1}k | �p∗‖wjν ,(0,...,0) � 1, ν ∈ N.

But for ν �= µ we have

‖λν − λµ | �q2(�p2)‖
= (β−p2

jν
‖{(wjν ,k)−1}k | �p∗‖p2 + β−p2

jµ
‖{(wjµ,k)−1}k | �p∗‖p2)1/p2 � c > 0.

This completes the proof. �

Remark 3.2. The counterexample used in Substep 1.2 was brought to our attention
by G. A. Kalyabin.

Remark 3.3. The decomposition of the identity (3.8) introduced in Substep 2.1 will
also be of great service to us later on. It will be used in all estimates of the entropy
numbers given in this article.
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4. Entropy numbers of embeddings of weighted sequence spaces

We are interested in measuring the compactness of the embeddings

id : �q1(2
j(s1+d(1/2−1/p1))�p1(w1)) → �q2(2

j(s2+d(1/2−1/p2))�p2(w2)).

Here w1, w2 : R
d → (0,∞) are given functions that need not satisfy any further condition.

4.1. Preliminaries

Let us recall the definition of entropy numbers.

Definition 4.1. Let X, Y be complex quasi-Banach spaces, let T : X → Y be a
continuous linear operator, and let n ∈ N. The nth entropy number en(T : X → Y ) is
the infimum of all numbers ε > 0 such that there exist 2n−1 balls in Y of radius ε which
cover the image of the closed unit ball {x ∈ X : ‖x‖X � 1} under the mapping T .

In particular,
T is compact ⇐⇒ lim

n→∞
en(T ) = 0.

For details and basic properties we refer to the monographs [6,8,21,33].
In what follows we will frequently use the abbreviations

δ := s1 − s2 − d

(
1
p1

− 1
p2

)
(4.1)

and
1
p∗ :=

(
1
p2

− 1
p1

)
+

and
1
q∗ :=

(
1
q2

− 1
q1

)
+
.

For simplicity of notation we set

B1 := �q1(2
jδ�p1(w1/w2)) and B2 := �q2(�p2).

Then the mapping I defined by

λj,k
I−→ λj,k2j(s2+d(1/2−1/p2))w2(2−jk), j ∈ N0, k ∈ Z

d,

yields an isometry of
�q1(2

j(s1+d(1/2−1/p1))�p1(w1))

onto �q1(2
jδ�p1(w1/w2)) = B1. Furthermore, I−1 yields an isometry of �q2(�p2) = B2 onto

�q2(2
j(s2+d(1/2−1/p2))�p2(w2)).

As a consequence of the definition of the entropy numbers and the properties of I and
I−1 we obtain

en(id : �q1(2
j(s1+d(1/2−1/p1))�p1(w1)) → �q2(2

j(s2+d(1/2−1/p2))�p2(w2)))

= en(id : B1 → B2), n = 1, 2, . . . . (4.2)

Hence we may concentrate on en(id : B1 → B2).
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4.2. Operator ideals

The abstract concept of operator ideals has been proved to be a very useful tool in many
different situations (see [6,32,33]). Here it simplifies the estimates of the entropy num-
bers, and this observation has opened the door to the study of non-polynomial weights.
Before we demonstrate this in the following subsections we need to extend this notion to
operators acting between quasi-Banach spaces.

Let E be a quasi-normed symmetric sequence space over the index set N, i.e.

(i) (1, 0, . . . ) ∈ E, in fact, we assume ‖(1, 0, . . . )‖E = 1;

(ii) if |an| � bn for all n and b = (b1, b2, . . . ) ∈ E, then a ∈ E and ‖a‖E � ‖b‖E ;

(iii) for each bijection π : N → N we have ‖(a1, a2, . . . )‖E = ‖(aπ(1), aπ(2), . . . )‖E .

E is called maximal if

(i) a ∈ E if and only if ‖a‖E < ∞;

(ii) ‖a‖E = supn∈N ‖Pna‖E , where Pna = (a1, a2, . . . , an, 0, . . . ).

Definition 4.2. Let X, Y be quasi-Banach spaces and let T ∈ L(X, Y ). Then we put

L
(e)
E (T ) := ‖(en(T ))‖E

and
L(e)

E (X, Y ) := {T ∈ L(X, Y ) : L
(e)
E (T ) < ∞}.

Theorem 4.3. Let E be a maximal quasi-normed symmetric sequence space. Then
L(e)

E (X, Y ) is a complete quasi-normed space, i.e. a quasi-Banach space. In particular,
there exists an equivalent quasi-norm ‖ · ‖∗ on L(e)

E (X, Y ) and a number 0 < � � 1 such
that

‖T1 + T2‖�
∗ � ‖T1‖�

∗ + ‖T2‖�
∗.

Remark 4.4. The proof follows the same lines as the one for operators in Banach
spaces—we refer to [32, 14.1.8].

4.3. A second class of weights

For the entropy numbers of embeddings of weighted Besov spaces the behaviour of
the weights near infinity is important. To describe this behaviour we will use indices, a
well-known concept in analysis. First, we investigate functions defined on [1,∞).

Definition 4.5. We say that a measurable function ϕ : [1,∞) → (0,∞) belongs to V
if the inequalities

0 < ϕ(t) := inf
s∈[1,∞)

ϕ(ts)
ϕ(s)

, ϕ̄(t) := sup
s∈[1,∞)

ϕ(ts)
ϕ(s)

< ∞ for all t ∈ [1,∞), (4.3)

are satisfied and if ϕ and ϕ̄ are measurable.
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Remark 4.6. Conditions of the above type have been used in several situations, e.g. in
connection with real interpolation with a function parameter (see [7,12,20,30]) or in
the theory of function spaces with generalized smoothness (see [3,7]). However, in the
quoted papers the functions have been defined either on R or on (0,∞).

Remark 4.7. Avakumovic, and independently Karamata, introduced and investigated
a class OR of functions which is more general than our one (see also [1, § 2.0]). We prefer
to work with Definition 4.5.

For a function ϕ ∈ V the associated function ϕ̄ is submultiplicative on [1,∞), i.e.

ϕ̄(st) � ϕ̄(s)ϕ̄(t), 1 � s, t < ∞.

This implies that the function s �→ log ϕ̄(es) is subadditive on (0,∞). Theorems 6.4.1
and 6.6.1 in [18] guarantee that

αϕ := inf
t>1

log ϕ̄(t)
log t

is either a real number or equal to −∞. Furthermore, the function 1/ϕ is submultiplicative
on [1,∞), too, and consequently the function s �→ log(1/ϕ)(es) is subadditive on (0,∞).
Similarly as above this implies that

βϕ := sup
t>1

log ϕ(t)
log t

is either a real number or equal to +∞. The obvious inequality βϕ � αϕ shows that both
indices αϕ and βϕ are real numbers. Moreover, by Theorem 6.4.1 in [18], a subadditive
measurable function on (0,∞) is bounded on each compact subinterval of the real line.
This leads to the following result.

Lemma 4.8. Suppose ϕ ∈ V.

(i) For all s � 1 and t � 1 we have

ϕ(t)ϕ(s) � ϕ(ts) � ϕ̄(t)ϕ(s). (4.4)

(ii) The following inequality holds:

−∞ < βϕ � αϕ < ∞.

(iii) For any ε > 0 there exists a constant cε � 1 such that

c−1
ε sβϕ−ε � ϕ(s) � ϕ(s)

ϕ(1)
� ϕ̄(s) � cεs

αϕ+ε for all s � 1.

As a consequence of this lemma we obtain some very useful estimates of certain sums
appearing later in our estimates of the entropy numbers.
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Lemma 4.9. Let � > 0 and ϕ ∈ V.

(i) If γ > αϕ, then

sup
M�1

ϕ(2M )�
M∑

m=0

2−mγ�ϕ(2M−m)−� < ∞. (4.5)

(ii) If γ < βϕ, then

sup
M�1

2Mγ�
M∑

m=0

2−mγ�ϕ(2M−m)−� < ∞ (4.6)

and

sup
M�1

ϕ(2M )�2−Mγ�
∞∑

m=M+1

2mγ�ϕ(2m)−� < ∞. (4.7)

Proof.

Step 1. Proof of (i).
Making use of the second of the two inequalities in parts (i) and (iii) of Lemma 4.8 we

find that

ϕ(2M )�
M∑

m=0

2−mγ�ϕ(2M−m)−� �
M∑

m=0

2−mγ�ϕ̄(2m)�

� c�
ε

M∑
m=0

2m�(−γ+αϕ+ε)

� cγ,αϕ

as long as 0 < ε < γ − αϕ.

Step 2. We prove the second part of (ii). The proof of the first part is similar and
therefore omitted. Applying the first of the two inequalities in parts (i) and (iii) of
Lemma 4.8 we obtain

ϕ(2M )�2−Mγ�
∞∑

m=M+1

2mγ�ϕ(2m)−� =
∞∑

m=M+1

2(m−M)γ�ϕ(2M )�ϕ(2m)−�

�
∞∑

m=M+1

2(m−M)γ�ϕ(2m−M )−�

� c�
ε

∞∑
m=M+1

2(m−M)γ�2−(m−M)(βϕ−ε)�

� c�
ε

∞∑
m=M+1

2(m−M)(γ−βϕ+ε)�,

which is finite if γ − βϕ + ε < 0. �
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The class of weights for which we are able to estimate the entropy numbers of the
embeddings of sequence spaces is now given by the following definition.

Definition 4.10. A function w : R
d → (0,∞) belongs to the class W2 if there exist

positive constants c1 and c2 and a function ϕ ∈ V such that

c1 � w(x) � c2, for all x, |x| � 1,

c1ϕ(|x|) � w(x) � c2ϕ(|x|), for all x, |x| > 1.

We say that a function ϕ ∈ V is ‘associated with’ w if these inequalities are satisfied.

4.4. Examples

Before we list some examples, we consider a certain class of functions that will be of
some use in this connection.

Lemma 4.11. Let η and ξ be real-valued, bounded and measurable functions, defined
on [1,∞). We put

ϕ(t) := exp
{

η(t) +
∫ t

1
ξ(u)

du

u

}
, t ∈ [1,∞). (4.8)

Then ϕ ∈ V. Furthermore,
αϕ = inf sup

t>1
ξ(t),

where the infimum is taken over all possible representations (4.8) of ϕ, and

βϕ = sup inf
t>1

ξ(t),

where the supremum is taken over the same set as before.

Proof. The proof of these assertions follows from a combination of Theorems 2.2.2
and 2.2.7 in [1] and Lemma 4.8 (iii). �

Polynomial weights

Let α > 0. We put
wα(x) := (1 + |x|2)α/2, x ∈ R

d. (4.9)

Then wα ∈ W1 ∩ W2. An associated function ϕ is given by ϕ(x) = |x|α, and a simple
calculation yields αϕ = βϕ = α.

Small perturbations of polynomial weights

Let ψ : [0,∞) → (0,∞) be a positive and continuous function such that

ψ(t) = exp
{ ∫ t

1
ε(u)

du

u

}
, t ∈ [1,∞),
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for some bounded and measurable function ε satisfying limu→∞ ε(u) = 0. Then ψ is a
(normalized) slowly varying function (see [1]). Furthermore, for α > 0 the function

wα,ψ(x) := (1 + |x|2)α/2ψ(|x|), x ∈ R
d, (4.10)

belongs to W2. The function ϕ(t) = (1 + t2)α/2ψ(t) is associated with w and a short
calculation using Lemma 4.11 results in αϕ = βϕ = α. We give some examples for such
weights:

(i) w(x) = (1 + |x|2)α/2 log log(ee + |x|2);

(ii) w(x) = (1 + |x|2)α/2 logβ(e + |x|2), β ∈ R;

(iii) w(x) = (1 + |x|2)α/2[log log(ee + |x|2)]log log(ee+|x|2).

Further examples can be constructed by using the following facts.

(i) Any real power of a slowly varying function is again slowly varying.

(ii) If ϕ is slowly varying, then ϕ(tα), α > 0, is slowly varying as well.

All these examples may be understood as weak perturbations (they do not change the
indices) of the polynomial weights wα.

Weights with different indices

Here we present two examples.

Example 4.12. Let a > 1 and let 0 � s0 < s1 < ∞. Then we define

X (u) :=

{
s0 if exp(a2k) � u < exp(a2k+1),

s1 if exp(a2k+1) � u < exp(a2k+2),

k ∈ N0, and

ϕ(t) = exp
{ ∫ t

1
X (u)

du

u

}
.

By Lemma 4.11 we have ϕ ∈ V and hence αϕ and βϕ exist. Elementary but cumbersome
calculations yield

αϕ =
s0 + as1

a + 1
and βϕ =

as0 + s1

a + 1
. (4.11)

The proof of (4.11) is based on Lemma 4.8 (iii).
First, observe that on the interval [exp(a2k), exp(a2k+1)] we have the identity

ϕ(t)
tγ

= ckts0−γ .

Similarly,

ϕ(t)
tγ

= Ckts1−γ
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holds on [exp(a2k+1), exp(a2k+2)]. Consequently, the quantity ϕ(t)/tγ attains its maximal
and minimal values in the corners of the appropriate intervals. Furthermore, we have

ϕ(exp(a2L)) = exp
(

[s0(a − 1) + s1a(a − 1)]
a2L − 1
a2 − 1

)

and

ϕ(exp(a2L+1)) = exp
(

[s0(a − 1) + s1a(a − 1)]
a2L − 1
a2 − 1

+ s0(a2L+1 − a2L)
)

,

L = 1, 2, . . . .

We conclude that

sup
L=1,2,...

ϕ(exp(a2L))
exp(γa2L)

< ∞ ⇐⇒ s0 + as1

a + 1
− γ � 0,

inf
L=1,2,...

ϕ(exp(a2L))
exp(γa2L)

> 0 ⇐⇒ s0 + as1

a + 1
− γ � 0,

sup
L=1,2,...

ϕ(exp(a2L+1))
exp(γa2L+1)

< ∞ ⇐⇒ s0 + as1

a(a + 1)
+

(a − 1)s0

a
− γ � 0

and

inf
L=1,2,...

ϕ(exp(a2L+1))
exp(γa2L+1)

> 0 ⇐⇒ s0 + as1

a(a + 1)
+

(a − 1)s0

a
− γ � 0.

Because

sup
L�1

ϕ(exp(a2L))
exp(γa2L)

= sup
t�a2

ϕ(t)
tγ

,

we derive from Lemma 4.8 (iii) that

αϕ = max
(

s0 + as1

a + 1
,
s0 + as1

a(a + 1)
+

(a − 1)s0

a

)
.

Similarly,

βϕ = min
(

s0 + as1

a + 1
,
s0 + as1

a(a + 1)
+

(a − 1)s0

a

)
.

This proves the claim.

Example 4.13. Consider the following recursively defined sequence:

j0 = 0, j1 = 1, j2� = 2j2�−1 − j2�−2 and j2�+1 = 2j2� , � ∈ N.

We define

ξ(u) :=

{
s0 if 2j2� � u < 2j2�+1 ,

s0 + s1 if 2j2�+1 � u < 2j2�+2 ,
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For s0 � 0 and s1 > 0 the function

ϕ(t) := exp
( ∫ t

1
ξ(u)

du

u

)
, t � 1,

belongs to V and is increasing. Arguing as in the first example one can show that

αϕ = s0 + 1
2s1 and βϕ = s0.

For s0 = 0 and s1 = 2 this example has been treated in [9,27].

4.5. Entropy numbers of embeddings of weighted sequence spaces

4.5.1. The main result

All our estimates will be based on the following inequalities.
For 0 < p1 � p2 � ∞ and all n, N ∈ N we have

en(id : �N
p1

→ �N
p2

) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 1 � n � log 2N,(
log(1 + N/n)

n

)1/p1−1/p2

if log 2N � n � 2N,

2−n/2NN1/p2−1/p1 if 2N � n.

(4.12)

If 0 < p2 < p1 � ∞, then

en(id : �N
p1

→ �N
p2

) ∼ 2−n/2NN1/p2−1/p1 for all n ∈ N. (4.13)

If 1 � p1 � p2 � ∞ this has been proved by Schütt [39]. For the remaining cases we
refer to [8, 3.2.2], [43, 7.2, 7.3] and [22].

Moreover, we specify the operator ideal. We choose E = �r,∞ as the Lorentz sequence
space and write instead of L

(e)
E (T ) and L(e)

E (X, Y ) simply L
(e)
r,∞(T ) and L(e)

r,∞(X, Y ),
respectively. Then we have

L(e)
r,∞(T ) � c if and only if sup

n∈N

n1/ren(T ) � c. (4.14)

Our main result is the following theorem.

Theorem 4.14. Let w ∈ W2 and let ϕ ∈ V be an associated function in the sense of
Definition 4.10.

(i) Suppose d/p∗ < βϕ � αϕ < δ. Then

en(id : �q1(2
jδ(�p1(w))) → �q2(�p2)) ∼ n−(1/p1−1/p2)ϕ(n1/d)−1. (4.15)

(ii) Suppose that d/p∗ < δ < βϕ. Then

en(id : �q1(2
jδ(�p1(w))) → �q2(�p2)) ∼ n−δ/d−(1/p1−1/p2). (4.16)
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Proof.

Step 1. Preparation. We employ the same notation as in Substep 2.1 of the proof of
Theorem 3.1. Thanks to Lemma 4.8 we have

w(2−jk) ∼ ϕ(2−j |k|) ∼ ϕ(2i) if (j, k) ∈ Ij,i, i � 0. (4.17)

Monotonicity arguments and elementary properties of the entropy numbers yield

en(Pj,i : B1 → B2) � 1
infk∈Ij,i w(2−jk)

2−jδen(id : �Mj,i
p1

→ �Mj,i
p2

)

� c
1

2jδϕ(2i)
en(id : �Mj,i

p1
→ �Mj,i

p2
), (4.18)

with a constant c independent of n, j and i.

Step 2. Now the operator ideal comes into play. Using (4.14) and (4.18) we find

L(e)
r,∞(Pj,i) � c

1
2jδϕ(2i)

L(e)
r,∞(id : �Mj,i

p1
→ �Mj,i

p2
). (4.19)

To shorten notation define 1/p := 1/p1 − 1/p2. The known asymptotic behaviour of the
entropy numbers en(id : �N

p1
→ �N

p2
) (see (4.12) and (4.13)) implies that

L(e)
r,∞(id : �N

p1
→ �N

p2
) ∼ N1/r−1/p if

1
r

> max
(

0,
1
p

)
. (4.20)

Under the assumption 1/r > max(0, 1/p) we conclude from (3.7) and (4.20) that

L(e)
r,∞(id : �Mj,i

p1
→ �Mj,i

p2
) ∼ 2d(j+i)(1/r−1/p) (4.21)

and consequently that

L(e)
r,∞(Pj,i) � c

1
2jδϕ(2i)

2d(j+i)(1/r−1/p). (4.22)

Now, for given M ∈ N0, let

P :=
M∑

m=0

∑
j+i=m

Pj,i and Q :=
∞∑

m=M+1

∑
j+i=m

Pj,i. (4.23)

Substep 2.1. Estimate of L
(e)
r,∞(P ). Recall that for any r > 0 there exists an equivalent

�-norm on L(e)
r,∞, with some 0 < � � 1. Hence, Theorem 4.3, (4.22) and Lemma 4.9 yield

L(e)
r,∞(P )� �

M∑
m=1

∑
j+i=m

L(e)
r,∞(Pj,i)�

� c1

M∑
m=1

∑
j+i=m

1
2j�δϕ�(2i)

2�dm(1/r−1/p)

https://doi.org/10.1017/S0013091505000386 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000386
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� c2

M∑
m=1

2�dm(1/r−1/p)
m∑

j=0

1
2j�δϕ�(2m−j)

� c3

M∑
m=1

2�dm(1/r−1/p) ×
{

1/ϕ�(2m) if αϕ < δ,

2−m�δ if βϕ > δ.

Let us first consider the case αϕ < δ. If r is chosen such that

1
r

> max
(

0,
1
p

)
and d

(
1
r

− 1
p

)
− αϕ > 0, (4.24)

then

L(e)
r,∞(P )� � c32�dM(1/r−1/p)

M∑
m=1

2−�d(M−m)(1/r−1/p)

ϕ�(2m)
(4.25)

and (4.5) gives

L(e)
r,∞(P ) � c3

2dM(1/r−1/p)

ϕ(2M )
. (4.26)

In view of (4.14) this implies that

e2Md(P : B1 → B2) � c32dM(−1/p1+1/p2)(ϕ(2M ))−1.

Now we consider the case βϕ > δ. Then, in a similar manner as above, we find that

e2Md(P : B1 → B2) � c2dM(−1/p1+1/p2−δ/d)

if
1
r

> max
(

0,
1
p

)
and d

(
1
r

− 1
p

)
− δ > 0. (4.27)

Observe that (4.24) and (4.27) are satisfied if r is chosen small enough.

Substep 2.2. Estimate of L
(e)
r,∞(Q). We proceed as in Substep 2.1 and obtain

L(e)
r,∞(Q)� � c1

∞∑
m=M+1

2�dm(1/r−1/p) ×
{

(ϕ(2m))−� if αϕ < δ,

2−m�δ if βϕ > δ.

When αϕ < δ this leads, via (4.7), to

L(e)
r,∞(Q) � c22dM(1/r−1/p)(ϕ(2M ))−1

if
1
r

− 1
p

<
βϕ

d
.

Because βϕ > d/p∗ = d max(0,−1/p), we have

max
(

0,
1
p

)
<

βϕ

d
+

1
p
.
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Hence, there exists an appropriate r with

max
(

0,
1
p

)
<

1
r

<
βϕ

d
+

1
p
.

This gives

e2Md(Q : B1 → B2) � c32dM(−1/p1+1/p2)(ϕ(2M ))−1.

If βϕ > δ, using the same types of argument, we derive

e2Md(Q : B1 → B2) � c2dM(−1/p1+1/p2−δ/d),

where the number r has to be chosen such that

max
(

0,
1
p

)
<

1
r

<
δ

d
+

1
p

(which is possible because δ > d/p∗). In summary, we get

e2Md+1(id : B1 → B2) � e2Md(P : B1 → B2) + e2Md(Q : B1 → B2)

� c2dM(−1/p1+1/p2) ×
{

(ϕ(2M ))−1 if αϕ < δ,

2−Mδ if βϕ > δ,

and by monotonicity of the entropy numbers the upper estimates in (4.16) and (4.15)
follow.

Step 3. For the estimate from below we consider the following commutative diagram:

�
Mj,i
p1

Sj,i ��

id1

��

�q1(2
jδ�p1(w))

id

��
�
Mj,i
p2

�q2(�p2)
Tj,i��

Here

(Tj,iλ)φ(u,v) := λu,v, (u, v) ∈ Ij,i,

(Sj,iη)u,v :=

{
ηϕ(u,v) if (u, v) ∈ Ij,i,

0 otherwise,

and φ denotes a bijection of Ij,i onto {1, 2, . . . , Mj,i}. Observe that

‖Tj,i : �q2(�p2) → �Mj,i
p2

‖ = 1

and

‖Sj,i : �Mj,i
p1

→ �q1(2
jδ�p1(w))‖ ∼ 2jδϕ(2i).
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Hence we obtain

en(id1 : �Mj,i
p1

→ �Mj,i
p2

) � ‖Sj,i‖ ‖Tj,i‖en(id : B1 → B2)

� c2jδϕ(2i)en(id : B1 → B2).

Using once more the characterization from (4.12) and (4.13) we find with n = 2(j+i)d ∼
Mj,i that

n−(δ/d)−(1/p1)+(1/p2) � cen(id : B1 → B2) if i = 0

and

n−(1/p1)+(1/p2)(ϕ(n1/d))−1 � cen(id : B1 → B2) if j = 0.

The estimate for the remaining n follows by monotonicity of the entropy numbers and
the properties of ϕ. This finishes the proof. �

4.5.2. Examples

In this subsection we consider polynomial weights wα(x) = (1+|x|2)α/2 and polynomial
weights with small perturbations wα,ψ(x) = (1 + |x|2)α/2ψ(x). In these situations we
always have αϕ = βϕ = α.

Polynomial weights

To begin with, we reformulate Theorem 3.1 in this situation.

Corollary 4.15. Let wα be as in (4.9) for some α > 0. Then the embedding

�q1(2
jδ�p1(wα)) ↪→ �q2(�p2)

is compact if and only if min(δ, α) > d/p∗.

Applying Theorem 4.14 in these particular cases yields the following.

Corollary 4.16. Let min(α, δ) > d/p∗. Suppose δ �= α. Then

en(id : �q1(2
jδ�p1(wα)) → �q2(�p2)) ∼ n− min(α,δ)/d−1/p1+1/p2

holds for all n ∈ N.

Remark 4.17. Note that the result does not depend on the microscopic parameters
q1 and q2. This is different in the case in which α = δ (see [25]).

Small perturbations of polynomial weights

This time Theorem 3.1 reads as follows.

Corollary 4.18. Let wα,ψ be as in (4.10) for some α > 0. The embedding

�q1(2
jδ�p1(wα,ψ)) ↪→ �q2(�p2)
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is compact if and only if one of the following conditions is satisfied:

(i) min(δ, α) > d/p∗;

(ii) δ > α = d/p∗ and
∫ ∞
1 ψ(t)−p∗

(dt/t) < ∞.

Theorem 4.14 implies the following corollary.

Corollary 4.19.

(i) Suppose that d/p∗ < α < δ. Then

en(id : �q1(2
jδ�p1(wα,ψ)) → �q2(�p2)) ∼ n−α/d−(1/p1−1/p2)ψ(n1/d)−1

holds for all n ∈ N.

(ii) Suppose that d/p∗ < δ < α. Then

en(id : �q1(2
jδ�p1(wα,ψ)) → �q2(�p2)) ∼ n−δ/d−(1/p1−1/p2)

holds for all n ∈ N.

5. Entropy numbers of embeddings of weighted function spaces

Based on Proposition 2.8 we transfer the results of § 4 for weighted sequence spaces
step by step to weighted function spaces. For simplicity we concentrate on the situation
where the target space is an unweighted function space. This restriction can be removed
immediately by using (4.2).

5.1. The non-limiting case for polynomial weights

Let wα be as in (4.9) and let δ be given by (4.1). Then the counterpart of Corollary 4.15
reads as follows.

Corollary 5.1. The embedding Bs1
p1,q1

(Rd, wα) ↪→ Bs2
p2,q2

(Rd) is compact if and only
if min(δ, α) > d/p∗.

Remark 5.2. Of course, the if part of the assertion in Corollary 5.1 is known (see,
for example, [8, 4.2.3]). The only if part is also partially known.

The counterpart of Corollary 4.16 is the following theorem.

Theorem 5.3.

(i) Let d/p∗ < δ < α. Then

en(id : Bs1
p1,q1

(Rd, wα) → Bs2
p2,q2

(Rd)) ∼ n−(s1−s2)/d.

(ii) Let d/p∗ < α < δ. Then

en(id : Bs1
p1,q1

(Rd, wα) → Bs2
p2,q2

(Rd)) ∼ n−α/d+1/p2−1/p1 .
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Remark 5.4. A rough interpretation is as follows. If the weight is increasing fast
enough near infinity, i.e. if α > δ, then the asymptotic entropy behaviour of the corre-
sponding embeddings is the same as for embeddings of unweighted Besov spaces defined
on a compact domain with smooth boundary (see [8, 3.3]). If the weight is not increas-
ing fast enough, i.e. if α < δ, then the weight has a direct influence on the asymptotic
behaviour of the entropy numbers.

Remark 5.5. The estimates in (i) and the estimate from below in (ii) are covered
by [15] (see also [8, 4.2.3]). Also, in the case when p2 � p1 a proof of the estimate
from above is given in [8, 4.3.2] (see also [16]). The correctness of (ii) for all cases was
conjectured in [14]. A different proof of (ii) was given recently in [44] and in [17].

5.2. Small perturbations of polynomial weights: the non-limiting case

Let wα,ψ be as in (4.10) for some α > 0. By Lemma 4.11 we know that wα,ψ ∈ W2.
We have to check under which conditions such a weight also belongs to the class W1.

Lemma 5.6. Suppose that the function ξ is infinitely differentiable and bounded
together with all its derivatives on (1,∞). Let ϕ(t) = exp(

∫ t

1 ξ(u) du/u), t � 1. Let
ψ : R → R be a positive C∞-function such that ψ(t) = ϕ(t), t � 1, and ψ(t) = 1 if
|t| � 1

2 . Then the function w(x) = ψ(|x|) belongs to W1.

Proof. On (1,∞) we have the identity

ξ(t) = t
ϕ′(t)
ϕ(t)

.

Since ξ is bounded on [1,∞) we conclude that ϕ′(t)/ϕ(t) is bounded on this interval.
Rearranging the above identity we see that

ψ(m+1)(t) =
(

ξ(t)
t

ψ(t)
)(m)

.

All derivatives of the quotient ξ(t)/t remain bounded on [1,∞). Hence we have

|ψ(m+1)(t)| � cm

m∑
j=0

|ψ(j)(t)|

for some constant cm. Now an induction argument yields the conclusion. �

Remark 5.7. It is an easy exercise to check that the following functions belong to
W1 ∩ W2.

(i) w(x) = (1 + |x|2)α/2 log log(ee + |x|2).

(ii) w(x) = (1 + |x|2)α/2 logβ(e + |x|2), β ∈ R.

(iii) w(x) = (1 + |x|2)α/2[log log(ee + |x|2)]log log(ee+|x|2).

https://doi.org/10.1017/S0013091505000386 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000386


Entropy numbers of embeddings of weighted Besov spaces. II 355

Then the counterpart of Corollary 4.18 reads as follows.

Corollary 5.8. Suppose that wα,ψ ∈ W1 ∩ W2. Then the embedding

Bs1
p1,q1

(Rd, wα,ψ) ↪→ Bs2
p2,q2

(Rd)

is compact if and only if either min(δ, α) > d/p∗ or δ > α = d/p∗ > 0 and∫ ∞

1
ψ(t)−p∗ dt

t
< ∞.

Furthermore, Corollary 4.19 yields the following theorem.

Theorem 5.9. Suppose that d/p∗ < α < δ. Then

en(id : Bs1
p1,q1

(Rd, wα,ψ) → Bs2
p2,q2

(Rd)) ∼ n−α/d−(1/p1−1/p2)ψ(n1/d)−1.

Remark 5.10. In the case where α > δ > d/p∗ the behaviour of the entropy numbers
is also well known. We refer to Remark 5.17 for further details.

Remark 5.11. In [13,14] only the case ψ(x) = logβ(e + |x|), β ∈ R, is treated. In
addition we improved the author’s estimate from above in the case where p1 < p2.

5.3. The general case

Finally, we formulate our result in the general situation.

Corollary 5.12. Let w ∈ W1 ∩ W2, and let ϕ ∈ V be an associated function in the
sense of Definition 4.10.

(i) Let p∗ = ∞. Then the embedding Bs1
p1,q1

(Rd, w) ↪→ Bs2
p2,q2

(Rd) is compact if and
only if δ > 0 and limt→∞ ϕ(t) = ∞.

(ii) Let 0 < p∗ < ∞. Then the embedding Bs1
p1,q1

(Rd, w) ↪→ Bs2
p2,q2

(Rd) is compact if
and only if

δ > d/p∗ and
∫ ∞

1
ϕ(t)−p∗

sd ds

s
.

Furthermore, Theorem 4.14 yields the following theorem.

Theorem 5.13. Let w ∈ W1 ∩ W2, and let ϕ ∈ V be an associated function in the
sense of Definition 4.10.

(i) Suppose that d/p∗ < βϕ � αϕ < δ. Then

en(id : Bs1
p1,q1

(Rd, w) → Bs2
p2,q2

(Rd)) ∼ n−(1/p1−1/p2)ϕ(n1/d)−1.

(ii) Suppose that d/p∗ < δ < βϕ. Then

en(id : Bs1
p1,q1

(Rd, w) → Bs2
p2,q2

(Rd)) ∼ n−δ/d−(1/p1−1/p2).
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A special example

We consider the weight function with different indices introduced in Example 4.12. Let
a, s0, s1, X and ϕ be defined as there. Since the function X is not smooth, we have to
replace this function by a smooth version of it. To this end, let � ∈ C∞

0 (R) be a function
such that � � 0, supp � ⊂ [−1, 0] and

∫
�(u) du = 1. We define the function ξ by

ξ(u) :=
∫

X (y)�(u − y) dy.

Let ψ : R → R be an even positive C∞-function such that ψ(t) = exp(
∫ t

1 ξ(u) du/u),
t � 1, and ψ(t) = 1 if |t| � 1

2 . Then, applying Lemma 5.6, we conclude that the function
w(x) = ψ(|x|) belongs to W1. Moreover, elementary calculations show that (4.11) implies

αψ =
s0 + as1

a + 1
and βψ =

as0 + s1

a + 1
.

So we find the following corollary in this particular situation (see Theorem 4.14).

Corollary 5.14.

(i) Suppose that
d

p∗ <
as0 + s1

a + 1
� s0 + as1

a + 1
< δ.

Then
en(id : Bs1

p1,q1
(Rd, w) → Bs2

p2,q2
(Rd)) ∼ n−(1/p1−1/p2)ψ(n1/d)−1.

(ii) Suppose that
d

p∗ < δ <
as0 + s1

a + 1
.

Then
en(id : Bs1

p1,q1
(Rd, w) → Bs2

p2,q2
(Rd)) ∼ n−δ/d−(1/p1−1/p2).

Remark 5.15. Note that in part (i) of the preceding corollary the behaviour of the
entropy numbers reflects the behaviour of the weight, as in the polynomial case.

Remark 5.16. Since our results do not depend on the microscopic parameters q1

and q2, all of them extend to Lizorkin–Triebel spaces F s
p,q(R

d, w). This scale generalizes
weighted Sobolev spaces W s

p (Rd, w). Indeed, if 1 < p < ∞ then the following holds:
F s

p,2(R
d, w) = W s

p (Rd, w).

Remark 5.17. Finally, let us mention some open questions.

(i) Let w be a weight with lim|x|→∞ w(x) = ∞ and such that the indices of the asso-
ciated function ϕ satisfy αϕ = βϕ = 0. What is the exact asymptotic entropy
behaviour of the embeddings of the corresponding weighted Besov spaces? In the
forthcoming paper [24] this question is solved for logarithmic weights, and in this
situation some new phenomena occur.
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(ii) Interpreting Theorem 5.13 (ii) we see, if the weight grows fast enough near infinity,
that the entropy numbers of the embedding of the weighted spaces behave like the
entropy numbers of the embedding of the unweighted spaces defined on the unit
ball. It would be of interest to characterize the class of all weights w such that

en(id : Bs1
p1,q1

(Rd, w) → Bs2
p2,q2

(Rd)) ∼ n−δ/d−(1/p1−1/p2).

First results in this direction have been obtained in [14,23].

(iii) Connected with the second problem is also the following question. Let wα,ψ be a
small perturbation of a polynomial weight and consider the limiting case α = δ.
How do the entropy numbers behave in this situation? For first results we again
refer to [14,23].
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44. H. Triebel, Weighted and radial function spaces: decompositions and entropy numbers,

handwritten notes, Jena (2001).
45. P. Wojtaszczyk, A mathematical introduction to wavelets (Cambridge University Press,

1997).

https://doi.org/10.1017/S0013091505000386 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000386

