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Dear Editor,

Overflow probability upper bound in fluid queues with general on-offsources

1. Introduction

In high-speed packet switched networks, a critical problem is to evaluate the prob
ability of buffer overflow when the superposition of a finite number of variable bit rate
sources is offered to a multiplexer. It is well known that fluid models, where discrete
packet arrivals are assimilated to fluid flows, provide a useful description for studying
such queues (see for example Kosten (1986), Norros et al. (1991), Simonian and Virtamo
(1991), Bensaou et al. (1993». Consider then a fluid reservoir with unlimited capacity
which fills at instantaneous input rate At and empties at output rate c. In this letter, we
focus on input processes (At) resulting from the superposition of Nheterogeneous on-off
fluid sources, when successive silence ('off') and activity ('on') periods constitute
independent stationary sequences of i.i.d. random variables. In the following, the input
rate of source i when active is denoted by hi. The incoming workload on time interval
(0, t] is W t = J~ Asds and variable Va represents the stationary distribution of the
reservoir content.

The complementary distribution function Q(x) = P( Va > x) has been studied in
various papers (Kosten (1986), Anick et al. (1982), Stern and Elwalid (1991» for specific
on and off period distributions. More general distributions have been considered in
Bensaou et al. (1990), (1993) for evaluating the so-called Benes upper bound Q(x) ~
q(x), where q(x) is defined by

(1) q(x) = Loo ({J(t,x+ct)dt

with

rp(t, w) = L (c - e·h)P(At = e-h ; w < Wt ~ W + dw)/dw
,:,·j<c

where e is any N-dimensional vector with 0-1 coordinates and h = (hi)i~N. The
bound is tight when c is large or when traffic is light (Le. when P(~ = 0)~ 1).
It is equivalent, though not identical, to the bound suggested in Stern and Elwalid
(1991).

The contribution of the present letter is to provide an alternative expression for bound
q(x) as defined in (1). This new expression is written as a contour integral in the complex
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plane involving the double Laplace transform of the function rp. This formula is then
applied, in particular, to Cox-type densities and enables us to write the bound q(x) as an
explicit sum of exponentially decreasing factors. The decreasing rates of the latter are
defined as roots of equations involving the Laplace transforms of the densities ofon and
off periods.

2. Contour integral formula

Let v; be the average stationary activity rate of source i and P = L;~N h; V;/ c the server
load. We assume that the distributions of on and off periods have piecewise smooth
densities and that their Laplace transform has a negative abscissa for absolute conver
gence. Let qJ**[s, z] denote the double Laplace transform of rp(t, w) with respect to
variables t and w. Our main result can then be stated as follows.

Theorem 1. Assuming that the stability conditionp < 1 holds, we have

(2) q(x) =~ p.v, f tp**[ - CZ, z]eZXdz
Lit: J!L'

where u' isa vertical line in the complex planestrictly to the left ofthe imaginary axis and
to the rightofall the singularities ofrp**[ - cz, z] with negativerealpart (p.v. stands for
principal value).

The proof of this theorem relies on the following preliminary proposition.

Proposition 1. q(x) is piecewise smooth and the abscissa for absoluteconvergence of
its Laplace transform q* is - (J < o.

The proof is given in Section 5. We apply the Laplace transform inversion formula
(Churchill (1972» to q*, which reads

(3) q(x) =~ p.v. r q*[z]eZXdz
Zit: J!L'

(4)

where z' is a vertical line in the complex plane such that IR(Z) > - (J. To calculate q*[z]
we take the Laplace transform of (1) with respect to variable x and use Fubini's theorem.
We obtain for lR(z) > - (J

q*[z] = fa00 (i~ tp(t, w)e-Zwdw) ezctdt.

As As ~ L; ~N h, for all s, Wt is bounded for fixed t and the Laplace transform rp*[t, · ] is
defined over C. Splitting the integral yields

(5) V' z EC, roo rp(t, w)e-ZWdw = rp*[t, z] - ret rp(t, w)e-Zwdw.Jd Jo
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The substitution of(5) in (4) gives q*[z] = tp**[ - cz, z] - h(z) for lR(z) > - a, where

h(z) = 100

(lCI rp(t, w)eZ(CI-wldW) dt.

Proposition 2. h(z) is an analytic function defined on the halfplane lR(z) < 0 and
bounded overlR(z) < - " for all" > O.

The proof is given in Section 5. By Jordan's lemma (Churchill (1972», we then have
(1/2in) J!£ h(z )eZXdz = 0, for any vertical line IfJ such that IR(IfJ) < O. The latter relation
used in (3) yields formula (2).

3. Cox-type distributions

In this section, we assume silence durations (off periods) and burst volumes (on
periods) have Cox-type distributions, i.e. with rational Laplace transforms. Let kai and
kbi be the degrees of the denominators of these transforms. A double vector a is an
N-dimensional vector (Ui)i~N where each a, is a (kai + kbi)-dimensional vector. By
convention, ii · v= Li ~N u, ·Vi and ii P = II i.] u;'jj. Denote by OJ any double vector such
that each ();,j has one non-zero coordinate equal to 1 and let all(8) be the set of double
vectors ii such that each a, has one non-zero coordinate equal to 1 if e, = 1 and is a null
vector otherwise. We can then obtain the following result.

Theorem 2. When on and off periods have Cox-type distributions, the Benes upper
bound can be expressedas the finite sum

(6) q(x) = L kjeZj '
x

jE,?

where(z, )jE.1 is thefinite set ofsolutions with negativerealpart ofthe algebraic equations

(7)

with s(z) = (s;(z»;~N and wheres;(z) is the vector ofsolutions ofa;*[s]b;*[z + sth;] = 1.
The (kj)jE,? are complex coefficients defined by

where fAi(Z), fBi(Z), i ~ N are the residues offunctions pt*[s, z], pAi*[s, z] (defined in
Section 5) at s = Si(Z), respectively.

Cox-type distributions are within the scope of application ofTheorem 1. Applying the
theorem of residues to contour integral (2) then enables us to derive the above formulae.
Details of the proof can be found in Guibert (1994). Sorting the roots (Zj)jEcf .by
decreasing real part, we readily derive from (6) the asymptotic form q(x) ~ ko exp(zox)
for large x.
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4. Conclusion
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We derived an expression for the Benes upper bound as a general contour integral
formula. When on and off periods have Cox-type distributions, it readily leads to a finite
spectral expansion whose coefficients are straightforward to obtain via the theorem of
residues. The practical accuracy of this expression has been validated in Guibert (1994).
We also believe that our formula can be applied to other types ofdistributions for on and
off periods.

5. Annex

Denote by PA;(t,· ) (or PB;(t,· » the density of the incoming workload over time interval
(0, t] due to source i, given it is 'off' (or 'on') at epoch O. These densities are Dirac
distributions at epochs 0 and hit. Let rp,(t, w) = P(At = e-h; w < Wt ~ W + dw)/dw.
For the superposition of independent sources, we can write

(8) rp:[t, z] = 11 V;P: [t, z] 11 (1 - v;) P..t [t, z]
i : .; = 1 ; : .;= 0

(9)

where V; = a;/(a; + hiP;). It is known from [7] that, for general probability densities ofon
and off periods, we can write

**[ ] 1 - O'.;Z (1 - a~[s])(1 - b~[z + s/h;])
PA; S, Z = - +--------------

S S2(Z + s/h;) 1 - a*[s]b*[z + s/h;]

**[] 1 h;P;z (1 - a~[s])(1 - b~[z + s/h;])
PB; S, z = --- +--------------

s + h.z s(z + s/h;)2 1 - a~[s]b~[z + s/h;]

Now, as detailed below, the following lemma is essential for the justification of
Propositions I and 2.

Lemma 1. Given the stability condition p < 1, there exists a > 0 and c' < c such that
rp*[t, - a] = O(eC'fJt) for large t.

Proof. Since rp*[t, z] is- a finite positive combination of rp:[t, z] it suffices to
prove this assertion for each rp:[t, z]. The behaviour of rp:[t, z] for large t is related to
the rightmost singularities of its Laplace transform with respect to variable t. Formulae
(8) and (9) show that the singularities in s of rp:*[s, z] come from the factors
1 - a~[s]b~[z + s/h;], a~[s] and b;*[z + s/h;]. Assume z = - a < 0 is small. The root of
equation 1 - a,.sb,.[ - a +s/h;] = 0 with largest real part is asymptotic to v.h,a, hence
bounded from above by tv.h, + ,,)a for some" > O. As ar and 1ft have a negative
convergence abscissa, the singularities induced by ar[s] and Ift[z + s/h;] are smaller than
v.h,o for small a. It can then be derived from formula (8) that rp:[t, - a] =
O(exp[~;sN(v;h; + ,,)at]) uniformly in large t. Given the stability assumption, it is now
sufficient to choose 1] and c' such that ~;sN(v;h; + 1]) < c' < c.

ProofofProposition 1. rp(t, w) has Dirac components for w = (8· h)t only. Since on
and off periods are piecewise smooth, this first implies that rp(t, w) is piecewise smooth
in w for w ~ ct so that q(x) is piecewise smooth by formula (1).
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Now, for (J defined as in Lemma 1, we have

f OO rp(t, w)eu(w-et)dw = e- uet foo rp(t, w)eCTWdw
d d
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'Vu ~ 0,

(10)

which is O(e-(e-e')ut). We thus conclude that q*.[z] expressed as in (4) exists for
lR(z)> - (J.

Proof of Proposition 2. Using the Chernoff bound (Kleinrock (1975)) P(X ~ x) ~
e1n(E[euX])-ux for all u ~ 0, we obtain for arbitrary y > 0

roo rp.(t, w)dw = P(At = 8. h; Wt > yt) ~ e1n ,,:(t,-u]-uyt.
Jyt

Choosing c' < y < c as in Lemma 1, we then deduce

100 ((+00 rp(t, W)dW) dt < + 00.

We can now write

ret retJ 0 Irp(t, w)ez(ct-w) Idw = J 0 rp(t, w)eR(Z)(ct-W)dw

l yt Jet
= rp(t, w)eR(z)(et-w)dw + rp(t, w)eR(zXet-w)dw

o ~

l yt Joo
~ eR(zXe-y)t rp(t, w)dw + rp(t, w)dw

o yt

with lR(z)~ o. Now, J~t rp(t, w)dw is 0(1) uniformly in t and in view of (10), we conclude
that h(z) is well defined for lR(z)< 0 and bounded for lR(z)< - Y/ for all Y/ > o.

Similar arguments show that S: (S~t ot], w)(ct - w)eR(z)(et-w)dw)dt < + 00, hence the
function h(z) is analytic for lR(z)< O.
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Yours sincerely,
JACKY GUIBERT
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38-40 rue du General Leclerc
92 131 Issy-les-Moulineaux Cedex
France

https://doi.org/10.2307/3215338 Published online by Cambridge University Press

https://doi.org/10.2307/3215338



