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CONVEXITY AT INFINITY AND
BOUNDED HARMONIC FUNCTIONS

ALBERT BORBELY

It is shown that a complete simply connected negatively curved manifold supports
nontrivial bounded harmonic functions if the singular set of the ideal boundary is
disconnected.

0. INTRODUCTION

Harmonic functions on complete simply connected manifolds with negative curva-
ture bounded away from 0 have been studied for some time. If the manifold has pinched
negative curvature, that is, all the sectional curvatures lie between two negative con-
stants, several basic questions have been solved [2, 3, 4, 5, 7, 10, 11]. However, in
the general situation the existence of nontrivial bounded harmonic functions is still an
open problem.

Throughout the paper let M be a complete simply connected manifold with sec-
tional curvatures k ^ - 1 . There is a natural compactification M = M I) 5 ^ (M) of
such a manifold, where Soo(M) denotes the ideal boundary and the topology is the
usual cone topology (for details see [8]). In this situation the only existence theorem
for nontrivial bounded harmonic functions is due to Choi [7] and it may be formulated
as follows.

THEOREM A. Let M be a complete simply connected manifold with sectional
curvatures k ^ — 1. Assume that M can be written as a nontrivial union of two convex
sets, that is, there are proper convex subsets Fa and Fb of M such that M = FaUFb.
Then there is a nontrivial bounded harmonic function on M.

While the condition of Theorem A is always satisfied on a manifold M with pinched
negative curvature [3] (or if the curvature has an exponential growth [5]), in general
this is not the case. It was shown recently, that there are complete simply connected
manifolds with sectional curvature k < — 1 and a point P on the ideal boundary with
the property that the convex hull of every neighbourhood of P is the whole manifold
(see [1, 6]). Moreover, there are manifolds such that every point on the ideal boundary
has this property [1]. Clearly, Theorem A cannot be applied to the latter.
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We call a point P e S'oo(M) on the ideal boundary singular if it has the above
property, that is, the convex hull of every neighbourhood of P is the whole manifold.
The singular set, S(M), of M is the collection of singular ideal points. Clearly, the
singular set must be closed in the cone topology. The aim of this note is to prove the
following theorem about the singular set and harmonic functions.

THEOREM 1 . Let M be a complete simply connected manifold with sectional

curvatures k ^ — 1. Assume that the singular set S(M) of M is disconnected. Then

(a) the manifold supports nontrivial bounded harmonic functions.

(b) the interior (in Soc{M)) of S(M) is empty.

For the proof of Theorem 1 we rely heavily on the following lemma. The proof will
be given at the end of the paper.

LEMMA 1 . Let M be a complete simply connected manifold with sectional curva-
n

tures k < - 1 . Let Fx,..., Fn c M be convex sets, F = \J Fi and denote by Chull (F)
t=i

the closed (in M) convex hull of F. Then there is a constant C depending on the sets
F1,...,Fn, such that for every P € Chull (F), dist(P, F) < C + In (n).

Of course, the nontrivial part is when the sets F\,...,Fn are unbounded. This
shows that the convex hull of finitely many convex sets is not much larger than the
union of the sets. Namely, the convex hull cannot contain "new" ideal points, that is

n

c l (Chul l{F 1 , . . . ,F n } )nS o o (M) =

where cl (K) denotes the closure of if in M .

1. P R O O F OF THEOREM 1

Since we are going to work on the ideal boundary it will be convenient to introduce

the following notation. For a set F C M we denote by F^, the ideal part of F, that

In the proof of Theorem 1 we are going to use the following proposition.

PROPOSITION 1 . Let A c S^M) be an open subset of Soo(M) and F C M

be a closed convex set such that Foo D dA, where dA denotes the boundary of A in

Soo{M). Then there is a closed (in M) convex set F' D FuA such that F^ = AuFoo.

P R O O F OF PROPOSITION 1: Since we are working on the compactified manifold
M we adopt the convention that geodesies will include their initial and terminal ideal
points. Recall also that since the curvature is bounded away from 0 there is always a
unique geodesic connecting two ideal points (see [8]).
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Define F' C M to be the collection of (not necessarily finite) geodesic segments
with initial and terminal points in A U F. Since A U F is closed in M it is obvious
that F' is closed as well and that F!X1=FOO1)A.

It remains to show that F' is convex. Let P,Q € F' be two arbitrary points, ideal
or otherwise. This means that there are points 01,02,61,62 € Al) F such that P and
Q lie on the geodesic segments [01,02] and [61,62], respectively. We want to show that
the geodesic segment [P, Q] lies in F'. Essentially there are three cases to consider:

(a) a i ,6 i € A and a 2 ,6 2 & F,

(b) 01,61,02 € A and 62 € F,

(c) 01,02,61,62 € A.

The rest of the cases can be easily reduced to these three.

Case (a). If P = a2 and Q = 62 then we are done. Therefore, without loss
of generality, we may assume that P ^ 02. Consider the family of geodesic rays with
initial point 02 passing through the points of the geodesic segment [P, Q]. The terminal
points of these rays trace out a continuous curve in Soo(M) issuing from a i . If this
curve remains in the set A then by definition [P, Q] C F' and we are done. Otherwise,
denote by P' the first point on [P, Q] (the point closest to P) such that the geodesic
segment through P' (with initial point 02) terminates in dA. By definition the geodesic
segment \P,P') C F' and since dA C F we see that P' € F. If Q - b2 then we are
done. Otherwise, repeat the previous procedure with 62 and Q in place of 02 and P.
Then we have the point Q' e [P',Q] such that Q' € F and [Q',Q] £ F'. Since F is
convex we conclude that [Pr, Q'] c F which completes the proof of case (a).

Case (b). Without loss of generality we may assume that P £ a\. Similarly to
the previous case we consider the family of geodesic rays with initial point a.\ passing
through the points of the geodesic segment [P, Q]. The terminal points of these rays
trace out a continuous curve on S ^ (M) issueing from 02. If this curve remains in the
set A then by definition [P, Q] c F' and we are done. Otherwise, denote by P' the
first point on [P, Q] (the point closest to P) such that the geodesic segment through
P' (with initial point a i ) terminates in dA and denote by a2 this terminal point. By
definition the geodesic segment [P, P'] C F'. Since o2 € F we can apply the previous
argument (case (a)) to show that [P',Q] C F' which completes the proof of case (b).

Case (c). Again, without loss of generality we may assume that P ^ a\. By
repeating the above argument, we can produce an ideal point a2 € F and a point
P' € [P,Q] such that P' € [aua2] and [P,P'] C F'. Then, by case (b), we have
[P1, Q] C F' which concludes the proof of case (c) and the proposition as well. D

The set F' constructed above is actually the closed convex hull of F n A.

P R O O F OF T H E O R E M 1: Since S(M) c Soo(M) is disconnected there are open
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sets A,B C Soo(M) such that AC\B = 0, S(M) C AuB and AnS(M),BnS(M) # 0.
Let K = dA denote the boundary of A. Then K c Soo(M) is a compact subset and
every point of K is nonsingular. This means that for every point of K there is an open
neighbourhood (in M) whose convex hull is not the whole manifold. By selecting a finite
covering we have finitely many closed convex sets (in M), denoted by F\,...., Fn c M,

n

such that Fi ^ M, for i — 1 , . . . , n and K Q (J Fi. Without loss of generality we may

assume that it is a minimal covering of K, that is, K <f_ [j Fi, for j = 1 , . . . ,n . Let

F = cl f Chull ( |J Fi j 1 denote the closed (in M) convex hull of these sets. According

to Lemma 1 we have

t = l

We claim that F = M. Otherwise there is an open set G C Soo(M) such that
F (1 G = 0. By shrinking G if necessary, we may assume that either G fl A = 0 or
G C A. Let us suppose first that G C\ A — 0. Then, by Proposition 1, we have a
closed convex set F' C M such that AU F C F' and F^ = A U Foo • This implies
that F' C\G = 0, that is, F' ^ M. On the other hand F ' is convex and contains an
open neighbourhood of any point in A which clearly contradicts the assumption that
A contains a singular point. If G C A then we can repeat the same argument with the
exterior of A instead of A and arrive at the same contradiction.

The fact that F = ~M implies that

(1-1) U
t=i

First we prove part (a). Let Fa = Fi and Ft, = cl( Chull( (j Fi j J be closed convex

n
subsets of M. By Lemma 1 we have (Fb)^ = (J {Fi)^ and since {Fi,...,Fn} was

t=2

a minimal covering of K, we see that K <jL Ft,, that is, Fb / M. This shows that Fa

and Fb are proper closed convex subsets of M. On the other hand (1.1) implies that
(•Fo)oo u (Fb)oo = Soo(M). Since Fa and Fb are closed convex sets a simple argument
shows that Fa U Fb — M. The existence of nontrivial bounded harmonic functions then
follows from Choi's theorem, Theorem A.

The proof of part (b) is easy. Suppose that int(S(M)) ^ 0. Then, by (1.1)
and the well known theorem of Baire it follows that for some 1 ^ t ^ n we have
int (Fi) n S(M) ^ 0. Since Fi contains a singular point in the interior it implies that
Fi = M which is a contradiction. This completes the proof of part (b) and the theorem
as well. U
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2. P R O O F OF LEMMA 1

P R O O F OF LEMMA 1: By an approximation theorem of Greene and Wu [9, Propo-
sition 2.2] we may assume that each dFi is smooth. Let hi : M —> R + be the
reparametrised distance function to Fi, that is, for P E M, hi(P) = f(Qi(P)), where
f(t) = 1 - e~* and Qi(P) = dist(P, Fi). Then for the differential and the Hessian of hi

we have

(2.1) dhi = f'dQi, D2hi = f'dQi ® d6i + f'D2Qi.

Denoting h = hi + ... + hn, we shall show that for a sufficiently small e > 0
the set F — {P 6 M : h(P) < n — e} is convex. This implies the theorem because
Chull (F) C F and for every P 6 M, h(P) = n- e we have the following inequality

(2.2) \n-^dist(P,F)^ In-.

We prove the convexity of F by showing that dF, which is the level set h = n-s,

has positive definite second fundamental form.

Let a > 0 be a fixed "small" angle such that

(2.3) sin2 a < 1/2 and cos2 a > 3/4.

Then, due to the negativity of the sectional curvatures, from a large enough distance
C\ (which depends only on the upper bound of the curvature, k < -1 ) the viewing
angle of every convex set will be less than a /3 , as measured by the maximal angle
subtended by two points in the set. By selecting a point Pi e Fi from each convex set
we can find a distance C?. such that the viewing angle of the set {Pi , . . . , Pn} is smaller
than a/3 from this distance. Combining these together we have that from the distance
max{Ci,C2} the viewing angle of F is less than a.

This means, in view of (2.2), that there is e > 0 such that for every point P £ M

for which h(P) = n - e we have /.(Vhi(P), Vhj(P)) < a which implies that

Z(Vhi(P),Vh(P)) < a.

Here the symbol Z(Vhi(P),Vhj(P)) stands for the angle of the gradient vectors
Vhi(P), Vhj(P).

Let X € TpM now be a unit vector tangent to the level set h = n — e, that is,
dh(X) — 0. From the inequality above it follows that X is almost tangent to the level
sets of Qi passing through P, that is,

(2.4) dgi(X) < since.

On the other hand standard arguments, involving Jacobi fields, show that the level
sets of Qi have a definite convexity, that is, denoting by Ai the second fundamental
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form of the level set ft = r we have Ai > tanh(r)/d, where Id denotes the identity.
Let C3 be a constant, such that for r > C3 we have tanh (r) > 2/3 and set C =
max{Ci,C2,C3}. Then for a small enough e, such that ln(l/e) = C (or equivalently
if r = dist(P, F)^C see (2.2)), in view of (2.3) and (2.4), we have

D2Qi(X, X) > tanh (r) cos2 a > 1/2, i = 1,2,..., n.

This, together with (2.1), (2.3) and (2.4), implies that D2hi(X,X) > 0 for i =

1, . . . , n, therefore D2h(X, X) > 0, which concludes the proof of the theorem. D
n

REMARK. If p| F{ ̂  0 then the constant C in Lemma 1 will depend only on the upper

bound of the curvature. From the proof it is obvious that C depends only on C\, C2
and Cz. Out of these C3 is an absolute constant and C\ depends only on the upper

n n
bound of the sectional curvatures. In case f] F{ ̂  0 let P £ f] Fi be any point and

1 = 1 1 = 1
set Pi — P for i = 1 , . . . , n. Then we can choose C2 = 0.

REFERENCES

[1] A. Ancona, 'Convexity at infinity and Brownian motion on manifolds with unbounded
negative curvature', Rev. Mat. Iberoamericana 10 (1994), 189-220.

[2] A. Ancona, 'Negatively curved manifolds, elliptic operators, and the Martin boundary',
Ann. Math. 125 (1987), 495-536.

[3] M.T. Anderson, 'The dirichlet problem at infinity for manifolds of negative curvature', J.
Differential Georn. 18 (1983), 701-721.

[4] M.T. Anderson and R. Schoen, 'Positive harmonic functions on complete manifolds of
negative curvature', Ann. Math. 121 (1985), 429-461.

[5] A. Borbely, 'A note on the Dirichlet problem at infinity for manifolds of negative curva-
ture', Proc. Amer. Math. Soc. 114 (1992), 865-872.

[6] A. Borbely, 'The nonsolvability of the Dirichlet Problem on negatively curved manifolds'
(to appear).

[7] H.I. Choi, 'Asymptotic Dirichlet problems for harmonic functions on Riemannian mani-
folds', Trans. Amer. Math. Soc. 281 (1984), 691-716.

[8] P. Eberlain and B. O'Neill, 'Visibility manifolds', Pacific J. Math 46 (1973), 45-109.
[9] R.E.Greene and H. Wu, 'C°° Approximations of convex, subharmonic and plurisubhar-

monic functions', Ann. Sci. Ecole Norm. Sup. 12 (1979), 69-100.
[10] Y. Kifer, 'Brownian motion and harmonic functions on manifolds of negative curvature',

Theory Probab. Appl. 21 (1976), 81-95.
[11] D. Sullivan, 'The Dirichlet problem at infinity for a negatively curved manifold', J. Dif-

ferential Geom. 18 (1983), 723-732.

Department of Mathematics and Computer Science
Kuwait University
Safat 13060 Kuwait
e-mail: borbely@mcc.sci.kuniv.edu.kw

https://doi.org/10.1017/S0004972700030732 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030732

