
BULL. AUSTRAL. MATH. SOC. 20D15 , 20D36

VOL. 69 (2004) [141-150]

FINITE p-GROUPS WITH NORMAL NORMALISERS

ELIZABETH A. ORMEROD AND GEMMA PARMEGGIANI

We consider the class N of groups in which the normaliser of every subgroup is
normal, and the class C of groups in which the commutator subgroup normalises
every subgroup. It is clear that C C N, and it is known that groups in the class
N are nilpotent of class at most 3. We show that every finite p-group in N is also
in C, provided that p ^ 5, and we give an example showing that this is not true
for p = 2.

1. INTRODUCTION

We consider the class N of groups in which the normaliser of every subgroup is
normal, and the class C of groups in which the commutator subgroup normalises every
subgroup. Clearly C C N.

By a result of Heineken [3] and Mahdavianary [5], groups in the class N are
nilpotent with nilpotency class at most 3.

In this paper we prove:

THEOREM. If p ^ 5 and P is a finite p-group in the class N, then P is in the
class C .

For 2-generators groups this result was obtained by Hobby [2], and Mahdavianary
[6] proved a corresponding result for finite 2-generator 3-groups. Moreover Parmeggiani
proved in [7] that for p ^ 3 finite p-groups in N are also in C, if they have exponent
at most p2. In that paper she also gave an example of a p-group of odd order not in
C which she erroneously claimed to be in TV.

Bryce and Cossey in [1] gave an example of a 2-group in N but not in C when
they found a minimal 2-group of Wielandt length 2 that is not in C.

We recall that the Wielandt subgroup of a finite p-group is the intersection of
the normalisers of all the subgroups of the group. Hence a finite p-group of Wielandt
length 2 is a finite p-group in which the quotient over the Wielandt subgroup is a group
with all subgroups normal. Clearly p-groups in C have Wielandt length 2 and finite
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142 E.A. Ormerod and G. Parmeggiani [2]

p-groups of Wielandt length 2 are in N. Moreover for p odd a finite p-group has
Wielandt length 2 if and only if it is in C.

In this paper we give an example of a family of 2-groups in TV that do not have
Wielandt length 2.

2. P R O O F OF THE THEOREM

We recall that if G is a nilpotent group of class at most 3 and x,x\,... ,xn,

y,J/i ,---i!/m. z,zx,. ..,zs € G then
Tl 771 8 -i f\ T71 8r

Lt=l j=l fc=l J t=lj=lfc=l

and
[x, y, z][y, z, x][z, x,y] - 1 (Jacobi identity).

It is well known (see for example Huppert [4, Chapter III, 10.2 (a) and 10.6 (a)])
that p-groups with nilpotency class less than p are regular, and that if P is a finite
regular p-group and a, b € P then

For regular p-groups the following Lemma holds:

LEMMA 2 . 1 . Let P be a regular p-group and a, 6 € P. Then

(i) (a6)|a | = &l°l = (6a) | a | -

(ii) If (a) D (b) = (a*"*) = (*/) ^ l and a 6 N not divisible by p is such that

cP* = (bp'Y, then \ab-a\ - pl and (ab~a) n (a) = 1 = (aft"01) n (6).

(iii) Assume K ^ P with \K\ = p, K £ (a) and K £ (b). Then either

K g (06) or K £ (ab2).

PROOF: (i) and (ii) are direct consequences of (*).

To prove (iii), assume that K is a subgroup of P of order p with K < {ab) n (ab2),
K £ (a) and K £ (b). Then from (i) it follows that

p" := |a| = |b| = |ob| = |ofta|.

Since K ^ Z((ab,ab2)) = Z((a,b)), then (a6)pB~\ (aft2)""1 € Z((a,6)), and so2 )""" 1

a contradiction to bPn & K. D

In particular the property (*) and Lemma 2.1 hold for finite p-groups in TV if
P ^ 5 .

The proof of the Theorem is based on the following Lemma:
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LEMMA 2 . 2 . Let P be a finite p -group in N and Ao ^ A < P such that
\A/$(A)\ = p2 and $(A) ^ Ao. Then [P,NP(A),A0] ^ Ao. In particular, [z,u,w]
6 (to) for every z,u, w £ P such that [w,u,u] = 1 and [w,u]p — 1.

PROOF: Let U := NP(A) and ~A := A/$(A). Choose z € P and u £ U. It
suffices to show that [z,u] £ NP(AQ).

Note that [z,u] £ f/ since P € N. li u £ CV(A) or [z,u] € Cu(A~), then
u € A^p(Ao) or [z,u] G ̂ ( A o ) , respectively. Thus we may assume that both u and
[z, u] are not in Cu(A) . As A has order p2 , we get that \U/Cu (A) \ — P and

U=(u)Cu(A) = ([z,u])Cu(A).

Hence there exists k £ N such that [z,u]ku € Cu(A) and thus

[z,u]fcu€ Nu{A0).

Since Nu(A0) is normal in P we conclude that [[z, u]ku, z\ £ Nu(A0). On the
other hand, since P has class at most 3, [[z,u]k,z] £ Nu(A0). It follows that [z,u] •
€ Np(A0).

In particular, if w, u £ P are such that [w,u,u] = 1 and [w,u]p = 1, we set
A = {w,[w,u]) and Ao = (w). Since P £ N, then [w,u,w] £ (wp), hence $(v4)
= (t«p) < Ao and u G NP(A). Thus [z.u.tu] G [P, NP(A),A0] < Ao = (to) for every
z£P. D

We can now prove the Theorem.

THEOREM. Let P be a finite p-group in N with p ^ 5. Then P £C.

PROOF: Let P be a minimal counterexample. Then

S:={s£P\P'iNP((s))}

is not empty. Let s £ S.
If If is a minimal normal subgroup of P , then the minimality of P yields

[P', (s)] < K(s), in particular K £ (s). Assume there exist two distinct minimal
normal subgroups of P , K\ and K2 • Then again the minimality of P yields

[P', <«)] < #i<s) n K2(s) = («)(#! n

and |/fi| = p gives K\ ^ A"2(s) and so Ki{s) = K2(s). Since K1K2 is a subgroup of
Z{P) of order p2, then

1 # (/if^3) n (s> ^ Z(P) D («>,
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a contradiction. Hence P has a unique minimal normal subgroup K. Since P has

nilpotency class 3, K = Cli{y3(P)). Moreover K ^ (d) for every d £ S.

Since 2-generators groups in the class TV are in the class C, then [P, (d),(d)]

< 73(P) n (d) for every de P. Therefore

(1) [P, (d), (d)] = 1 for every d £ P such that K ^ (d) (in particular for every

deS).

For every s £ 5 we set

£(S) := {(/»,</) G P x P | [/i)5] £ NP((s))}.

Note that the minimality of P gives

(2) if = ([h,g,s]) for every s G 5 and every (h,g) £ £(s).

We now show:

(3) [z,h,g][z,g,h] = 1 for every z,g,h£ P wi th K ^ (/i) and K £ {g).

From (1) and Lemma 2.2 (iii) it follows that there exists A 6 {1,2} such that

1 - [z,hg\hgx] = [z,h,h][z,h,g]x[z,g,h]x[z,g,gf = ([z,h,g][z,g,h})\

thus (3) follows from p ^ 2 .

From (3) and the Jacobi identity we get:

(4) [h,g,z} = [h,z,g]2 for every h,g,z£P with K g (h) and Kjt{g).

Next we prove:

(5) K < (h) or K < (g) for every (h,g) 6 C(s), where s 6 5 .

Assume K ^ (/i) and A" ^ (g). Since A" ̂  (s), an application of (4) with h = h,

p = g~ and 2 = s" gives [/i,<jf, s] = [h, J , ^ ] 2 , and another application of (4) with h = h,

g = s and z = g gives [h,s,'g] = [h,g,s\2. Hence \h,g,s\ = [/i, <jf,s]4 and p ^ 3 yields

[/i, 5, s] = 1, a contradiction to s e 5 and (h, g) e £(s) . This proves (5).

For every s € 5 we set

Since (h,g) € £(s) implies (h,hg),(hg,g) G £(s ) , then (5) gives that £*(s) is not

empty.

Among the elements in S we choose c of maximal order, and among the elements

in £*(c) we choose (x,y) such that |x| \y\ is maximal.

We now want to show:

(6) | c | < | x | = | y | .

If | i | < \y\, then \xy\\y\ > \x\\y\ and Lemma 2.1 (i) gives {xy,y) £ C'{c), a

contradiction to the choice of ( i , y). Interchanging x and y we obtain that |x| = \y\.
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Assume \c\ > |a;| = \y\. Then from K jt (c) and Lemma 2.1 (i) in the case
\x\ ~ \y\ < lcl > a n < i from K ^ (c), K < (x) (~1 (y) and (*) in the case |x| = \y\ = |c|, it
follows that K ^ (ex) and K ^ (cy). But (1) implies (ex, cy) € £(c) , a contradiction
to (5). Thus (6) is proved.

Set

pn := \x\ = \y\ and pm := \c\.

If [c.x]""1"1 = 1 = [c,*/]"7""1, by (1) we get [cpTn~\x] = 1 = [cPm~\</]. Hence c ^ " 1

£ Z((c, x,y)) = Z(P), a contradiction to if ^ (c). Thus there exists a £ {x,2/} such
that

| [c ,a] |=pm

Let b satisfy {a, b} = {x, y}.
Choose d so that (a,d) € C(c), K jt (d) and d has minimal order with respect to

these properties. This is always possible since by Lemma 2.1 (ii) there exists an integer
a such that (a) n {aab) = 1, and [a, aab, c] = [a, b, c].

Set
ph:=\d\, pf:=\[c,d}\ and pr := |7 3(P)| .

Note that f ^ k ^m and that the minimality of P gives P = (a, c, d).
Next we show:

(7) f>2.
Assume [c,d]p — 1. Set w = c, u = d and z = a. Then [w,u,u] = 1, [ui,u]p

= [c,d]P = 1 and [z,u,w] = [d,a,c]-x # 1. Since by (2) if = {[d,a,c]) £ (w) = (c),
Lemma 2.2 leads to a contradiction. This proves (7).

Next we prove:
(8) {cadp, d0ca | a, 0 6 N and p does not divide both a and 0} C S.
Since [a,c,cQ^] = [a,c,d]0 = [a,c,d^ca] and [a,d,cQ^] = [a,d,c]a = [a,d,d^ca],

from (a, d) € £(c) and (a, c) € £(d) it follows that to prove (8) it is sufficient to prove
that K £ (cadP) and K £ (deca) if p does not divide both a and /?.

Assume K < {cadp) and set h := cadP and p" := |ft|. From K £ (c), K £ (d)
and Lemma 2.1 (i) we get that \dp\ = \ca\, and \h\ = ps ^ pk.

If a is not divisible by p, then \ca\ = \d&\ gives that also @ is not divisible by p.
Choose t minimal so that

(h) n (a) = (//> = (a»n-'+t).

Since / / ^ 1, then t < s. Let 5 e N such that hP* = apn~'+ts and set d! := /ia-p""a<5.
An application of Lemma 2.1 (ii) yields \d'\ = p' and (ap ) D (ci') = 1. In particular
if ^ (d'). Now P not divisible by p gives
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and t < s ^ k contradicts the choice of d. In a similar way one gets that K
and the proof of (8) is complete.

For the next step, we apply Lemma 2.2 to prove
(9) {[c,a,a},[d,a,a]}^{l}.

Assume [c,a,a] = 1 = [d,a,a\. Then by (2) [d,a]p,[c,a]p € Z{P). Hence \[c,a}\
= pm ^ \[d,a]\ gives that there exists \x e N such that [d,a]p = [c,a]p/1. Set w = c~»d,
u = a and z = c. Then [w,u,u] = 1, [w,u]p = [c,a]~Pfi[d,a]p - 1 and [z,u,w]
- [c, a, d] # 1. From (8) we have that c'^d 6 S, hence K ^ (tu) = (c-^d). Now, as in
(7), Lemma 2.2 gives a contradiction, and (9) is proved.

Set

{ c if | [ d ,o ,o ] | ^ | [ c , a , a ] |

dc if [c, a, a] - [d, a, a]*A and [<fc, ajP""1 ^ 1

dc2 if [ c , a , a ] - [ d , a , a p A and [dc, a ] " " " 1 = 1

By the choice of c we have P = (a,c,d) and:

From (8) it follows that c € S and from (1) that (a, d) € £(c).
Assume [c,a,a] = 1. Then [c,a,a] = 1 = [d,a,a], a contradiction to (9). Thus
(10) 73(P) = ([c,a,a]>.
Let r € N such that [d, a, a] = [c, a, a]"T, and set

5 :=«£••.

From (8) we get that d e S and [a,c,d] = [a,c,d] = [a,c,d] / 1. Hence (a,c) e £(d)
and P = (a, c, d). From the choice of d it also follows:

(11) [d , a , a ]= l .
Note that (1) implies that there exists e € {1,2} such that

[c,d] = [c,d]e.

Assume [c, o]p = 1. Then, by the choice of c, we have c = dc2 and
[dc,a]P = 1. Since [c,o]p = [dc.a]'1 [c,a]p = 1, also [c,a]p = 1, a
contradiction.

Together with |c| ^ \c\ = p m , this gives

| [c ,a] |=pm, and so |c| = | c |=p m .

Note that (1), (2), (4) and (a,c) G £(d) give:
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(12) [d,a]p,[c,d)peZ(P).

The rest of the proof consists in four applications of Lemma 2.2. First we prove:

(13) There exists (j, 6 N not divisible by p such that \d,a]pii = [c,d]p.

By (12), to prove (13) it is sufficient to show that \{d,a}\ = \[c,d)\.

Assume \[d, a]\ ^ \[c, d]\. Then there exist A, r G N such that exactly one of them
is divisible by p and \d,a]pX = [c,d]p T. Set w = d, u = aAF" and z = ca. From (2),
(3), (4) and (11) one gets

[w,u,u] = [d,a,c]3XT = 1,

Hence Lemma 2.2 yields a contradiction, since K ^ (d) = (w), and the proof of (13) is
complete.

Next we prove:
(14) Either m - / < r - l , o r r = l and m — f.
Assume m - / ^ r — 1. Since [c, a]pr € Z(P) there exists A € N not divisible by

p such that

\c d\p - \c a)pm

Set w = c, u = aPm xd and z = a. Then a direct calculation together with (3),
(4), (7) and (12) give

[z,u,w] = [d,a,c] ^ 1.

If [w,u, u] = 1 Lemma 2.2 yields a contradiction since K ^ (c) = (w). Thus [w, u,u)

Assume m > f. Then from [c,a,a]p2(m~/>A2 ^ 1 it follows 2(r - 1) ^ 2(m- / )
< r, a contradiction to m > / . We have shown that TO — f, and [c, a,a]*[ii, a,c]3 = 1
gives also r = 1. This completes the proof of (14). We can now prove:

(15) r = 1 and m = / .
Assume not. Then by (14) m — / < r - 1, hence f - m + r > 1.
Since [c, a]p € Z(-P) there exists A € N not divisible by p such that
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Moreover from (10) and (13) there exist r,/x G N not divisible by p such that

[c,a,d\ = [c,a,a)»r~lT and [3, a]*" = [c,d]p.

Set s = n{pf~l - 3p / - m + r - 1 Ar + l) and note that s is not divisible by p.

Set w = c3pr~lTda, u = asc and z = c. Prom (3) and (11)

[w,u,u] = [c,a,a]3*P"1"a[3,alc]3'a = ([c,a,d}[d,a,c])3a2 = 1,

and [z,u,w] — [d, a ,c]~s ^ 1, since s is not divisible by p. Now Lemma 2.2 gives a

contradiction, since K £ (c3p Td ) by (8), and (15) is proved.

We now obtain the final contradiction.

By (15) r = 1, hence [c,a]p € Z{P) and from (10) we get that there exists r £ N
not divisible by p such that [c,a,d] = [c,a,a]T. Since [c,d]p G Z(P) by (12), and
/ = m by (15), then there exists A € N not divisible by p such that

Moreover from (13) we get / i £ N not divisible by p such that

[c,d]P = [ d , a r .

Set w = c3TAdM(A~3T), u = a^d" 1 and z = a. Using (3) and (11) we get

[ i /r— i T r _ ~ " * i _ i \ 2 7 T A ^

w,u,u] = ([c,a,a]T[c,a,d] x) = 1 ,
[tw.u]" = ([c,3]-|>A[c>o]l>3TA|3,o]1"1^-3T>)3r

and [z, u, u;] = [d,a,c]3rX ^ 1 since r and A are not divisible by p.

Now Lemma 2.2 gives a contradiction, since K j£ (c3rXd T ) by (8).

The proof of the Theorem is now complete. D

3 . A FAMILY OF 2-GROUPS

We now give an example of a family of 2-groups in N that do not have Wielandt
length 2.
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For r ^ 2 let H(r) be the group on generators a, b, c with the following relations:

a2 =b2 = c2 , a2 = 1,

[6, a, a] = [6, a, b] = [c, a, a] = [c, a, c] = [c, b, b) = [c, b, c] = a2"" = [b, of ,

leaf'1 = [c,b]2"-1 = [c,a,b] = [c,b,a] = 1.

To show that H(r) e N we have to prove that [H(r), JV#(r)(if), K] ^ K for every
K ^ H(r), and since js(H(r)) has order 2, it is sufficient to consider subgroups
K^H(r) with 73(#(0) £ K.

Let K ^ H(r). with 73(/f(r)) £ K. We have to show that [if(r), j/.z] = 1 for
every z € K and y € NH(r)(K).

Since 73(#(r)) has order 2, then [#(r ) ,#(r ) ,$(#(r ) ) ] = 1 = [H(r), $(H{r)),

H(r)], hence it is sufficient to consider z, y among the nontrivial coset representatives
of $ (H(r)), that is {a, b, c, ab, ac, be, abc}.

From 73(if(r)) ^ (t) for every t € {a,b,c,ab} and 73(H(r)) £ K it follows that
z £ {a, b, c, ab}.

Moreover [H(r), H(r), abc] — 1 allows us to restrict to the case z ^ abc.
Hence we can assume z G {ac, cb}.

Let z = ac and y G NH(r)(K) D {a,6,c,a&,ac,6c,abc}. Since [?/,ac]2r

= [y,z]2'"1 6 AT n 73 (H(r)) = 1, then y G {a,c,ac}. From [z,y,y] G K and
if n 73(H(r)) = 1, it follows that y £ {a, c}, hence z = y = ac.

Similarly, if z — cb and y G NH^(K) D {a,b,c,ab,ac,be,abc}, then [y,cb]2

= [y,z]2r'1 G K n 73(^(0) = 1 gives y G {c,6,d>}. From [z,y,y] G if and
if n 73(H(r)) = 1, it follows that y g {c,6}, hence z = y = cb.

To complete the proof that H(r) G N we now observe that

[^(r),ac,ac] = 1 = [H(r),cb,cb\.

Let ui(H(r)) be the Wielandt subgroup of H(r). Since a group with all the sub-
groups normal has a derived subgroup of order at most 2, then to prove that H(r)
has not Wielandt length 2, it is sufficient to show that H(r)'/(w(H(r)) D H(r)')

= (H(r)/cu(H(r))j has order bigger than 2. Hence it is sufficient to show that

Since [c,a,6c] = a2* £ (be) then [c,a] £ ui(H(r)). Similarly, from

[c,b,ac] = [[c,a][c,6],ac] = a2* £ (ac),

we get [c,6],[c,a][c,6] £ u{H(r)).
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