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FINITE p-GROUPS WITH NORMAL NORMALISERS

ELIZABETH A. ORMEROD AND GEMMA PARMEGGIANI

We consider the class N of groups in which the normaliser of every subgroup is
normal, and the class C of groups in which the commutator subgroup normalises
every subgroup. It is clear that C' C N, and it is known that groups in the class
N are nilpotent of class at most 3. We show that every finite p-group in N is also
in C, provided that p > 5, and we give an example showing that this is not true
for p =2.

1. INTRODUCTION

We consider the class N of groups in which the normaliser of every subgroup is
normal, and the class C of groups in which the commutator subgroup normalises every
subgroup. Clearly C C N.

By a result of Heineken [3] and Mahdavianary [5], groups in the class N are
nilpotent with nilpotency class at most 3.

In this paper we prove:

THEOREM. Ifp > 5 and P is a finite p-group in the class N, then P is in the
class C.

For 2-generators groups this result was obtained by Hobby [2], and Mahdavianary
[6] proved a corresponding result for finite 2-generator 3-groups. Moreover Parmeggiani
proved in [7] that for p > 3 finite p-groups in NV are also in C, if they have exponent
at most p?. In that paper she also gave an example of a p-group of odd order not in
C which she erroneously claimed to be in V.

Bryce and Cossey in [1] gave an example of a 2-group in N but not in C when
they found a minimal 2-group of Wielandt length 2 that is not in C.

We recall that the Wielandt subgroup of a finite p-group is the intersection of
the normalisers of all the subgroups of the group. Hence a finite p-group of Wielandt
length 2 is a finite p-group in which the quotient over the Wielandt subgroup is a group
with all subgroups normal. Clearly p-groups in C' have Wielandt length 2 and finite
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p-groups of Wielandt length 2 are in N. Moreover for p odd a finite p-group has
Wielandt length 2 if and only if it is in C.
In this paper we give an example of a family of 2-groups in N that do not have

Wielandt length 2.

2. PROOF OF THE THEOREM

We recall that if G is a nilpotent group of class at most 3 and z,z1,...,z,,
Yy Uly---rYm, %, 21,...,2s € G then

[ i a:.-,ﬁy,-, ﬁ Zk] = ﬁﬁ ﬁ[zf’yf’zk]
i=1 k=1

i= i=1 i=1j5=1k=1

and
[z, y, 2]y, 2, z][2,2,y) =1 (Jacobi identity).

It is well known (see for example Huppert [4, Chapter III, 10.2 (a) and 10.6 (a)])
that p-groups with nilpotency class less than p are regular, and that if P is a finite
regular p-group and a, b € P then
(*) (ab‘l)pk =1 > af =0
For regular p-groups the following Lemma holds:

LEMMA 2.1. Let P be a regular p-group and a,b € P. Then

(1) (ab)'® = blel = (ba)'.
(i) If (a) N (b) = (a?') = (b*') # 1 and a € N not divisible by p is such that
a?' = (b”t)a, then |ab=*| =p' and (ab=*) N (a) = 1 = (ab™*) N (b).
(iii) Assume K < P with |K| =p, K £ (a) and K £ (b). Then either
K £ (ab) or K £ (ab?).

PROOF: (i) and (ii) are direct consequences of (*}.

To prove (iii), assume that K is a subgroup of P of order p with K < (ab)N{ab?),
K £ (a) and K £ (b). Then from (i) it follows that

p" = la| = |b] = |ab] = |ab?|.

Since K < Z((ab,ab?)) = Z({a,b)), then (ab)p"—l, (ab2)‘pn-1 € Z({a, b)), and so

-1

(@)™ = (abb)?"" = (ab)?" ",

a contradiction to 5" ¢ K. 1]
In particular the property (*) and Lemma 2.1 hold for finite p-groups in N if

p=95.
The proof of the Theorem is based on the following Lemma:
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LEMMA 2.2. Let P be a finite p-group in N and Ay < A < P such that
|A/<I>(A)| = p? and ®(A) < Ag. Then [P, Np(A),AO] < Ag. In particular, [z,u,w]
€ (w) for every z,u, w € P such that [w,u,u]=1 and [w,ulP = 1.

PROOF: Let U := Np(A) and A := A/®(A). Choose z € Pand u € U. It
suffices to show that {z,u] € Np(Ao).

Note that [z,u] € U since P € N. If u € Cy(A) or [2,u] € Cy(A), then
u € Np(Ap) or [z,u] € Np(Ag), respectively. Thus we may assume that both u and
[2,u] are not in CU(Z). As A has order p?, we get that |U/CU(Z)| =p and

U = (u)Cy (4) = ([z,u])Cu (A).
Hence there exists k € N such that [z, u}fu € CU® and thus
(2, u]*u € Ny (4o).

Since Ny(Ao) is normal in P we conclude that [[z,u]*u,z] € Ny(4o). On the
other hand, since P has class at most 3, [[z,u]*, 2] € Ny(Ao). It follows that [z,u]-
€ NP(A()).

In particular, if w, u € P are such that [w,u,u] = 1 and {w,u]? = 1, we set
A = (w,[w,u]) and Ag = (w). Since P € N, then [w,u,w] € (wP), hence ®(A)
= (wP) < Ag and u € Np(A). Thus [z,u,w] € [P, Np(A), Ag] < Ao = (w) for every
z€P. 1]

We can now prove the Theorem.

THEOREM. Let P be a finite p-group in N with p > 5. Then P C.

PROOF: Let P be a minimal counterexample. Then
S:= {s cP|P ¢ Np((s))}

is not empty. Let s € S.

If K is a minimal normal subgroup of P, then the minimality of P yields
[P’,(s)] < K(s), in particular K £ (s). Assume there exist two distinct minimal
normal subgroups of P, K; and K;. Then again the minimality of P yields

[P, (s)] < K1{s) N Ka(s) = (s) (K1 N K2(s)),

and |K;| = p gives K; < K2(s) and so K;(s) = K,(s). Since K1 K is a subgroup of
Z(P) of order p?, then

1# (K1K2)N(s) £ Z(P)N{s),
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a contradiction. Hence P has a unique minimal normal subgroup K. Since P has
nilpotency class 3, K = Q;(vy3(P)). Moreover K £ (d) for every d € S.

Since 2-generators groups in the class N are in the class C, then [P, (d), (d)]
< 73(P) N (d) for every d € P. Therefore

(1) [P,{d),({d)] =1 for every d € P such that K £ (d) (in particular for every
desS).

For every s € S we set

£(s) = {(h.g) € Px P [h,g) ¢ Nr((s)) }.

Note that the minimality of P gives
(2) K ={([h,g,5]) for every s € S and every (h,g) € L(s).
We now show:
(3) [z,h,9]l2,9,h] =1 for every z,9,h € P with K £ (h) and K £ (g).
From (1) and Lemma 2.2 (iii) it follows that there exists A € {1,2} such that

1= [2,hg*, hg*] = [2, b, hl[z, h, g]*[2,9, 1z, 9,91 = (l2, b, gz, 9, h]),

thus (3) follows from p # 2.

From (3) and the Jacobi identity we get:

(4) [h,g,2] = [h,2,9]? for every h,g,z € P with K £ (h) and K £ (g).

Next we prove:

'(5) K < (h) or K < (g) for every (h,g) € L(3), where 5€ S.

Assume K ¢ (h) and K £ (g). Since K £ (3), an application of (4) with k = h,
g =g and 2z =5 gives [Tz,fq', 5] = [71,, 5,9)?, and another application of (4) with h = h,
g=75and z =g gives [,3,3] = [k, 3,3]2. Hence [k,5,5] = [7,5,5]* and p # 3 yields
[R,3,3] = 1, a contradiction to § € S and (h,§) € L(3). This proves (5).

For every s € S we set

£*(s) = {(h,9) € L(s) | K < (R) N {g)}.

Since (h,g) € L(s) implies (h, hg),(hg,g) € L(s), then (5) gives that L£*(s) is not
empty.

“Among the elements in S we choose ¢ of maximal order, and among the elements
in £*(c) we choose (z,y) such that |z||y| is maximal.

We now want to show:

(6) el <lz| = lyl.

If jz| < |yl, then |zy||y| > |z||y| and Lemma 2.1 (i) gives (zy,y) € L*(c), a
contradiction to the choice of (z,y). Interchanging z and y we obtain that |z| = |y]|.
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Assume |c| > |z] = |y|. Then from K £ (c) and Lemma 2.1 (i) in the case
|z| = |y| < ||, and from K £ (¢}, K < (z) N (y) and (*) in the case |z| = |y| =], it
follows that K £ (cz) and K £ (cy). But (1) implies (cz,cy) € £(c), a contradiction
to (5). Thus (6) is proved.

Set
p":=lz|=ly| and p™:=]|d.

m-—1

If [c,z]P™ " =1=[c,y" ", by (1) we get [®" ,z]=1=[c"" ",y]. Hence ¢*"
€ Z({c,z,y)) = Z(P), a contradiction to K £ (c). Thus there exists a € {z,y} such
that

|[c, a]| =p™.
Let b satisfy {a,b} = {z,y}.

Choose d so that (a,d) € L(c), K £ (d) and d has minimal order with respect to
these properties. This is always possible since by Lemma 2.1 (ii) there exists an integer
« such that {a) N {(a®b) =1, and [a,a®b,c] = [a,b,].

Set

p*:=|d|, pf:= l[c,d]| and p":= |73(P)|.
Note that f < £k < m and that the minimality of P gives P = (a,c¢,d).

Next we show:

(M f=2.

Assume [c,d]P = 1. Set w =c¢, u =d and z = a. Then [w,u,u] = 1, [w,u)?
=[c,d]P =1 and (z,u,w] = [d,a,c]~! # 1. Since by (2) K = ([d,a,c]) £ (w) = {(c),
Lemma 2.2 leads to a contradiction. This proves (7).

Next we prove:

(8) {c*dP,dPc* | o, B € N and p does not divide both o and 8} C S.

Since [a,¢,c*d?] = [a,¢,d]? = [a,c,dPc?] and [a,d,c®d?] = [a,d, c]* = [a,d,d?c?],
from (a,d) € L(c) and (a,c) € L(d) it follows that to prove (8) it is sufficient to prove
that K £ (c*d?) and K £ (dPc®) if p does not divide both & and .

Assume K < (c®*dP) and set h := c*d® and p® := |h|. From K £ (c), K £ (d)
and Lemma 2.1 (i) we get that |d?| = |c®|, and |h| = p® < p*.

If a is not divisible by p, then |c®| = |d?| gives that also B is not divisible by p.

Choose ¢ minimal so that

(W) N (@) = (h7') = (a”
Since h?' #1,then t < s. Let § € N such that h' = aP and set d’ := ha™?" 9.

An application of Lemma 2.1 (i) yields |d'| = p* and (a®" )N (d’) = 1. In particular
K £ (d’). Now 8 not divisible by p gives

[a,d’,c] = [a,h,c] = [a,d,c} #1,

n—a4t
).

n—s+t6
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and t < s < k contradicts the choice of d. In a similar way one gets that K £ (dfc®),
and the proof of (8) is complete.

For the next step, we apply Lemma 2.2 to prove

©) {lca,a]{d,a,a]} # {1}.

Assume [c,a,a] = 1 = [d,a,a]. Then by (2) [d,a]?,[c,a]’ € Z(P). Hence |[c,a]]
= p™ 2 |[d, a]| gives that there exists u € N such that [d,a]? = [c,a]P*. Set w = c™#d,
u =a and z = ¢. Then [w,u,u] = 1, [w,ul? = [c,a]"P#[d,a]’ = 1 and [z,u,w]
= [c,a,d] # 1. From (8) we have that c™#d € S, hence K £ (w) = (c™#d). Now, as in
(7), Lemma 2.2 gives a contradiction, and (9) is proved.

Set
c if |[d,a,a]| < |[c,a,a.]|
e:={ dec if [c,a,a] =[d,a,a]” and [dc,a]f™" ! #1
m-—1

dc? if [c,a,a]=[d,a,a]?* and [dc,alf” =1

By the choice of ¢ we have P = (a,¢,d) and:

([d,a,a]) < ([¢,q,a]).

From (8) it follows that € € S and from (1) that (a,d) € L(c).
Assume [t,a,a] = 1. Then [c,a,a] = 1=[d, a,a], a contradiction to (9). Thus

(10) v3(P) =([¢,a,a]).
Let 7 € N such that [d, a,a] = [¢,a,a]™", and set

d:=de¢".

From (8) we get that d € S and [a,%,d] = (a,T,d] = [a,c,d] # 1. Hence (a,?) € L£(d)
and P = (a,¢,d). From the choice of d it also follows:

(11) [d,a,a]=1.

Note that (1) implies that there exists € € {1,2} such that

[E,a] = ¢, d]°.
Assume [c, a]"’”ﬁ1 = 1. Then, by the choice of ¢, we have ¢ = dc? and
[de, af™ ™" = 1. Since [¢,aff" " = [de,af” '[c,af™ " =1, also [c,aff" " =1, a
contradiction.

Together with |¢| < |c| = p™, this gives
m.

|[E, a]| =p™, andso |g|=|c|=p

Note that (1), (2), (4) and (a,c) € L(d) give:
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(12) [d,a?,[c,d)P € Z(P).

The rest of the proof consists in four applications of Lemma 2.2. First we prove:

(13) There exists 4 € N not divisible by p such that [d,a]P* = [¢,d]P.

By (12), to prove (13) it is sufficient to show that |[d,a]| = |[c, d|.

Assume |[d, a]| # |[¢,d]|. Then there exist A,7 € N such that exactly one of them
is divisible by p and [d,a]P* = [¢,d]P". Set w = d, v = a*¢" and z = €a. From (2),
(3), (4) and (11) one gets

[w,u,u] = [d,a,g?* =1,
[w, u]p = [E’(_l]—p‘r[a’ a]pA =1,

[2,u,w] = [G,a,d* " # 1.

Hence Lemma 2.2 yields a contradiction, since K £ (d) = (w), and the proof of (13) is
complete.

Next we prove:

(14) Either m— f<r—1,orr=1and m=f.

Assume m — f > 7 — 1. Since [¢,a]?” € Z(P) there exists A € N not divisible by
p such that

dP = af™ "

Set w =72, u=a?" ' d ' and z = a. Then a direct calculation together with (3),
(4), (7) and (12) give

[w,u,u] = [E,a,a]”z(m_f))‘2 [3, a,E]a"m_f’\,

[w,uf = [c,d] (¢, o

(2,u,w} = [d,a,¢] # 1.

m-f+1A _ 1
=4

If [w,u,u] = 1 Lemma 2.2 yields a contradiction since K £ (¢) = (w). Thus [w,u,u]
#1.

Assume m > f. Then from [¢,a,al? # 1 it follows 2(r — 1) < 2(m— f)
< r, a contradiction to m > f. We have shown that m = f, and [, a,a)*[d,a,q® = 1
gives also r = 1. This completes the proof of (14). We can now prove:

(15) r=1land m=f.

Assume not. Then by (14) m — f <r —1,hence f—m+7r>1.

Since [¢,a]”” € Z(P) there exists A € N not divisible by p such that

2(m—f) 2

[E, a]pr _ [E, E]p/-m+r1\.
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Moreover from (10) and (13) there exist 7,4 € N not divisible by p such that
[¢,a,d) = [6,a,a" " and [4, o] = [c, 4.

Set s = p(pf~! —=3p/~™*+7=1Ar + 1) and note that s is not divisible by p.

Set w=¢%" "d", u=a° and z =¢. From (3) and (11)

[w,u,u] = [E,a,a]apr_11""2[t—1,0,,6]3”2 = ([c, a,d](d, a, c]):”2 =1,
[w,u]? = ([&,d]7?[¢,a]** "[d, a]"*)"

= (& @)l @ "N Pl T - T e

and [z,u,w] = [E,a,E]‘*’2 # 1, since s is not divisible by p. Now Lemma 2.2 gives a
contradiction, since K £ (2% "d") by (8), and (15) is proved.

We now obtain the final contradiction.

By (15) r =1, hence [¢,a]P € Z(P) and from (10) we get that there exists 7 € N
not divisible by p such that [¢,a,d] = [¢,a,a]”. Since [¢,d]? € Z(P) by (12), and
f = m by (15), then there exists A € N not divisible by p such that

e, E‘; = [¢,a]P.
Moreover from (13) we get p € N not divisible by p such that
[c,d)? = [d, a}*.
Set w =) 4y =0%37 " and z=a. Using (3) and (11) we get
(w,u,u] = ([¢,a, a]’[E,a,E]_l)”Tz'\ =1,

[w, ul? = ([e,d)™"[6, P (d, ar*-27)

= ([E,a']—p)‘[-é,a]p!!-r[a(_i]p()\—S‘r)):-"" =1

and (z,u,w] = [d,a,¢]>* # 1 since 7 and X are not divisible by p.
Now Lemma 2.2 gives a contradiction, since K ¢ (63"\3“('\-3T)) by (8).

The proof of the Theorem is now complete. 1]

3. A FAMILY OF 2-GROUPS

We now give an example of a family of 2-groups in N that do not have Wielandt
length 2.
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For r > 2 let H(r) be the group on generators a, b, ¢ with the following relations:

r r+1
a? =¥ = c, a?’ =1,

[b,a,a] = [b,a,b] = [c, a,0] = [c;a,] = [¢,b,b] = [c,b,c] = a* = [b,a)? ",
[c,a) " =[c,b) " =]c,a,b] = [c,b,a] = 1.

To show that H(r) € N we have to prove that [H(r), Ny (K),K] < K for every
K < H(r), and since v3(H(r)) has order 2, it is sufficient to consider subgroups
K < H(r) with y3(H(r)) £ K.

Let K < H(r). with 73(H(r)) £ K. We have to show that [H(r),y,z] =1 for
every z € K and y € Ny)(K).

Since v3(H(r)) has order 2, then [H(r),H(r),@(H(r))] =1=[H(r),®(H(r)),
H (r)] , hence it is sufficient to consider z,y among the nontrivial coset representatives
of ®(H(r)), that is {a,b,c, ab,ac, bc, abe}.

From ~3(H(r)) < (t) for every t € {a,b,c,ab} and v3(H(r)) £ K it follows that
z ¢ {a,b,c,ab}. -

Moreover [H(r), H(r), abc] =1 allows us to restrict to the case z # abc.

Hence we can assume z € {ac, cb}.

Let z = ac and y € Ng(y(K) N {a,b,c,ab,ac,be,abc}. Since [y,ac]zr_1
= [12? € Kn v3(H(r)) = 1, then y € {a,c,ac}. From [z,y,34] € K and
K N~3(H(r)) =1, it follows that y ¢ {a,c}, hence z =y = ac.

Similarly, if z = c¢b and y € Ny(y(K) N {a,b,c,ab,ac,bc,abc}, then [y,ch]
= [1,2)* " € Kn vs(H(r)) = 1 gives y € {c,b,cb}. From [z,y,y] € K and
K N~3(H(r)) =1, it follows that y ¢ {c,b}, hence z =y = cb.

To complete the proof that H (r) € N we now observe that

2r—1

[H(r),ac,ac] =1 = [H(r),ch,cb].

Let w(H(r)) be the Wielandt subgroup of H(r). Since a group with all the sub-
groups normal has a derived subgroup of order at most 2, then to prove that H(r)

has not Wielandt length 2, it is sufficient to show that H(r)'/ (w(H (r)) NH (r)')

/
& (H (r)/w(H (r))) has order bigger than 2. Hence it is sufficient to show that

[c,a], [, b], [c, a][c, b] & w(H(T)).
Since [c,a,bc] = a?” ¢ (bc) then [c,a] ¢ w(H(r)). Similarly, from

[e,, ac] = [[c, a][c,b], ac] = a®" ¢ (ac),

we get [c, b], [c, allc,b] ¢ w(H(r)).
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