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EXPLICIT FORMS OF LOCAL LIFTING FOR GL,

DONGGYUN KIM

ABSTRACT.  Let F be a local non-Archimedean field and let S(GL,(F)) be the set of
equivalence classes of irreducible admissible representations of GL,(F). When K / F be
a Galois field extension, there is a map, called liffing, from S(GLy(F)) to S(GL,(K)).
We give an explicit form of lifting when K/ F is a quadratic wildly ramified extension
and the given representations are Weil supercuspidal. We also provide a comparison
between Weil representations and induced representations of GL;(F).

0. Introduction. Let F be a local non-Archimedean field with residual characteris-
tic p. We denote by W the absolute Weil group of F. Let K / F be a Galois field extension.
Langlands conjectured a correspondence between the set of equivalence classes of irre-
ducible admissible representations of GLy(F), say S (GLN(F)) ,and the set of equivalence
classes of N-dimensional semisimple Deligne representations of W, say Sy(Wr), which
among other things, preserves invariants called local constants. From the conjectural
correspondence, there is a map, called base change lifting or lifting, from § (GLN(F)) to
S (GLN(K)) so that the following diagram commutes:

5 ( GLN ( K)) Langlands ﬂispondence 5 N( WK)
lifting T T restriction
s ( GLN ( F)) Langlands ﬂfspondence S N( WF)

When N = 2, the correspondence was known partially—the so called Weil (or oscilla-
tor) representation case—by Jacquet and Langlands in [JL], and the lifting was known in
that case by Langlands [L]. Kutzko classified all of the supercuspidal representations of
GL,(F) as induced representations which are represented by generic elements in GL,(F)
and quasicharacters associated with the generic elements, and then constructed an ex-
plicit form of lifting in term of inducing data in case that K/ F is tamely ramified. From
this classification and tame lifting, he was able to complete the Langlands correspon-
dence in the case N = 2, see [K1], [K2]. When N is equal to the residual characteristic,
the tame lifting was studied by Henniart [H] and Kutzko and Moy [KM], and the lifting
over a wild field extension with some restriction was studied by Moeglin [M]. To study
the Langlands correspondence for general N and the Langlands correspondence over a
global field, firstly we need an explicit lifting over a wild extension K/ F.
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In this paper we characterize the generic elements of the lifting of Weil representa-
tions for GL, using purely local methods in case that K /F is a quadratic wildly rami-
fied extension (hence the residual characteristic is 2), see Section 4. To prove the main
Theorem 4.5, it is necessary to write the Weil representations in terms of the induced
representation form, and a criterion is needed to tell if a given induced representation is
a Weil representation. These are done in Section 2. In Section 1, we explain the Weil rep-
resentations and the induced representations and in Section 3, we compute the difference
of various field extensions and the dual blobs of characters.

This paper is a revised version of the author’s thesis under the direction of Philip
Kutzko. I wish to express my deep gratitude to him for his constant advice over the
years. I also like to thank David Manderscheid for his generous help during the course
of this work.

We use the following notations throughout:

F: a local non-Archimedean field;

Op: the discrete valuation ring in F;

Ur: the multiplicative subgroup of OF;

Pr: the maximal ideal of Of;

7. a prime element of Pr;

krp = Of/ PF: the residual class field of F

gr: the cardinality of kr;

vr: the valuation of F;,

|| - ||F: the absolute value on F such that ||| = g7""®, x € F*.

1. Constructions of supercuspidal representations of GL,. We introduce how to
construct irreducible supercuspidal representations of GL,(F). There are two methods.
One is the Weil representation method and the other is the induced representation method.
The Weil representation has been studied in [W], [JL] and [N]. We adapt here Kutzko’s
form of the Weil representation in [K3].

Let E/F be a field extension with the Galois group 'z /r- We denote by dg/p the
exponent of the different of E/F. Given a quasicharacter 6 of the multiplicative group
E* of E, the conductor {(8) of 4 is the smallest nonnegative integer m such that 0 is trivial
on UZ. Similarly, given an additive character 1¢ of E, the conductor f(yr) of v is the
smallest integer m such that v is trivial on P¢. Let 1)z be a norm character of F* with
respect to E /F, that is, a nontrivial character of F* which is trivial on Ny /FE™ where
N/ is the norm map of E /F. Let dx be the self-dual Haar measure on E for ¢z. If G
is a locally profinite set, we write C2°(G) for the Schwartz space of G, i.e., the space of
locally constant compactly supported complex valued functions of G.

We fix, once for all, an additive character 1 = 1 of F with f(1)) = 1, and when the
residual characteristic p of F is 2, 1 has the additional property that y(x + x?) = 1 for x
in Of.
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We define a Weil representation W = W(E, 8) of GLy(F) on C(F*) for a given
quadratic separable extension £/ F and a quasicharacter 6 of E* as follows:

(1.1) W([” 1])/(x)=f(‘”‘)’
w(|! 1])w = vere.

w([* 4|} = nsr@maren,
w([_ ) = ety
- 67 @N6lF" Y Trg p(x6) (xNg£(6)) db,

where f € CX(F), Ye/r = /@) Jup ner(@(adde/ (| fu, ngsr(eddaa)dal),

where a is a generator of Pﬁw)_f(”"””)

number.

and | - | is the usual absolute value of a complex

NOTE. Let CPP(F* X E) be the space of functions f in C°(F* x E) such that
SONgpa, Bty = ||a||11;/20(a)f'(x,ﬁ) forx € FX, @ € E* and § € E. Then the map
CP(F* x E)y — CX(F*) defined by f +— f where f(x) = f(x,1) is an isomorphism.
Therefore W(E, ) is equivalent to the usual Weil representation, see [K3].

The Weil representation W(E, 6) has the properties, [JL].

PROPOSITION 1.2. (1) If 0 # 6" where Ty = (1), then W(E, 0) is a supercuspidal
representation.

(2) If0 = 0", then W(E, 0) is not supercuspidal.

(3) W(E,0,) = W(E,0,) ifand only if 0, = 0, or 6, = 0.

(4) WhenE, # E;, W(E1,0,) = W(E3,0,) ifand only if 6~ and 62" are of order 2
and 0, ONElEz/El =0, ONElEz/Ez'

We will need the following lemma later.

LEMMA 1.3.  Let E be a quadratic separable extension field of F, and let T/ = (7).
Let 0 be a quasicharacter of E*. Then 6 = 6 if and only if 0 = X o Ng/p for some
quasicharacter x of F*.

PROOF. Suppose that § = 6. Since E/F is cyclic, the kernel of the norm map
Ngjp @ EX — F*is the set {x ~!'| x € E*} so ker Ng/F is contained in ker6. De-
fine a quasicharacter x on Ng/{(E™) by X(NE / F(x)) = f(x) for x € E*. It is well defined
because ker N/ C ker§. Now we extend x to . Then x is a quasicharacter of 7~ and
9 =xoNgronE X The other direction is trivial. =

DEFINITION 1.4. If a Weil representation IT of GL,(F) is of the form W(E, §) with
E an unramified quadratic extension of F, then we say that I1 is an unramified Weil
representation. Otherwise we call it ramified.
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PROPOSITION 1.5. (1) Let Il be a ramified Weil representation of GL(F). Then
there exists a quadratic ramified extension E [ F and a quasicharacter 0 of E* such that
f(0) > 2dg/r— 1 and §(0) + dgr is 0dd, and a character x of F* so that I1 is equivalent
to the representation W(E, 0) ® x o det.

(2) Ifthere exist E',0', x" with the above properties and if E' # E thenp = 2,1(6) =
2dg)p—1=2dpp—1=1(0), and f(ngF - UErl/p) =dgF.

PROOF. Lemma 2.2, in [K3]. "

It is known that every irreducible supercuspidal representation of GL,(F) is induced
from a finite dimensional representation of a compact open subgroup, see [K1]. We
will describe this construction. Let ¥ be a 2-dimensional vector space over F and 4 =
Endg(V). An Op-lattice in V is a free Op-submodule of rank 2, and an Op-order in 4 is an
Or-lattice in 4 as a 4-dimensional vector space that is also a subring of 4. An Of-order
is called (left-) principal if its Jacobson radical is a principal (left-) ideal.

An Op-lattice chainin Visaset L = {L; : i € Z} of Op-lattices L; in V such that

() L; D Lis,L; # Lisy foreveryi € Z,

(ii) there exists an integer e such that L;,, = PrL; for every i € Z.

The integer e = e(L) is called the period of L. Hence e is 1 or 2. If L = {L;} and
L' = {L]} are Og-lattice chains in ¥, we say that L and L' are called to be equivalent if
there is an integer & such that L] = L;,; for all integers i and write L ~ L. Let 4, be
the set of g in 4 satisfying gL; C L; for all integers i, then 4 = A is an Op-order in 4.
We denote by Pgq = Pgq, the Jacobson radical of 4. Write e(A,) = e(L). Then we have
the propositions, see for example [BF].

PROPOSITION 1.6. (1) A, is a principal order.

(2) Every principal Op-order in A is of the form A for some lattice chain L. We may
recover the lattice chain L from the order A4, up to shift in the index, and L is precisely
the set of all A-lattices in V.

(3) As a fractional ideal of A, the radical Pq is invertible and we have
2 = Endp (L) foreveryn e 1,
where Endp, (L) = {g € A : gL; C Lis for everyi € 7}.
We define a sequence of compact open subgroups of GL;, by
Ug=Uy=2%, and Uy = 1+ P forintegersn > 1.

We set
Ka={x€G:x'Ax= 4}

This is a maximal open compact-mod-center subgroup of GL,, and every maximal
open compact-mod-center subgroup of GL; is of the form, for some principal order. The
U for n > 0, are normal subgroups of Kz and in particular U is the unique maximal
compact subgroup of K.
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PROPOSITION 1.7. Let L and L' be Op-lattices in V. Then
(1)
L~ L= 2,=2A4,.
)
e(LY=elL) < L =gL forsomege€ A
= A, = gﬂLg_’ for some g € A
< Kq, =g%Ka, g ' forsomegeA.

In this paper we are interested in ramified supercuspidal representations of GL,. We
describe how to construct all of the ramified supercuspidal representations. For the un-
ramified supercuspidal representation case, see [GK], [K1]. Let us fix a principal Op-
order A with e(4) = 2. It is easy to check that all principal Or-orders with period 2 are
conjugate each other by GL,(F).

DEFINITION 1.8. An element b in 4 is said to be A-generic of level 1 — 2n for some
integer n if

(i) E = F[b] is a quadratic ramified field extension of F in 4,

(i) £ C Kg,and

(iii) vz(b)=1—2n.

Let r and n be integers satisfying n > r > [(n + 1)/2] > 0, where [x] denotes the
greatest integer < x for x € R. We then have a canonical isomorphism

P Py — Uy | Uy
given by k +— 1 + k. This leads to an isomorphism
PR PR (U ) U

where “hat” denotes the topological dual which is the set of characters of the finite abelian
group. Explicitly this is given by

b+ PV sy, ;= forbe PRI,

where 1;(k) = 9 o tr,/z(b(k — 1)) for k € U,
We have similar properties for a field extension E instead of 4. Let 1x be an additive
character of E with conductor f(1g). For the same r and n, we have an isomorphism

pitéern  piwe)—r =, U/ U givenby b+ PO s 4y,

for b € PIY" where vz 5(k) = bk — 1) for k € Uy,
In particular, for a given quasicharacter # of E* with conductor {(8), we may view 6
as a character of Ugf(o)”)/ /U, Hence there is a coset b + PL('I’E)"[(W)H)/ % such that

0(k) = Yi(k), for k € U/ We call the coset b+P Y2 1O/ A by 4 gual blob of
6 with respect to 1, and when confusion is unlikely, for convenience we say the element
b a dual blob of  with respect to 1g. The terminology “dual blob” comes from [Ho].
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PROPOSITION 1.9. (1) With notations as above, let n be a positive integer and b
a A-generic element of level 1 — 2n. Let E = FTb]. Let 0 be a quasicharacter of the
subgroup E* of GLy(F) such that 8(k) = 1 Trj; /P bk—1)fork e U%. Then the complex
valued function 0y of E* Uy defined by Os(ku) = (k)W) for k € E*, u € Uy
is a well-defined quasicharacter of E* U which induces an irreducible supercuspidal
representation of GL,(F), denoted TI(A,, b, 6).
(2) Given an irreducible ramified supercuspidal representation I1 of GL,(F) there
exist A,,b,0 as above and a character x of F* such that T1 = T1(4, 1, b,0) ® x o det.
(3) TI(A,v,b,0,) = TI(A,,b,0,) if and only if 6, = 0.
(4) TI(A,%,b1,0)) = TI(A,, b,,0,) if and only if there exists an element g in Kz
such that
(i) by =ghig™' (mod Py™),
(i) B2, = (6193, )8
PROOF. See Proposition 1.3.1 in [KM]. n

2. Correspondence between two constructions. In this section we give a connec-
tion between the constructions of the Weil representation method and the induced repre-
sentation method for GL,(F). A given Weil ramified representation can be described as
an induced representation.

We fix a ramified quadratic extension E£/F and a quasicharacter 8 of E* for which
f(6) = 2dg/r — 1 and §(0) + d/r is an odd number, see Proposition 1.5. We set n =
n(E,0) = (f(B) +dg/p— 1)/2. We denote by b = b(y Trgr, ) the dual blob in E for
6 with respect to ¢ Trg/r, that is 6(k) = ¢ Trg, F(b(k - 1)) for k € Ugf(aw)/ 2 and by
¢y = ¢y k/r the dual blob in F for the norm character g/ of F** with respect to 1), that
is ng (k) = ¥(cy(k — 1) for k € U/,

We fix a principal order 4, by setting that for every integer k

[(k+1)/2]  pl—n+{k/2]
Pk = [PF+[k//2] PF(k+l) //2] ] .
PR Py

- —Ng/pb
Leth = [1 TI‘E/FEI‘)/i Cy
1 — 2n and E = F[b] is a quadratic field extension of F, see (1.8).

A connection between two exponents dy/r and dj; - of the difference of E and E over
F is given by:

] which is in A. Then b is an 4,-generic element of level

LEMMA 2.1.  dg/p = min(dgp, 2(n +1)/3).

PROOF. Since vg(bmk) = v(bn) = 1, we have that

2.2) dy/p = min(2(1/p{TrE (rB)+n), 20p(2) + 1),

dE/F = min(Z(Vp(TrE/pb +c¢) +n),21/p(2) + 1),
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First we claim that dg/r < dj; /7 M vi(Trg pb) < ve(ey), then we compare equations
of (2.2) and have that dy/r < di /r- Suppose ve(Trg p b) > vi(cy). Then noting that
vi(cy) = 1—dg/p, we have 2(ve(Trg p by+n) > 2(vi(cy)tn) = 2(n+1)—2dg)p > dgp.
Hence dg/r = 2vp(2) + 1. Now 2(vp(Trg/pb + cy) + 1) = 2(vilcy) +n) > dg/p =
2vp(2) + 1, hence dj p = di /. Therefore we have that dy - > dg .

Secondly we claim that dj ), > dg/r if and only if 3dg) > 2(n + 1). f dg . > dp
then by (2.2) dgr is even and vi(Trg/rb) = vr(cy), hence dgjp = 2(n + 1)/3, and
dgyp > 2(n+1)/3.1f dg)p > 2(n+1)/3, then d . > di/p because dg/p < 2(n+1)/3.
So that the second claim holds. This claim says that dj; r < dg/F if and only if 3dz/p <
2(n + 1). With the first claim the lemma follows. L]

We will prove a key proposition for the connection between two constructions of
supercuspidal representations which is an improved version of Proposition 2.3 in [K3].
We keep the same notation as above.

PROPOSITION 2.3 W(E, O)(KYfs = ¥ Tr, bk — 1, for k € Uy e Aqpy
where f, is the characteristic function of Ugnﬂ)/ A in C(F™).

PROOF. It is suffice to prove the equation for the elements in U:::"_[(df/ w+D/2] and in
U7, separately, because of the multiplicative property of W(E, 6) and ¥ Tr /. When k is
an element of U7 , it is true by Proposition 2.3 in [K3]. Here we prove the statement for k
in Uj;"_[(d” FD/2 We set W = W(E, 6) and d = dp . Suppose first that k is an element
in Ug"—[(dﬂ)/ 21N F*. Then k is of the form 1 +w where w € Pgﬁ"'[(dﬂ) /3 By (1.1)
W(I +w)o@) = ng/p(1 +w)b(1 +w)fy(x). Since 1 +n — [(d +1)/2] = [(f©®) + 1) /2],
ve(w) > [(f(6)+1) /2 ], and since 1+n > 3d/2, [(2+n—[(d+1)/2]) /2] > [(d+1)/2],
hence vr(w) > [(f(nE/F) + 1)/2]. Lets = Trg/pb, A = Ng/pb, and ¢ = c,. Therefore
the equation becomes

WA +w)o(x) = (Yew)® Trgr bw)fo(x)

= P((s+ow)fo)
= ¢ Trg/p(bW)fo(®).

Now let k be an element in Ull;"_[(dﬂ)/ % and not in F*. Then k is of the form 1+ v +w
where v and w are elements in F. From the first case we may assume £ is of the form

1+ bv which is in Ull;"—[(dﬂ)/ 2l We write 1 +bvasa product of convenient matrices

1 —Av
v l+(s+c)

ot Y e | O

where D = det(1 + bv) = 1 + (s + c)v + AV2.

1+5v=[
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To complete the proof, it is enough to show that

2.4) W([D IHI _vl/DH—l IHI _{”Dﬁ;(x)
= §Trg o (5V) ([ Df(")

It is a straightforward computation, using (1.1), that the left side of the equation is

w0 e

= ¢(—Vx)’7E/FﬂE/F(Dx)”Dx|||5/2
- [0 @) lell5 " (—AvDxNg, pOY Trg r(Dx6Y,(DxNp r6) do.

We may check that 1 +sv + AV’ = Ng/p(1 + bv), ve(cv) > d, and 50 15/p(D) =
ng/p(1 +sv+A2)(1 +cv) = 1, and since D € U™ /?/?) we have that D - xNp 46 €
U/ if and only if xNg/8 € UL/ Also vp(—AvD — 1)aNg/0)) >
(1—n/2—[(d—1)/2]/2)+[(1+n—[d/2])/2]+0 > 0.So y(—AWD— )N/ )) = 1.
Note that f; is the characteristic function of Ug"ﬂ)/ A Putting these all together we have

that
2.5

(0 ) T e

= P(—vx)Vg e/ FX)|Ix ||115/2
’ foE/féeu{wn/z] 9_1(‘5)“5”21 /Zw(_AW‘NE/F‘S)w TrE/F(Dxé) db.

On the other hand, the right side of the equation (2.4) becomes

oTe(BE)Ww(|_; ']}

2.6) = % Teg)(BEW)) Ve rne Il >

o e O OBl Tr x5) .
F

For convenience we denote by I;(x) the integral part of (2.5), i.e.,
_ -1/2
L= /xNE/ seagern O OISl P2 (—AvxNg ) Teg {(Dx6) d
and by Ir(x) the integral part of (2.6), i.e.,
— -1 -1/2
RO = [ seqpornm O OBl Trg pat) do.

We will need a lemma:
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LEMMA 2.7. Ifx6b~! ¢ UZ_W 2 then both of I(x) and Iz(x) are zero.

PROOF OF LEMMA. We have that N /,;(U?"‘[(dﬂ)/ A c Uﬁ"m/ 2 we can change
the variable 6 to (1 +u) where u € P};"_[(dﬂ)/ % and do the double integral. Then

Ir(x) = (nonzero constant) - I'g(x),

where
B0 = [ o [y, segpenn @ (60 +0)lI60+ )52
- Trg p(x6(1 +u)) dé du.
We have that
B0 = [y, s O O8I Teg ptad)

— —1/2
*Jrcprnanon 0 QU+ 1+l Tog b

Notice that 7'(1 +u) = 0(1 — u) = Y Try /r(—bu) foru € P};"‘l(dﬂ)/ 2], we simplify
further that 2
— -1 -
0 = [y, segtornm O OUIE ) Teg p(a0)

: /ueplm—[(dn)/z] Y Tl'};/p(()C(S - b)u) dudb.
E

Since the conductor of ¢ Try/ - equals to 2 — d, we have Sieprmtana P Trg /F((x5 -
b)u)du = 0 unless (x5 — b)u € P equivalently unless (x6 — b) € u~'Py? =
Pé_”_[d/ * Therefore x56~! ¢ UZ_W 2 implies Iz(x) is zero.

Now we check the I;(x). Using the same change of variable, we get

I;(x) = (nonzero constant) - I/ (x),

where 2
IIi(x) = /uepm—[(dﬂ)/Z] /xNE/,,JeU“"”)/Z] ! (5(1 + u))||5(1 + u)”E
E F
- p(—AvaNg (801 +)) ) Trgp(Dx6(1 +u)) b du.
We get

B0 = [y, seqirn 0 OOl *9(—AviNg;0)) b Teg (D30
F
: /uePl+n—[(d+l)/2] 0—1(1 + u)lll + u”El/z
E

: w(-AvaE/F((S)(NE/F(l +u)— 1))
- Y Trg p(Dxbu) du db

= g pocatirn & O8Iz *(—AviNg; 0)) b Trg (D3)

: / epprtennn ¥ ThE /¢ ((Dx6 — bu) du ds,
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because vp(—AvaNg/{O)Ng/r(1 + u) — 1)) = (1 —n/2 — [(d + 1)/2]/2) +
[(A+n+[d/2])/2] > 0.1t is easy to see thatx§ — b ¢ P;"_[d/ 2 implies Dx§ — b ¢
PIE“"_W 2 because suppose on the contrary that Dx6 — b € P}E_"—W 2l Since (D—1)b €
Pém_"_[d/ /A= PIE_"*W 3 we have D(x6—b) = Dx§—b—(D—1)b € P]E_"_[d/ A
that is x5 — b € Py "14/%,

Therefore L eprm-tasn/n Y Trg, F((sz‘} — b)u) du = Ounlessx6—b € PIE_"_[d/ 2l Hence
E
x6b~1 ¢ UZ_W A implies I, (x) is zero. .

Now we consider the equations (2.5) and (2.6) under the restriction to x6b~! €
UZ‘['I/ %1 Then the equation (2.5) is

Y O | g 28
= Y(—vx)Vg et 0|l

-1, Ny socutenr 07 @8] 7 U(—AvaNg g Trg p(Dxb) db.
X&b‘l GUZ—[dﬁ]

We may write Dx§ = x§+(D— 1)b— (D — 1)(x5 —b) and v ((D— 1)(x6 — b)) > 2—d,
hence 1y Trg;{(Dx8) = (v Trg;p(x8)) (% Trgp(D — 1)b). Therefore

e O A

= () Trg (D — DbYY e @)lxll
o oot 07 @8l *Y(~AvxNg b)) Trgp(x8) .

wble UZ‘W 2]

We make a change of variable § to bux™! with u € UZ—W A

w([D l“l _VI/DH—I 1H1 —lAvDﬁ(x)

= (v Teg (D — Db)Ve e p)llx] >

—1 —1y[],—1 —-1/2
: / Ax*‘NE,puez/E"”)/” 0~ (bux™")||x b“”E /
wet 0

- (—AvxNg, F(bux“))w Trg /F(x(bux”l)) du.

Here we note Vp(Ax_‘) = 0 and so Vp(—AvAx‘l(NE/Fu - 1)) > (1 — n/2
—[(d+1)/2]/2)+[(1+n+[d/2])/2] > 0. Hence y(—AvxNg r(bux~1)) = p(—AvAx")
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Y(—AvAx~! (NE /U — 1)) = Y(—A?vx"). Therefore we have

w([D 1H1 —vl/DH_1 1H1 _vafa(x)

2.8) = Y~ A2 Teg (D — D)) Ve g b~ ||/
o g uegiornrn 07 @Il Trg (o) d
ue U;‘["/”

On the other hand, the equation (2.6) becomes

o Ty (W[ ']
= Trg) (BB Ve e o)l
* Jueng ucgpornrn 0 OS5 Teg () .

—1d/2]
uEU"E

The change of variable § to bux™! gives

_ 1
oo (bE)w(|_, ! |Jeo
= g p(BGY)) Ve s r )Xl
. /AX_INE/FuGl};SMl)/zl B"I(bux“l)llbux'l||El/21/)TrE/,.~(xbux"1)du

(2.9) o
= §Trg)(B(Bv)) Ve rme r0)xl /267 b~ lfeb ™2
* Jung pueggorrn 0 @l Tegp(bu) .
ue U;_[d/ 2)
Now the proof is completed from (2.4) (2.8) and (2.9) if we show that
(2.10) Y=y (=A%) Trg p((D — 1)b) = ¢ Trg e (B(BV)),

when Ax~'Ng pu € Uﬁ"*"/"] andu € UZ'WZ].

From Ng/pu € U}[ﬁ"ﬂd/ /2 we have Ax~! € ULS"H)/ 2 Since vp(A) = 1 — 2n,
ve(x) = 1 —2nandx—A € UII,_Z"+[("+1)/2]. We have then l/p(—vx_'(x - A)Z)Z 3n/2—
[d/2]/2+2n —1+2(1 = 2n+[(n +1)/2]) > 0, vp(scv) > [(@+1)/2] —n+1—d+
3n/2—[d/2]/2 > 0 and vr(sAV?) > [(d+1)/2] —n+1—2n+3n—[d/2] > 0, hence
the left side of the equation is

Y(—vW(—Avx ")y Trg (D — 1)b)
= (- — A)z)w(vx_IZxA)w(((s +ew+ sz)s)
= P(—2Av + 52V + scv + sSAVP)
= P(—2Av + s2).
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- —A —A(s+¢)
2 _ 25y = 9 — —
We note that b* = ste —A+(s+op | vi(2scv) > 0 and vp(c®v) = 2—2d+3n/2
[d/2]/2 > 0, therefore the right side of the equation (2.10) is

P TrE/F(Ezv) = P(—2Av + s*v + 2scv + ¢?v)
= P(—2Av + s*v).

This completes the proof. n

COROLLARY 2.11.  With notation as above, there exists a quasicharacter 8, of E
with the property 9e(k) = ¢ Trg bk — 1) for k € U:;"_[(d” "I 5o that W(E, 0) is
equivalent with TI(Z,, 1, b, 0,).

PROOF. The map k +— 4 Try/pb(k — 1) is a character of Ug"—[(dE/F /2] uy, by
Proposition 1.9. Using Proposition 1.5, we apply the proof of Corollary 2.4 in [K3] here.m

We denote by I1(A4,,, b,0.) a supercuspidal representation as in (1.9) with addi-
tional property that 8(k) = v Trg, - b(k — 1) for k € Uy (/3 where d = min(dj .
2(n+1)/3). Since d > (f(.) + 1)/2, every irreducible ramified supercuspidal represen-
tation is of the form I(4,, ), b,0,).

The generic element b is constructed from the element b which is a dual blob of 8
with respect to ¢ Trg . Since the conductor of 6 is 1 +2n — [dg/p /2], b is unique mod-

—n—14, L - 2 o
ulo P,l:. e /2 o Trgp b is unique modulo PE,S et DD g Ng/rb is unique

modulo PIF_"—ME/ 12 We define the following, which extends the definition in Section 3,
[K3].

DEFINITION 2.12.  An 4,-generic element b of level 1 — 2n is called Weil generic if
there exists a quadratic ramified extension £/ F with 2(n + 1) > 3d /r and an element b
in E with vg(b) = 1 — 2n such that

(l) trb_ = TrE/F b + cl/),E/F (mod PE;(-I —"+[(dE/F+1)/2])/2]),

(2.13) . o
(ii) det = Ng/pb (mod Py " %//%),
PROPOSITION2.14.  LetT1 = T1(A,, 1, b, 8,) be a supercuspidal representation. Then
I is a Weil representation if and only if b is Weil-generic.

We need several lemmas to prove the proposition.

LEMMA 2.15.  Suppose that the pair (E, b) satisfies the condition (2.13). Suppose that
E\ | Fis a ramified quadratic extension and for some element b, in E, Trg, )pb1 = Trg/pb

(mod P DIy 0 Ny by = Ngjgb (mod Py " “//?) Then the pair

(E1, by) also satisfies the conditions (2.13).
PROOF. It is enough to show that ¢z = cg/p (mod Pgl_"ﬂ(dm /2] 2]).
The exponents of two differences are determined as dg JF =
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min(Z(V(TrEl 5 b1)+n),2uf(2)+1) anddg p = min(Z(u(TrE/F b)+n),2r/F(2)+l> .From

the congruent relation Trg, z by = Trg/pb (mod Pg]_"ﬂ(d”"/ F0/2D/ 2]), if vR(Trg/pb) >

[(1—n+[(dg/r+1)/2])/2], then from 2(n + 1) > 3dy - we have 2(v(Trg r b1) +1n) >
dg)r, hence dg/p = 2vp(2) + 1 and also dg, jp = 2vp(2) + 1 = dg/p. W vR(Trg/pb) <
[(1 = n+ [dg/r + 1)/2]) /2], then v(Ttg, jrb1) = vp(Trg)pb), hence dg, /r = di/r
always.

Again from 2(n + 1) > 3dgyp a simple computation show that
[(1 —n+[(dg/r+ 1)/2])/2] <1 —[(dg/r *+1)/2]. Therefore from the duality relation,

P[(1 ~n+{(dgr+1)/2D /2]

in other to show that ¢, /r = cg/r (mod Pp ), we only need to check

that 1)z, /p = 1g/F o0 U:,_[(l_"ﬂ(d” P/ The character 7g/F under the restriction to

UIF —[(1—n+{(dg/r+1)/2D)/2] is completely determined by the data

fe/m) = dg/p nf;/F = 1 and ng/s(1 + xTrg/pb + x’Ng/pb) = 1 for x in F with
2vp(x) > 2n — [(1 — n+ [(dg/r + 1)/2])/2]. Since vp(x Trg, p by — xTrgpb) >
(Zn = [(1 = n+[(dg/r + 1)/2])/2]) /2+[(1 = n+ [(dgyr +1)/2])/2] > dg/r and
VR Ng, ;pb1 —x*Ng pb) > 2n—[(1—n+[(dg/p+1)/2]) 2]+ 1—n—[dg/r /2] > dgp,
nE, /r satisfies the same data hence we are done. ]

Let E/F be quadratic ramified with 3d /r < 2(n+ 1) and b an element of E with
ve(b) = 1 — 2n. We denote by W(E, b) the set of equivalent classes of representations
W(E, 0) where 0 is a character of E such that 6 has a dual blob b and ng;{7r)0(rr) = 1
for some fixed prime element 77 in F, so that we fix the central character of W(E, 6)
which is trivial at 7p, see (1.1).

LEMMA 2.16. The set W(E, b) consists of (q — l)q""[(dE/F“)/ 2 distinct representa-
tions if2(n+1) > 3dgpand (g — l)q”‘[(dE/F”)/ 2 /2 distinct representations if 2(n+1) =
3d E / F-

PROOF.  The number of choice for 8 is [U : U}l;"_[(d” F+D/ M= (g—1)g" @ertD/2],
Let 7 be the nontrivial element of the Galois group of E/F. Then § = ¢ if and only if
b= b (mod Py " /M) if and only if vi(b — b7) > 1 — n — [dg/r/2] if and only
if —2n +dgjp > 1 —n — [dgp/2] if and only if 3dg/r > 2(n + 1). When 3dg/p =
2(n + 1), the number of distinct representations in W(E, b) is (g — 1)g"@z/=*/2] /2 by
Proposition (1.2) (3). ' u

LEMMA 2.17. Suppose that there are two pairs (Ey, b)) and (E2, by) which satisfy the
condition (2.13). If either Trg, jp by # Ttg, /by (mod Trg, FPL_"_[dE/ i /2]) or Ng, jpb1 #

Ngy/pba (mod Ng/pPy " E/"/™), then the two sets W(Ey, b1) and W(E;, by) are dis-

joint.

PROOF. See Lemma 3.4 in [K3]. ]
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PROOF OF PROPOSITION 2.14.  Suppose b is Weil-generic. Denote by W(b) the union
of W(E, b)’s such that b satisfies the condition (2.13). It is easy to check that

1—n—[dg/r /2]

1—n+{(dg/r+1)/2]) /2 —n—[d -
[PL(- n+{(dg/r+1)/2D)/2] x P}; n—[dg/r /2] - T L=n—ldgyr/2) X NE/FPE ]

rE/FP E
is equalto 1if2(n+1) > 3dg randis equal to 2 if 2(n+1) = 3dg . From Lemma2.16 and
Lemma 2.17, the cardinality of W(b) is (g — 1)g"1@e/r*1/21 Let T1(4,, ¥, b) be the set of
equivalent classes of representations of the form I1(4,, v, b, 8,) such that I1(4,, ¥, b, 8.)
has a central character which is trivial on 7z. From Corollary 2.11, the set W() is con-
tained in T1(4,,, b). But from Proposition 1.9, (2), the cardinality of I1(A,, v, b) is
[Ug: U:;"_[(dE Lattd 2]] = (g — 1)g" [@r*D/2] that is, two sets are equal. Hence we are
done. .
We summarize the conclusion of this section.

THEOREM 2.18.  Suppose that TI(A,, 1, b,,, 0.) is an irreducible Weil ramified super-
cuspidal representation with Weil-generic b,,. Let E be a ramified quadratic extension
of F and b an element of E with relation (2.13). Then there exists a quasicharacter 0
of E* such that the dual blob of 0 is b and the representation W(E, 0) is equivalent to
TK(A,, 9, bw, 6e).

3. Preliminary results. Let F be a 2-adic field and L a Galois totally ramified field
extension of F with (2,2)-Galois type, i.e., [ jp = Z/2Z & Z/2Z. Let d; - be the
exponent of the different of L/F. Then from Galois theory there are three intermediate
fields of L/ F, say E\, E, and E3. Each one is a quadratic extension of F.

PROPOSITION 3.1.  We fix E3 such that dy g, > dp g, and dy g, > dy /i, Then we
have the following:

(1) dpjg, = dyjg, = diyF.

(2) dg,/r = dgy/r-

(3) 4, JEs = 2dp, JF— d /Ey-

(4) dr/E,»d1/E,591/E,» dE, /r and dy are all even numbers.

(5) dg,jp = 2,4,...,20p(2) or 2vp(2) + 1.

PROOF.  SinceI'; /x is finite abelian, by the Hasse-Arf theorem, every jump occurs at
an integer in the upper filtration of the Galois group, see [S, IV, Section 3], so say F‘L7‘F D
#

FEI; and FZIF” oIy ', where s and ¢ are integers. The integer s is greater than or
#

equal to 2 because the extension L / F'is wildly ramified and the integer ¢ is greater than or

equal to 0. Let K3 be the intermediate field that corresponds to I‘Z}:’ ,ie., 1"27‘;’ =T/,

Since FE}T’ = FL/F,S—H'ZI = FL/K;,.\'—H’ZH and FL/KNH, = 1, we have dL/K; =gs+ 2[,
see [S, IV,Section 3]. Suppose that an element o of I'; /- is not in i_/‘;’ . Then {1,0} is
a subgroup of I'; /, with the corresponding subfield, say X, Since o ¢ FZIF*, F;J;G >

Fi/K, = 1, therefore dj jx, = s. The other subgroup, say I'; k,, of I'; /5 has the same

https://doi.org/10.4153/CJM-1996-019-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-019-3

EXPLICIT FORMS OF LOCAL LIFTING 357

property as I'y /x,, s0 dp x, = 5. Here d) /g, is the largest. Hence in terms of E; we have
that dL/El =g, dL/E2 =S, dL/E; =s5+2t

From properties of subgroups of a Galois group, 'z, /r = T /r/Ty /5, = {1,0}, and
FSE:}F 3 FZ';/F = 1, we have that dg,)p = s. It is known that d; ) = dy /g, + 2dg,

for each i, because the ramification index of E;/F is 2, so that d; JF = 3s + 2¢, and
dg,/r = dg,/r = s+t This proves (1), (2), (3) and (4). The property (5) is well known.m

PROPOSITION 3.2.  Let L be a quadratic ramified extension of E. Let g be an additive
character of E with conductor §({g), and let § be a multiplicative quasicharacter of E*
with conductor (). Let b be a dual blob of 0 with respect to . Then

(1) Y Try g is an additive character of E with conductor 2§(yg)—dy /g, and 0N /g is
a multiplicative quasicharacter of L*. The conductor (80N /) of 00N is 21(0)—d, /g
if§(6) > dy g, 1(0) if 1(0) < dy /g and less than or equal to §(0) if (0) = dy /.

(2) Assume that {(0) is not equal to dy ;. There is an element (3 in L such that b + 3
is a dual blob of 6 o N i with respect to Yg Tty g and v(B) = 2f(YE) — dr /g — T(6).

PROOE. (1) It is known that Tr; /5(P%) = P/ for every integer ¢, see [S]. So
2f(y5)—d 2f(vE)—dy /g1 _
Vg TrL/E(PLf(ll)E) L/E) — ,d)E(PE(wE)) = 1 and Yg TrL/E(PL (Ye)—dy e ) = wE(Plfs(iﬁE) 1) 76
1. Hence (Y Try /g) = 2f() — dy /g From [, V, Section 3], N /g(U}) = ULSML/E)/Z]
if £ > dyjpand Npjp(U) = Ug if £ < dyjp — 1 and Np (U ) € Up*™. With a
similar argument we have the result of the second part.
(2) For an element x € P[L(f(OONL/ E)H)/z], Nz/p(l +x) = 1+ Trp/p(x) + Ny jp(x) €

Ugf(om)/ %1 Therefore
6 0Ny /g(1 +x) = Ypb(Ny/g(1 +x) — 1) = (b Trp /p(x)) (YEBNL /£(X)).
The map x — ¥gbN /£(x) is an additive character on PE( fGNs E)H)/z], because

EbN, /5(x +3) = eb(Ny/5(6) + Npy50) + Try 5(07)
= (¥sbNL/£() (¥EbNL/£O)),

where T = {1,7}, noting that Tr; /z(xy") € PL”. It is known that N, /z(P} / P}") =
P /P4 as a set, and so the conductor of this additive character is f(6). By topologi-
cal duality, there is an element § in L with v.(8) = 2f(Yg) — dr/p — f(G) such that

Vi Try /p(8x) = YEbN  /p(x) for x € P[L(f(OON” 2"D/2 Therefore we have that

80 Ny/p(1 +x) = Y Try p((b+ B)x) forx € PLCN /2, .

Let F be a 2-adic field and let E and K be two different quadratic ramified Galois
extensions of F. Suppose that the Galois group I'y /- of K over F is {1,7}, and the Galois
group g/ of E over F is {1,0}. Then the field KE is a (2, 2)-type Galois extension of
F with the Galois group {1,7,0,70}.
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PROPOSITION 3.3.  Let b be an element of E with vg(b) = 1 —2n and write b as a sum
of angg and h where a and h are elements of K. Thenvgg(ankg) = 1 —4n—dyg x+2dg)r
and vgg(h) = 2 — 4n.

PROOF. Since vg(b) = 1—2n,vkggp(b) = 2—4n which is an even number so vgg(h) <
vke(anke) and vge(h) = 2 — 4n. We have b = amkg + h, so b” = any + h. Therefore
ve(b" —b) = VKE(a(w;(E — TI'KE)) = vig(a)+dgg k. We may write b = xmg +y, where x
andy are in F. Then b" = x7}+y, hence vg(b” — b) = VE(x(wg - 7rE)) =vg(x)+dg/p =
—2n +dg . Comparing two equations, we have vgg(a) = —4n — dgg /g +2dgr. L]

We will study the element # in K and a quasicharacter of K derived from 4. We have
vk(h) =1 —2n and will assume 1+ 2n > dgg/ + dg, Which is the only case we need
later. There is a quasicharacter ¢ of K* whose dual blob is & with respect to ¢ Trg/r,
so that the conductor of g is f(¢) = 1+ 2n — di/r and p(k) =  Try /r(h(k — 1)) for
ke Uj:”_[(dk/ **Y/2 Then we have the following:

PROPOSITION 3.4.  The quasicharacter ¢ o Ngg x of KE™ has the conductor 2+4n —
dg /- There is an element § in KE such that h+6 is a dual blob of g o Nz x with respect
to '()[)TIKE/F and VKE(&) =3—-2n— dKE/K - dK/F'

PROOF.  First show that f(¢) > dkg/k., i.e., 1 +2n — dg/r — dgg/x > 0. There are
three cases for the values di/r, dg/r by (3.1) as follows: i) dyx/p = s+, dgp = 5;
ii) dg/r = s,dgjr = s+t and ii) dg/p = s+1t,dg/p = s+1t, where s is a positive even
integer and ¢ is a nonnegative integer. Then we have respectively in case i) dgz/x = s,
dypg = s+ 2t in case il) dgg/x = s+ 2t dgg/p = s; and in case iii) dgg/x = s,
dgg/p = s. Using the assumption 1 + 2n — dyg/p — dg/p > 0, and comparing case
by case, we have f(¢) > dkg k. Therefore, by the Proposition 3.3, the results follow
immediately, i.e., f(o © Nxg/x) = 2f(0) — dgg/x = 2+ 4n — dgg/p, and vge(6) =
2§( Trgr) — die/x — 1@ © Nggjx) = 3 — 2n — dygjx — dg - n

4. Lifting of supercuspidal representations of GL,. It is a conjecture of Lang-
lands that there should be a natural bijection between the set .S (GLN(F)) of equivalent
classes of irreducible admissible representations of GLy(F) and the set Sy(WFr) of equiv-
alent classes of N-dimensional semisimple Deligne representations of Wy. Bernstein and
Zelevinsky [Z] had shown that we may restrict our attention to the set $° (GLN(F)) of
equivalent classes of irreducible supercuspidal representations of GLy(F) and the set
S{(Wr) of equivalent classes of N-dimensional irreducible continuous representations
of Wr. The bijection ® should satisfy the following conditions:

(1) ©(II® x odet) = O(I1) ® Y, for every quasicharacter x of F*,

(i1) wr = det ®(IT), where wry is the central quasicharacter of I,

(iii) L(®(T)) = L(D), ¢(DAT)) = €(IT).

For the definition of L-functions and e-factors, see [D1], [GJ]. Suppose X is a field ex-
tension of F. From the conjectural correspondence, there is a map called a lifting Ly /F
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from § (GLN(F)) oS (GLN(K)) so that the following diagram commutes:

S ( GLN ( K)) Langlands ﬂespondenoe SN ( WK)
lifting T T restriction
S ( GLN ( F)) Langlands Eﬁspondence S N( WF)

We will collect properties on the correspondence, restriction and lifting, for reference
see [JL], [L], or for a convenient summary see [GL].

PROPOSITION 4.1. Given a Weil representation W(E, 8) of GLy(F), the Langlands
correspondence gives that
D(W(E, 0)) = Ind}’ 6.

For the one dimensional case we have that:
PROPOSITION 4.2.  If'x is a quasicharacter of GL(F), then {x /F(X) = X o Ng/p.
The restriction map of S,(Wr) to S,(Wx) gives the following:

PROPOSITION4.3.  Let K / F be a quadratic extension. If a representation o of $(Wr)
is imprimitive, i.e., 0 = Ind%: 0, for some quadratic extension E | F and a quasicharacter
0 of E*, then

(1) Resyf(Indy” 6) = IndjX 60 Ngg/p if E # K,

(2) Resyf(Indyf 0) = 0@ 0 if E =K, Tg/p = (7).

PROPOSITION 4.4. (1) Given a Weil representation W(E, ) of GL,(F) and a qua-
dratic extension K | F which is different from E,

Lx/r(W(E, 0)) = WKE, 0 o Niz ).
(2) Given an admissible representation I1 of GL,(F) and a quasicharacter x of F*,

Lx/rI1® x odet) = Lg/o(I1) ® x 0 Ng/p o det.

Itisknownthat whenK = E, the 8¢/ (W(E R 9)) is not a supercuspidal representation.
When N = 2, for the induced representation form, the lifting is known from the inducing
data , see [K2], [P], except the case that F is 2-adic and K /F is wildly ramified. We
characterize the generic element of the lifted representation in this remaining case.

Recall some notations before we prove the main theorem. If T1(4,, 1, b,,, 8.) is a rami-
fied Weil supercuspidal representation, then it is equivalent to W(E, 8) for some quadratic
ramified extension £/ F and a quasicharacter § of E* such that if b is a dual blob of  in E
then b,, and b satisfy the relation (2.13), by Theorem 2.18. Let K be a quadratic ramified
extension of F which is different from E. Then there is an element 3 in KFE so that the
quasicharacter 6 o Ng/p of KE™ has a dual blob b + 3. We may write b = amgg +h with
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a,h € K. Then there is a quasicharacter o of K* whose dual blob is / and there is an
element § in KE so that the quasicharacter o o Nz /x of KE™ has a dual blob 4 +4. (See
Section 3). We denote a principal order 4, in GL,(K) by setting that for every integer k
~ P%kﬂ) /2] P}(—n+[k/2]
n — P;:<+[k/2] P2k+1)/2] :

THEOREM 4.5. Let F be a 2-adic field. Suppose that I1 is an irreducible Weil super-
cuspidal ramified representation of GL,(F) of the form I1 = I1(A,, v, by, 0:) ® x o det
where b, is a Weil generic element and 0, is a quasicharacter of E* = F[b,]* such
that §, = ; on U;;"_[(d” FO2 et K bea quadratic ramified extension of F which is
different from E. Assume 2(n + 1) # 2dy p + dg .

Then the lifting £/ (IT) of T is an irreducible Weil supercuspidal ramified represen-
tation of GL,(K) of the form &/ x(IT) = (A, ¥, b, 5) ® x odet for some quasicharacter
f of K [l:J]X such that:

(i) if2(n+1) > 2dgp + dg, then

N = 1+2n—dyg/x/2 — dxjr — g/,

~ 1-4
Y= Trk/pmg I,
=, TNkt
1 TrKE/Kb"'éJ}

, Wwhereb = w‘,}(’(/F—l(awKE + 3 —48)and

X =0 Xx°Nk/F.
(il) ideK/F+ 1< 2(n+ 1) < 2dK/F+dE/F’ then
N=n,

~ 1-4,
Y =9y Trg/pmg i,

dy)r—

~Ngg/xb "
KE/K ], where b = l(a7rKE+ﬁ—6)and

S

X =0-Xx°Ng/p.
(i) if2(n+1) < 2dy/p+ 1, then
e I—dy/r
N—n,'l[J—dJTrK/FWK Py
= _NKE/KE ~ dyp—1
b= < = " +
[1 TrKE/Kb+éJ,} , whereb=m," (b+[)and
X = x o Nk/r-

PROOF. Let IT = II(A,,,by,0.). From the assumption that b, is Weil generic,
there exists a ramified quadratic field £ and an element b of E so that b and b,, satisfy
the relation (2.13). Then IT is equivalent with W(E, §) for some quasicharacter § of E*
whose dual blob is b, by Theorem 2.18. From the Proposition 4.4, the lifting of W(E, §)
is that 24 /7(W(E, 0)) = W(KE, 6 o Ngz ).
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Consider the case (iii) first: Suppose 2(n + 1) < 2dg/r + 1. Since 2(n + 1) > 3dg /P>
dg/r < dkg/r, 50 §(0) = 1 +2n — dg)p < 2dg/r — dg/r = dgg/g- By Proposition 3.2,
f(0 o Ngz/g) = §(0) = 1+ 2n — dyg/k. Therefore f(6 o Ngg/g) > 2dyz/x — 1 and
f(0 o Nkg/g) + dg/r is odd. These two conditions imply that 6 o Ngg /i is not of the
form p o Ny x for some quasicharacter p of K*. Because if o Nz /p = po Ngg k., then
f(@oNgg/£) = f(poNgg k) which is bigger than dgg k. So f(poNkg/k) = 2f(p) —dkg k-
We have f(0oNgg/r) = 2f(p) —dkg/x which contradicts the fact that f(00Ngg ) +dxe/x
is odd. By Lemma 1.3 and Proposition 1.2, the representation W(KE, 6 o Ngg /) is a
supercuspidal Weil representation. By Proposition 3.2, the dual blob of 6 o Ngz/ is

b+ B with respect to  Trgg / o wf("/ 716 + B) with respect to 9 Try /p 1r,l<—d"/ " Trgg -

Here the conductor f(¢) = 1 where ¢ = v Tr /F w;(—d""‘" . Since VKE(Wj(K/ 1 (b + ﬂ)) =

VKE(W;?‘/ d _],[)’) = 1 — 2n, we may apply the Proposition 2.1, and we are done.

In case (i), we have 2(n + 1) > 2d p + dg/p. Write b = amgg + h where a and h
are elements of K. There exists a quasicharacter p of K* whose dual blob is 4. Then the
quasicharacter g o Nz, has a dual blob 4 + 6 for some § in KE. (See Proposition 3.4).
We have f(6 o Ngg/p) = 2f(6) — dgg/g, and write 6 o Ngg/p = 0 - 0 o Ngg/p where
0 = 00Nggp- (0 0Nggp)™. Since b+ 3 — (h+6) = amgg + 8 — 5, we have that
B0) = ¥ oy plamis+B—8)k—1) = $ Trgyp me " Trge 1" (@mge+B—0)(k—1)
fork € (/fK(?_d"”/E/ ? Leth = rdK"/F “(anks + B — 6). We may check that in this case
1+2n > dygp + dgjp. Hence vip(B) = vxe(ry™ angg) = —1 — 4n — dygyx +
2dK/E + 2dE/p. Now () = 2 — dKE/K —vke(b) =3 +4n+ 2dK/F + 2dE/F- We have
() = 2dgg/x — 1 and §(0) + dgg/k is odd. Therefore W(KE, 0) is a Weil supercuspidal

—Ngz ~/Kb
1 TrKE/K b+ 512}
N = 1+2n—dgg/x/2 — dgr — dg/F- This completes case (1).

Now case (ii): Suppose 2dx/r+1 < 2(n+1) < 2dg/r+dg/p. From2(n+1) > 3dg
we have dg/p < d/r. Hence by Proposition 3.1 2dg r = dgg/p + dgjp, 50 1 +2n >
dg /£ +dg,F. Therefore we take the same b, so O(k) = 9 Trg r}(_d"” Trgg)x b(k—1) for

k€ ULy /"% and we have via(B) = vig(re™ ' B) = 1—2n+2dy r—dyg p—di =

1 — 2n. Therefore f(f) = 1 +2n — dig/x- We may check that @) > 2dygx — 1 and
() +dxg /k 18 odd using dyg/x = dg /. Hence b produces the generic element b of level
1 — 2N where N = n in this case. This completes the proof of the theorem. =

Inthe case 2(n+1) = 2dy p+dg/r, () could vary from 0 to 1+2n—dgg /k- Hence the
lifted representation may be not supercuspidal. We need further information to analyze
the lifted representation, for example the relation between 6 and .

representation, and the generic element b = [ is of level 1 —2N where
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