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EXPLICIT FORMS OF LOCAL LIFTING FOR GL2 

DONGGYUN KIM 

ABSTRACT. Let F be a local non-Archimedean field and let 5(GL2 (F)) be the set of 
equivalence classes of irreducible admissible representations of GLjiF). WhenK/Fbe 
a Galois field extension, there is a map, called lifting, from 5(GL2(F)) to S(GL2(K)). 
We give an explicit form of lifting when K/F is a quadratic wildly ramified extension 
and the given representations are Weil supercuspidal. We also provide a comparison 
between Weil representations and induced representations of GL2(F). 

0. Introduction. Let F be a local non-Archimedean field with residual characteris­
tic/?. We denote by Wp the absolute Weil group of F. Let K/Fbe a Galois field extension. 
Langlands conjectured a correspondence between the set of equivalence classes of irre­
ducible admissible representations of GL#(F), say 5(GLAT(F)) >an^ the set of equivalence 
classes of Af-dimensional semisimple Deligne representations of Wp9 say SN{^F\ which 
among other things, preserves invariants called local constants. From the conjectural 
correspondence, there is a map, called base change lifting or lifting, from 5(GL#(F)) to 
S(GLN(K)) SO that the following diagram commutes: 

S{GLN(K)) *~*~*™*«*~* SN{WK) 

lifting restriction 

5(GMF>) ^ ' ^ ^ ^ ^ SN(WF) 

When N = 2, the correspondence was known partially—the so called Weil (or oscilla­
tor) representation case—by Jacquet and Langlands in [JL], and the lifting was known in 
that case by Langlands [L]. Kutzko classified all of the supercuspidal representations of 
GL2OF) as induced representations which are represented by generic elements in GL2(F) 
and quasicharacters associated with the generic elements, and then constructed an ex­
plicit form of lifting in term of inducing data in case that K/F is tamely ramified. From 
this classification and tame lifting, he was able to complete the Langlands correspon­
dence in the case N = 2, see [Kl], [K2]. When N is equal to the residual characteristic, 
the tame lifting was studied by Henniart [H] and Kutzko and Moy [KM], and the lifting 
over a wild field extension with some restriction was studied by Moeglin [M]. To study 
the Langlands correspondence for general N and the Langlands correspondence over a 
global field, firstly we need an explicit lifting over a wild extension K/F. 
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In this paper we characterize the generic elements of the lifting of Weil representa­
tions for GL2 using purely local methods in case that K/F is a quadratic wildly rami­
fied extension (hence the residual characteristic is 2), see Section 4. To prove the main 
Theorem 4.5, it is necessary to write the Weil representations in terms of the induced 
representation form, and a criterion is needed to tell if a given induced representation is 
a Weil representation. These are done in Section 2. In Section 1, we explain the Weil rep­
resentations and the induced representations and in Section 3, we compute the difference 
of various field extensions and the dual blobs of characters. 

This paper is a revised version of the author's thesis under the direction of Philip 
Kutzko. I wish to express my deep gratitude to him for his constant advice over the 
years. I also like to thank David Manderscheid for his generous help during the course 
of this work. 

We use the following notations throughout: 

F: a local non-Archimedean field; 

Op: the discrete valuation ring in F; 

Up: the multiplicative subgroup of Op\ 

PF: the maximal ideal of Op', 

TTF'> a prime element of Pp; 

kp = OF/PF'- the residual class field of F; 

qp\ the cardinality of kp; 

vp\ the valuation of F; 

|| • ||F: the absolute value on F such that ||JC||F = qpMx\ xeFx. 

1. Constructions of supercuspidal representations of GL2. We introduce how to 
construct irreducible supercuspidal representations of GL2(F). There are two methods. 
One is the Weil representation method and the other is the induced representation method. 
The Weil representation has been studied in [W], [JL] and [N]. We adapt here Kutzko's 
form of the Weil representation in [K3]. 

Let E/F be a field extension with the Galois group TE/F. We denote by dE/F the 
exponent of the different of E/F. Given a quasicharacter 9 of the multiplicative group 
Ex ofE, the conductor f (9) of 9 is the smallest nonnegative integer m such that 9 is trivial 
on U%. Similarly, given an additive character fa ofE, the conductor \(fa) of fa is the 
smallest integer m such that fa is trivial on Pg. Let % / F be a norm character of Fx with 
respect to E/F, that is, a nontrivial character of Fx which is trivial on N£/F£ , x where 
NE/F is the norm map of E/F. Let dx be the self-dual Haar measure on E for fa. If G 
is a locally profinite set, we write C^(G) for the Schwartz space of G, i.e., the space of 
locally constant compactly supported complex valued functions of G. 

We fix, once for all, an additive character i/> = fa of F with f (1/;) = 1, and when the 
residual characteristic p of F is 2, ^ has the additional property that \jj(x + x2) = 1 for x 
in Op. 

https://doi.org/10.4153/CJM-1996-019-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-019-3
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We define a Weil representation W = W(£,0) of GL2(F) on C?(FX) for a given 
quadratic separable extension is /F and a quasicharacter 0 ofEx as follows: 

(1.1) W 

W 

w 

d1 bi}y^)=^bx¥^ 

l^{x) = lElFriElF{x)\\x\\f 

• //-^^ll^ll^/VTr^^y^/^)) d8, 

where/ G Q°(FX), 7 £ / F = »?£//<«)Jt/Ff?£/Jp(a)^(aa>/a/(| J^r7£/F(a)T/;(aa)^|), 

where a is a generator of P F
 %/F and | • | is the usual absolute value of a complex 

number. 

NOTE. Let q?(Fx x E) be the space of functions / in Q°(FX x E) such that 
f(xNE/Fa,(3a-1) = \\a\\l

E
/20(a)f(x,/3) for x G F x , a G Ex and/3 G £. Then the map 

q ° ( F x x £) —• C^°(FX) defined b y / i-> / where/(JC) = f(x, 1) is an isomorphism. 
Therefore W(E, 0) is equivalent to the usual Weil representation, see [K3]. 

The Weil representation W(£, 0) has the properties, [JL]. 

PROPOSITION 1.2. (1) IfO^F where TE/F = (r), then W(£, 0) is a supercuspidal 
representation. 

(2) If0 = ST, then W(E, 0) is not supercuspidal. 
(3) W(£, 0!) = W(£, 02) if and only if02 = 0\ or 02 = 0[. 
(4) WhenEx ^ £2, W(£ l90i) = W(£2,02)*/'andonly ifn0[l~]and'tff1 areojorder! 

and 0i oNElE2/El = 02oNElE2/E2. 

We will need the following lemma later. 

LEMMA 1.3. Let Ebea quadratic separable extension field ofF, and let TEjF = (r). 
Let 0 be a quasicharacter ofEx. Then 0 = 0? if and only if0 = \ o NEiFfor some 
quasicharacter \ ofFx. 

PROOF. Suppose that 0 = 0r. Since EjF is cyclic, the kernel of the norm map 
NEiF : Ex —> Fx is the set {xT~x \ x G Ex} so kerNE/F is contained in ker0. De­
fine a quasicharacter \ on NEjp(Ex) by \ (A/^/^JC)) = 0{x) for x G Ex. It is well defined 
because \LQTNEJF C ker 0. Now we extend x to FX . Then \ is a quasicharacter of Fx and 
0 = x o AT^ on Ex. The other direction is trivial. • 

DEFINITION 1.4. If a Weil representation n of GL2(F) is of the form W(£, 0) with 
E an unramified quadratic extension of F, then we say that II is an unramified Weil 
representation. Otherwise we call it ramified. 
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PROPOSITION 1.5. (1) Let U be a ramified Weil representation ofGL2(F). Then 
there exists a quadratic ramified extension E/F and a quasicharacter 0 ofEx such that 
f (0) > 2dEjF — 1 and f (0) + dE/F is odd, and a character \ ofFx so that H is equivalent 
to the representation W(is, 9)(8>x° det 

(2) If there exist E\ 0', \' with the above properties and ifE' ^ E thenp = 2, f(0) = 
2dE/F - 1 = 2dE,/F - 1 = f(6'\ and \(r]E/F • r)-}/F) = dE/F. 

PROOF. Lemma 2.2, in [K3]. • 
It is known that every irreducible supercuspidal representation of GL2(F) is induced 

from a finite dimensional representation of a compact open subgroup, see [Kl]. We 
will describe this construction. Let V be a 2-dimensional vector space over F and A = 
End/r( V). An 0F-lattice in V is a free O/r-submodule of rank 2, and an 0F-order in A is an 
Oir-lattice in A as a 4-dimensional vector space that is also a subring of A. An O/r-order 
is called (left-) principal if its Jacobson radical is a principal (left-) ideal. 

An 0F-lattice chain in V is a set L = {Lt• : / E Z} of O/r-lattices Z,,- in F such that 
(i) I,- D I/+i,ii 7̂  Li+\ for every / € Z, 

(ii) there exists an integer e such that L,-+e = PFLt for every / E Z. 
The integer e = e{L) is called the period of X. Hence e is 1 or 2. If L = {U} and 

X' = {Z,-} are 0F-lattice chains in V, we say that L and £ ' are called to be equivalent if 
there is an integer k such that L\ = /,/+# for all integers / and write L ~ £J. Let .#£ be 
the set of g in 4̂ satisfying gLt C £,- for all integers /, then J? = 2LL is an 0/r-order in A. 
We denote by fP# = fP#z the Jacobson radical of J?. Write e(-#x) = e(£). Then we have 
the propositions, see for example [BF]. 

PROPOSITION 1.6. (1) A^ is a principal order. 
(2) Every principal 0F-order in A is of the form JZL for some lattice chain L. We may 

recover the lattice chain Lfrom the order A, up to shift in the index, and L is precisely 
the set of all ^-lattices in V. 

(3) As a fractional ideal of A, the radical fP# is invertible and we have 

rP\ = Endn
OF(L) for every « E Z, 

where E n d ^ X ) = {g eA : gLt C Li+nfor every i E Z}. 

We define a sequence of compact open subgroups of GL2 by 

U& = ifx = JZX, and W^ = 1 + 2% for integers n > 1. 

We set 
%& = {x E G : x~lAx = A}. 

This is a maximal open compact-mod-center subgroup of GL2, and every maximal 
open compact-mod-center subgroup of GL2 is of the form, for some principal order. The 
Wft for n > 0, are normal subgroups of %& and in particular U& is the unique maximal 
compact subgroup of %&. 
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PROPOSITION 1.7. Let L and £J be 0F-lattices in V. Then 

(1) 
L' ~ £ «=* ftL, = frL. 

(2) 
e{£!) = e(L) 4=> L' = gL for some g G A 

<=> J%£/ = gJ%£ g~l for some g £A 

*=^ ^kx, = g%AL g~l M someg^A. 

In this paper we are interested in ramified supercuspidal representations of GL2. We 
describe how to construct all of the ramified supercuspidal representations. For the un-
ramified supercuspidal representation case, see [GK], [Kl]. Let us fix a principal 0F-
order J? with e(J%) = 2. It is easy to check that all principal O^-orders with period 2 are 
conjugate each other by GL2(F). 

DEFINITION 1.8. An element b in A is said to be A-generic of level 1 — In for some 
integer n if 

(i) E = F[b] is a quadratic ramified field extension of F in A, 
(ii) Ex C % , and 

(iii) i/E(b) =l-2n. 
Let r and n be integers satisfying n > r > [(n + l)/2] > 0, where [JC] denotes the 

greatest integer < x for x G R. We then have a canonical isomorphism 

given by A: 1—̂  1 + k. This leads to an isomorphism 

where "hat" denotes the topological dual which is the set of characters of the finite abelian 
group. Explicitly this is given by 

where ^h(k) = %/jo trA/F(b(k - 1)) for k G U^. 
We have similar properties for a field extension E instead of J?. Let X/JE be an additive 

character of E with conductor f (1/^). For the same r and n, we have an isomorphism 

Pf E)~" /PfE)~r - ^ (VE/ WET given by b + Pf^~r ^ ^E,b, 

for b e Pjf*^" where tpE>b{k) = Vfe*(* - 1) for k G lfE. 
In particular, for a given quasicharacter 0 of E* with conductor f (0), we may view 0 

as a character of l ^ W / ljg>. Hence there is a coset 6 + />«*«>-KW>«)/2] s u c h ^ 

0(£) = i M * ) . for* G t4(f(9)+1)/2]. We call the coset fe+P^)_[(W)+1)/21 by a dual blob of 
6 with respect to %1>E, and when confusion is unlikely, for convenience we say the element 
b a dual blob of 9 with respect to i/>£- The terminology "dual blob" comes from [Ho]. 
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PROPOSITION 1.9. (1) With notations as above, let n be a positive integer and b 
a fArgeneric element of level 1 — In. Let E = F[b\ Let 9 be a quasicharacter of the 
subgroupEx ofGLi(F) such thatO{k) = ijjTrE/Fb(k — l)fork£ Ug. Then the complex 
valued function 9^h ofEX(U^ defined by Hh(ku) = 0(k)ipB(u) for k £ Ex,u E Ify 
is a well-defined quasicharacter ofEx W^ which induces an irreducible supercuspidal 
representation ofGL2(F), denoted H(ft9 x/j9 b, 0). 

(2) Given an irreducible ramified supercuspidal representation II ofGL2{F) there 
exist ft, V> b9 0 as above and a character \ ofFx such that U = H(Jl9 ^ , M ) ^ X ° det 

(3) n(J?, xl>9 M i ) = U{ft9 fa 6, 02) if and only ifS2 = 0\. 
(4) I1(J?, \l),b\9Q\) = I1(J?, V>, b2,02) if and only if there exists an element g in %& 

such that 
(i) b2=gblg-

1 (mod fPjf"), 
(ii) 92^=01^. 

PROOF. See Proposition 1.3.1 in [KM]. • 

2. Correspondence between two constructions. In this section we give a connec­
tion between the constructions of the Weil representation method and the induced repre­
sentation method for GL2(F). A given Weil ramified representation can be described as 
an induced representation. 

We fix a ramified quadratic extension E/F and a quasicharacter 0 of Ex for which 

f(0) > 2dE/F — 1 and f(0) + dE/F is an odd number, see Proposition 1.5. We set n = 

n(E, 0) = (f(0) + dE/F - l ) / 2 . We denote by b = 6(V>TTE/F, 6) the dual blob in E for 

0 with respect to ^TrE/F, that is 0(k) = i/jTrE/F(b(k - 1)) for k e L^(f(")+1)/2], and by 

Cil) = C$£IF ^ e dual blob in F for the norm character r]E/F of F x with respect to V>, that 

is VE/p(k) = ^ ( k - 1)) for * G xJj^i'Wto. 
We fix a principal order J3„ by setting that for every integer k 

<tf = [ pn+[k/2] p[(*+l)/2] 

Let fc = 
-NE/Fb 

. ~ , , , which is in A. Then b is an J^L-generic element of level 
l TrE/Fb + c,p\ m 6 

l — 2n andE = F[b] is a quadratic field extension of F, see (1.8). 
A connection between two exponents dE/F and dE,F of the difference of E and E over 

F is given by: 

LEMMA 2.1. dE/F = min(^ / F ,2(« + l) /3) . 

PROOF. Since vsibifp) = vE{f>T^) = 1, we have that 

(2.2) <fe/F = mm(2(vF(TrE/Fb) + n),2isF(2)+l^ 

fi^/F = min (2 (I/P(TTE/F b + c^) + n), 2i/F(2) + 1J. 
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First we claim that dEjF < dE,F. If vF(YrE/Fb) < I/F(CII>), then we compare equations 

of (2.2) and have that dE/F < dE,F. Suppose vF(JrEiF b) > VF{C^). Then noting that 

J'Kty) = l-dE/F,weha.vQ2(i/F(TrE/Fb)+n) > 2(yF(c^)+n) = 2(n+l)-2dE/F > dE/F. 

Hence dEjF — 2i/F(2) + 1. Now 2(*//r(Tr£/Fft + c$) + n) = 2(yF(c^) + /i) > dE/F = 

2i/F(2) + 1, hence dEjF = dE/F. Therefore we have that dEjF > dEjF. 

Secondly we claim that dE,F > dEiF if and only if3dE,F > 2(n +1). lfdE/F > dE/F, 
then by (2.2) dEjF is even and vF(JxE/Fb) = vF(c^\ hence dEjF = 2(n + l ) /3 , and 
dE/F > 2(n + l)h- lfdE/F > 2(n + !) Athen dE/F > dE/F because dE/F < 2(n + l ) /3 . 
So that the second claim holds. This claim says that dE,F < dEjF if and only if3dE,F < 
2(n +1). With the first claim the lemma follows. • 

We will prove a key proposition for the connection between two constructions of 
supercuspidal representations which is an improved version of Proposition 2.3 in [K3]. 
We keep the same notation as above. 

PROPOSITION 2.3. W(E,0)(kyo = ^TrA/Fb(k- \y0for k e ^ + w " [ ( 4 / F + 1 ) / 2 ] ^ , 

where f0 is the characteristic function oflTp '' in Q°(FX). 

PROOF. It is suffice to prove the equation for the elements in U^ n E/F and i m 
W^ separately, because of the multiplicative property of W(£, 0) and i/> Tr^/r. When k is 

an element of W^, it is true by Proposition 2.3 in [K3]. Here we prove the statement for k 

in if+n-WEi^W W e s e t w = w ( £ ? 0) a n d d = d£/F suppose first that k is an element 

in Ul;n-[{d+l)/2] HF\ Then*is of the form 1 +w where w G ^ - [ (^D/2] ) /2 ] R y ( U ) 

W(l + w)f0(x) = r/£/F(l + w)0(\ + wYoix). Since 1 + n - [(d + l)/2] = [(f(0) + l ) /2 ] , 

^ (w) > [(f(0)+l)/2 ], and since \+n > 3d/2, [(2+«-[(</+l)/2])/2] > [(J+l)/2], 

hence i/F(w) > [(KIE/F)
 + ^)l2\ Let s = Tr£/FZ), A = NE/Fb, and c = c$. Therefore 

the equation becomes 

W(l +wyo{x) = Wcw)WTrE/Fbwyo(x) 

= ^((s + c)w)f0(x) 

= V>Tr£/F(5w)/;(x). 

Now let k be an element in U? + ' and not in Fx. Then k is of the form 1 + bv + w 
E 

where v and w are elements in F. From the first case we may assume k is of the form 
1 + bv which is in U* ' . We write 1 + bv as a product of convenient matrices 

l+fcv = 
"1 -Av 
[ v 1 + (s + c)v 

\ r - l D 1 | 
[-1 IJ 

-v/D 
1 -. '][* 

-Av 
1 

where D = det(l + bv) = 1 + (s + c)v + Av2. 
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To complete the proof, it is enough to show that 

(2.4) 
wM D 1 

lj 
[1 -v/D] 
L 1 J 

r i i [1 -Av' 
[ 1 ]fo(x) 

(b(bv))w( r 
- i ]fo(x). 

It is a straightforward computation, using (1.1), that the left side of the equation is 

w 
D 1 

l j 
[1 -v/D] 
[ 1 J 

r i i 1 r]> (X) 

= ^(-vxyyE/Fj]E/F{Dx)\\Dx\\E
/2 

• jE 9~ l(8)\\8\\-l/2iP(-AvDxKE/FS)i> TrE/F(Dx8yo(DxKE/F8)d8. 

We may check that 1 + sv + Av2 = NEip{\ + bv), vp{cv) > d, and so riE/iAP) — 

Vs/fil +sv + Av^Xl + cv) = 1, and since D G jj-^VI^M w e have that D • xNE/FS 6 

^ D / 2 ] i f a n d o m y i f x N ^ e ^ D / 2 ] A l g 0 „F(_Av(D _ ix*N £ / F «) ) > 

(1 -«/2—[(</— l) /2]/2) + [(l+w—[<//2])/2]+0 > O.Soip(-Av(D-l)(xNE/F8)) = 1. 

Note that/, is the characteristic function of Iff ' . Putting rnese all togeuier we have 
that 
(2.5) 

W D -v/D 
1 - 1 

-Av 
1 Y (*) 

i /? 

= \K-™Y1EIIMEIAX)\\X\\E 

• lNE/fie(/rm e-\6)\\8\\E
l/2^-Avx^E/FS)rpTrE/ADx8)d8. 

On the other hand, the right side of the equation (2.4) becomes 

(2- 6) = v» TrE/F(b(bv))lE/FVE/F(x)\\x\\E
/2 

• LEIFi^rm e~x^\n-El2^rEIF{x8)d8. 
For convenience we denote by IL(X) the integral part of (2.5), i.e., 

h<x) = I ^ m 0-\8)\\8\\E
l/2M-AvxKE/F8WTrE/F(Dx8)d8 

and by IR(X) the integral part of (2.6), i.e., 

Hx) = JxNE/fi€utrm 0-l(S)\\8\\E
l/2i)TrE/F(x8)dS. 

We will need a lemma: 
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LEMMA 2.7. Ifx5b~l £ lfE~[d/2\ then both ofIL(x) and IR(x) are zero. 

PROOF OF LEMMA. We have that NE/F(Ul
E

n-[{d+l)/2]) C C$w+1)/2], we can change 

the variable 6 to 5(1 + u) where u G p^-K*-1)/2! and do the double integral. Then 

IR(X) = (nonzero constant) • I'R(X), 

where 
to) = j u ^ m l»E/Fg€l/rm 0- > (5(1 + «)) ||*(1 + u)\\-^ 

• V> Tr£/F(jc5(l + w)) J<5 <iw. 

We have that 

•fue^mF\l+u)\\l + u\\Bl,2il>T*B/Amd«d8. 

Notice that 0- !(l + «) = 0(1 - H) = ipTrE/F{-bu) for w e p ^ - K ^ ' ) / ^ w e s i m p l i l y 
further that 

# t o = LE/^rm 0-l(6)\\S\\-l/2^TrE/F{xS) 

' j u e p x + n - ^ m </> KE/F{(X$ ~ b)u) du dS. 

Since the conductor of \IJTTE/F equals to 2 — d, we have / pi+*-[(d+iy2]^TrE/F((x6 — 

b)ujdu = 0 unless (x8 — b)u G P|~~J equivalently unless (x<S — 6) G w-1/5!-^ = 
p^-n-[^/2] T h e r e f o r e x8b-\ ^ jf-vm i m p l i e s //?(jc) i s z e r o 

Now we check the h(x). Using the same change of variable, we get 

h(x) = (nonzero constant) • I'L(x\ 

where 

We get 

to = Lr^nJx,E/^rm0-^(l +u))\\6(l +u)\\-^ 

• V;(-AvxN£/F(5(l + K)))vTr£/F(ZM(l + uj) dSdu. 

• i>(-AvxKE/F(6)(KE/f(\ + u) - 1)) 

= JxNE/FS€l/rm 0-\6)\\6\\-X/2i,(-AvxKE/It8))xl;TrE/F{Dx8) 

• J „i«-[(̂ i)/2] ipTrE/F((Dx8 - 6)K) rfw<#, 
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because vF(-AvxNE/F(6)(NE/F(l + «) - 1)) = (l - n/2 - [(d + l ) /2] /2) + 

[(1 + n + [d/2])/2] > 0. It is easy to see thatxS - b <£ pl-"-[d/2] implies DxS - b $ 

p\-n-[d/2]^ b e c a u s e SUpp0se o n m e contrary that DxS-be PE~"~[d/2]. Since (£> - \)b G 

j > f — I W 2 H - 2 - cPE-n-ld/\whaveD(x8-b) = DxS-bHD-l)bePE-"-[d/2\ 

thatisxS-beP1-n-ld/2]. 

Therefore f I+„-K^D/2] ipTrE/F((DxS—b)u) du = 0 unlessxS—b G PE~ • Hence 

x6b~} £ lfE ' implies IE(x) is zero. • 

Now we consider the equations (2.5) and (2.6) under the restriction to xSb~l G 
Lfl ' . Then the equation (2.5) is 

W 
D 1 

l j 
[1 -v/D] 
[ 1 J 

r ij 
[-i J 

[1 -Av' 
[ 1 y0(x. ) 

= ^(-vxYiE/FnEiF{x)\\x\\E
12 

• LEIFtei*rm ^^)¥\\~EU2^-^^E/^)^rE/F{Dx6)dS. 

ab'xeif'ldm 

We may write DxS = xS+(D- \)b-(D- l)(x6-b)anduE((D- l)(xS-b)) > 2-d, 
hence tprYrEjF{DxS) = (ipTrEiF(xS))('>pTrE/F(D — l)b). Therefore 

W (M -v/D 
1 

1 -Av 
1 }]fo' (x) 

= M-vx)iPTrE/F((D- l)b)lE/FVE/F(x)\\x\\ 1/2 

• !^EIFi^r)m e~l(SM\El/2^-^VX^E/F5)^TTE/F(xS)dS. 

Jb-<eu7W2i 

We make a change of variable S to bwc ' with u G lfE , 

W 
D -v/D 

1 
r l i r i - A v i ^ , , 
-i i i 

= i>{-vx)i>lrEiF({D-\)b)lElFr)EIF(x)\\x\\ 1/2 

I^NE/FUei/r),2] e l(bwc 1)||x lbu^12 

u€U"E'ld/2i 

• ip(—AvxNE/F(bux~i))ipTrE/F(x(bux~1)) du. 

Here we note vF(Ax ') = 0 and so vF(—AvAx ' ( N ^ u — 1)) > (l — «/2 
-[(</+l)/2]/2) + [(l+ii+[rf/2])/2] > 0. Hence^(-AvxNg/^wx-1)) = ^-AvAx"1) 
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V>(—AvAx-1 CtiEiFu — 1)) = xj)(—A2vx_1). Therefore we have 

353 

W (P . [1 -v/D] r l i 
[ - 1 J 

ri -Av' 
[ I ]> to 

(2.8) = ^ ( -v^( -A 2 vx- 1 )^Tr £ / F ( (D- l ) ^ / ^ ^ - 1 ) ! ! ^ - 1 ! ! - l | | J / 2 

JAx-'N 
-V2 

wG(/[(n+l)/2] 
'f/F1 

On the other hand, the equation (2.6) becomes 

= ^TrE/F(b(.bv))lE/F11E/f{x)\\x\\ 1/2 

• J^E/F«^r/2] ^Wi^Tr^x*)^ . 
u€irE-m 

The change of variable S to bux ' gives 

(2.9) 

= V> Tr£/F(i(6v))7£/Fr/£/F(jc)||x||y2 

= V JxElF{b{bv))lEIFnElF{x)\\x\\f9~\xb-x)\\xb^ \\f 

• U-^E/Fuei/r)m e~l(u)\\u\\El/2<PTTE/F<bu)du. 

Now the proof is completed from (2.4) (2.8) and (2.9) if we show that 

(2.10) K-vxW(-A2vx-l)l>TrE/F((P- l)b) = ^TxE,F{KbV)), 

when AX-'N £ / F M e i f+ 1 ) / 2 ] andu € lfE
l"l2\ 

From N£/Fw e c f ^ 2 ^ 2 1 , we have Ax"1 € L ^ 1 ^ . Since vF{A) = 1 - 2n, 
I/JK*) - 1 - In and* - A e t/];r

2"+[("+1)/2]. We have then ^(-wr'Cx - A)2)> 3w/2 -
[d/2]/2 + In - 1 + 2(1 - In + [(n + l)/2]) > 0, j/|<scv) > [(</ + l)/2] -n+\-d + 
In 12 - [d/2]/2 > 0 and i/^Av2) > [(J + l)/2] - n + 1 - 2M + 3« - [d/2] > 0, hence 
the left side of the equation is 

^(-VxM-A2vx-')i>TTE/F((D-l)b) 

= rj){-vx'\x - A)2)t/'(vx_I2xA)V'(((5 + c)v + Av^s) 

= rp(—2Av + s?v + scv + sAv2) 

= ijj(-2Av + s2v). 
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We note that b2 - A -A(s + c) 
s + c —A + {s + c) 

[d/2]/2 > 0, therefore the right side of the equation (2.10) is 

2 , vF(2scv) > 0andvF(c2v) = 2-2d+3n/2-

ij) TrE/F(b2v) = ?/>(-2Av + s
2v + 2scv + c2v) 

= IIJ(-2AV + s2v). 

This completes the proof. • 

COROLLARY 2.11. With notation as above, there exists a quasicharacter 0e ofEx 

with the property 0e(k) = ^TrE/Fb(k - 1) for k £ if^-M^V1* so that V/(E,0) is 

equivalent with Tl(J%n, tp, b, 0e). 

PROOF. The map k >-> if;TrA/F b(k - 1) is a character of ^ + w ~ [ ( ^ + 1 ) / 2 ] ^ by 
Proposition 1.9. Using Proposition 1.5, we apply the proof of Corollary 2.4 in [K3] here. • 

We denote by n(J3„,V>,£,^?) a supercuspidal representation as in (1.9) with addi­
tional property that 0e(k) = $ TxEjF b(k-\) for k € [/J^K*"1)/^ w h e r e d = m i n ^ ^ 

2(« + l)/3). Since d > (f (0e) + l ) /2 , every irreducible ramified supercuspidal represen­
tation is of the form II(J3„, i/j, b, 0e). 

The generic element b is constructed from the element b which is a dual blob of 0 

with respect to xp TxE/F. Since the conductor of 0 is 1 + 2n — [dE/F/2], b is unique mod­

ulo pl-"-[d^2\ or TrE/Fb is unique modulo ^ " " ^ / ^ V ^ ] and KE/Fb is unique 

modulo PF
 n E/F . We define the following, which extends the definition in Section 3, 

[K3]. 

DEFINITION 2.12. An ^-generic element b of level 1 — 2n is called Weil generic if 
there exists a quadratic ramified extension E/F with 2(n + 1) > 3dE/F and an element b 
in E with vE(b) = 1 — 2n such that 

(0 tr b = TrE/F b + c^/F (mod P F ), 

(ii) detft = A ^ / ^ (mod PF~n~[dE/F,2\ 

PROPOSITION 2.14. Letll = TI(J%„,xl;,b,0e) be a supercuspidalrepresentation. Then 
IT is a Weil representation if and only ifb is Weil-generic. 

We need several lemmas to prove the proposition. 

LEMMA 2.15. Suppose that the pair (E, b) satisfies the condition (2.13). Suppose that 
E\/Fis a ramifiedquadratic extension and for some element b\ inE\ TrEl/Fb\ = TrE/Fb 

(mod ^-"+Kd£IF+l)/2m) and N^^b, = NE/Fb (mod PX^"'2\ Then the pair 
(E\,b\) also satisfies the conditions (2.13). 

PROOF. It is enough to show that cEl/F = cE/F (mod pf~n+[{dE/F+l)/2])/2]). 
The exponents of two differences are determined as dEjF = 
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min(2(i/(Tr£l/FZ?i)+«),2i/F(2)+l j and</F/F = min(2(z/(Tr£/Fft)+w),2?/F(2)+l].From 

the congruent relation TrFl/FZ>i = TrF/Ffc (mod p^-n^d^x)l1])l\ \fVF(jrE/Fb) > 

[(l - n + [(</F/F + l) /2])/2], then from 2(« + 1) > 3</F/F we have 2(i/(Tr£/Ffci) + /i) > 

dE/F, hence rfF/F = 2z/F(2) + 1 and also dEl/F = 2i/F(2) + 1 = dE/F. If i/F(TrF/FZ?) < 

[(l - n + [(</F/F + l) /2]) /2] , then i/F(TrEl/Fbi) = vF(TrE/Fb), hence dEl/F = dE/F 

always. 

Again from 2(n + 1) > 3d#/F a simple computation show that 

[(l - n + [(</F/F + l)/2])/2] < 1 - [(dE/F + l)/2]. Therefore from the duality relation, 

in other to show that cEl/F = cE/F (mod PF " E/F ), we only need to check 

that rjEl/F = f]E/F on UF
 E/F The character r\EjF under the restriction to 

c4" [ ( 1 _ w + [ (^+ 1 ) / 2 ] ) / 2 ] is completely determined by the data 

KVE/F) = dE/F, r]2
E/F = 1 and r/F/F(l + xlxE/Fb + x2NF/Ffe) = 1 for x in F with 

2i/F(x) > 2n - [(l - n + [(dE/F + l)/2])/2J. Since MxTrEl/Fbi - xTvE/Fb) > 

(2n - [(1 - n + [(</F/F + l ) /2] ) /2] ) /2 + [(l - n + [(</F/F + l) /2])/2] > </F/F and 

^ ( ^ N ^ - ^ N ^ ) > 2n-[(l-n+[(dE/F+l)/2])/2]+l-n-[dE/F/2] > dE/F, 
r]El ip satisfies the same data hence we are done. • 

Let E/F be quadratic ramified with 3dE/F < 2{n + 1) and b an element of E with 
vE(b) = 1 — 2n. We denote by W(E, b) the set of equivalent classes of representations 
W(£, 0) where 0 is a character of Ex such that 0 has a dual blob 6 and r]EfF{7rF)9(7rF) = 1 
for some fixed prime element TTF in F, so that we fix the central character of W(£, 0) 
which is trivial at irF, see (1.1). 

LEMMA 2.16. The set W(£, b) consists of{q - l)grw~K^+1)/2] jistjnct representa­
tions if 2(n+\) > 3dEiFand(q-\)qn~[{dE/F+l)/2y2distinctrepresentationsif2(n + l) = 
3dE/F. 

PROOF. The number of choice for 0 is [UE : ^ ^ V * ) / ^ = ^_ i ) ^ - [ ( ^+ i ) / 2 ] 

Let r be the nontrivial element of the Galois group of E/F. Then 9 = ST if and only if 

b = bT (mod pl-*-ld*/rM) if and o m y if v ^ _ ^ > x _ n _ [dE/F/2] if and only 
if -2n + dEjF > 1 - n - [dE/F/2] if and only if 3dE/F > 2(n + 1). When 3dE/F = 

2(n + 1), the number of distinct representations in W(£, b) is (q - \)q
n-[{dEip+l)l2]/2 by 

Proposition (1.2) (3). • 

LEMMA 2.17. Suppose that there are two pairs (E\,b\) and (£2,62) which satisfy the 

condition (2.13). IfeitherTrEl/Fb\ ^ TxEljFbi (mod TrEjFPE
 n E/F )orNEl/Fb\ ^ 

NE2/F°2 (mod NE/FPE
 n E/F ), then the two sets W(E\,b\) and W ^ , ^ ) are dis­

joint. 

PROOF. See Lemma 3.4 in [K3]. • 
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PROOF OF PROPOSITION 2.14. Suppose b is Weil-generic. Denote by W(£) the union 
of W(is, 6)'s such that b satisfies the condition (2.13). It is easy to check that 

rp[(l-«+[(4/F+D/2])/2] x p\-n-[dE/F/2] m ^ pl-n-[dE/F/2] ^ p\-n-[dE/F/2] 
L F F Ei J r E hj I r E J 

is equal to 1 if2(w+l) > 3d£/Fandisequalto2if2(«+l) = 2>dE/F. From Lemma 2.16 and 
Lemma 2.17, the cardinality of W(5) is (q - \)qn-^dE/f+l)/2\ Let n ( ^ , i/>, b) be the set of 
equivalent classes of representations of the form H(J%„, xjj, b, 0e) such that n ( J^ , x[), b, 0e) 

has a central character which is trivial on irF. From Corollary 2.11, the set W(6) is con­
tained in !!(%„, ijj,b). But from Proposition 1.9, (2), the cardinality of n(J3„,V>,£) is 
[UE : ^

+ w-^/ '+ 1>/ 2]] = ( ? _ lyp-l(dE,t+i)m9 t h a t is> two sets are equal. Hence we are 
done. • 

We summarize the conclusion of this section. 

THEOREM 2.18. Suppose that H(J%n,il),bw,Oe) is an irreducible Weil ramified super-
cuspidal representation with Weil-generic bw. Let E be a ramified quadratic extension 
ofF and b an element ofE with relation (2.13). Then there exists a quasicharacter 0 
ofEx such that the dual blob ofOisb and the representation W(£, 0) is equivalent to 
n(j^,^bw,ee). 

3. Preliminary results. Let F be a 2-adic field and L a Galois totally ramified field 
extension of F with (2,2)-Galois type, i.e., TL/F ^ Z/2Z 0 Z/2Z. Let dL/F be the 
exponent of the different of L/F. Then from Galois theory there are three intermediate 
fields of L/F, say E\, E2 and £3. Each one is a quadratic extension of F. 

PROPOSITION 3.1. We fix £3 such thatdLjE3 > dL/El anddL/E3 > dLjEl. Then we 
have the following: 

0) dL/Ex = dL/E2 = dE^F. 

(2) dExjF = dE2/F-

(V dL/E3 = 2dEl/F-dL/El. 

(4) dL/Ex >
 dL/E2 >

 dL/E3 >
 dE3 /F and dL/F are «# even numbers. 

(5) dEl/F = 2,4,...,2vF(2)or2vF(2)+I. 

PROOF. Since TL/F is finite abelian, by the Hasse-Arf theorem, every jump occurs at 
an integer in the upper filtration of the Galois group, see [S, IV, Section 3], so say YS~,XF D 

Ts^}p and Ts~}pl D r£yJL+'+, where s and t are integers. The integer s is greater than or 

equal to 2 because the extensionL/Fis wildly ramified and the integer t is greater than or 

equal to 0. LetK3 be the intermediate field that corresponds to r r ^ ' , i.e., r^"1"' = TL/Kl. 

Since rfft* = rL/jF>_1+2/ = TL/K^_l+2t, and TL/K^+2t = 1, we have dLjKz = s + 2t, 

see [S, IV,Section 3]. Suppose that an element a of TL/F is not in r£^ + ' . Then {1, a} is 

a subgroup of TL/F9 with the corresponding subfield, say K\. Since a fi r ^ ] r
+ , Ts£~,lK D 

TS
L,K = 1 , therefore dLjKx = s. The other subgroup, say TLjKl, ofTL/F has the same 
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property as 1^/^ , so dLjKl = s. Here dL/K3 is the largest. Hence in terms of Et we have 
that dL/El = s, dLjEl = s, dLjEi = s + 2t. 

From properties of subgroups of a Galois group, TE^F = rL/F/rL/E3 = {l,cr}, and 

^SE)F -̂  ^E IF = 1' w e n a v e t n a t ^ 3 / F = s- ^ is known that dLjF = dLjE. + 2dE.jF 

for each /, because the ramification index of Ej/F is 2, so that <4/F = 3s + 2/, and 

^EI/F — ̂ E2/F = s + t. This proves (1), (2), (3) and (4). The property (5) is well known. • 

PROPOSITION 3.2. LetL be a quadratic ramified extension ofE. Let X/JE be an additive 
character ofE with conductor f (Vte), and let 0 be a multiplicative quasicharacter ofEx 

with conductor f (0). Let bbea dual blob of 6 with respect to ^E. Then 
(1) ijjE TTL/E is an additive character ofE with conductor2\(^E)—dL/E, andQ6NLjE is 

a multiplicative quasicharacter ojLx. The conductor \(^°^L/E) °f^°^L/E & 2f (0)—dL iE 

ifKO) > dL/E, f (0) if\(Q) < dL/E and less than or equal to f (0) i/f (fl) = dL/E. 
(2) Assume that f (0) is not equal to dL/E. There is an element (3 in L such that b + /3 

is a dual blob of 6 o NL/E with respect to xpE TTL/E and *//,(/?) = 2f (t/te) — dLjE — f (0). 

PROOF. (1) It is known that TrI/£(P^) = p ^ / * ) / 2 ] for every integer t, see [S]. So 

# T r v ^ f ( « - ^ ) = #(/>f*>) = 1 a n d ^ T r ^ ^ ^ ' " 1 ) = *rf*^1) * 

1. Hence f ( ^ T r z / £ ) = 2 f (^ ) - dL/E. From [S, V, Section 3], NI/I?(££) = l^t+dl/E)/2] 

ift > dL/E andN I /£(C4) = UE iff < dL/E - 1 andN I / £ (^ L / £ _ 1 ) C lfE
/E~~\ With a 

similar argument we have the result of the second part. 

(2) For an element x E p f (^°Nl /£ )+1) /2 ] , N I / £(1 +JC) = 1 + TrL/£(x) + HL/E(x) E 

4^>+1>/2l Therefore 

«oN L / £ ( l + x) = ite*(N I /£(l + *) - 1) = {^EbTrL/E(x))(^Eb^L/E(x)y 

The map x i—> ̂ EbNL/E(x) is an additive character on PL ° i /£ , because 

il>EtoiL/E(x + J ) = 1>Eb(KL/E(x) + N I /£(y) + Trz/£(xyT)) 

= {^EbKL/E(x))tyEbKL/E(y)l 

where r I / £ = {l , r} , noting that TrL/E(xyT) E PJf}. It is known that NL/E(I*L/P%1) = 

Pt
E/Pt

E
l as a set, and so the conductor of this additive character is f(0). By topologi­

cal duality, there is an element /3 in L with I/L(J3) = 2 f ( ^ ) — dLjE — f(0) such that 

i>E TTL/E(0X) = 1>EbliL/E(x) for JC E p]^ o N i /* ) + 1 ) / 2 ] . Therefore we have that 

0oN L / £ ( l + *) = # T r I / £ ( ( * + /?)*) for* E p f *oN^)+1)/2]. 

Let F be a 2-adic field and let E and K be two different quadratic ramified Galois 
extensions of F. Suppose that the Galois group TK/F ofK over F is {1, r} , and the Galois 
group TEiF ofE over F is {1, a}. Then the field XE is a (2,2)-type Galois extension of 
F with the Galois group {1, r, a, ra}. 
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PROPOSITION 3.3. Let b be an element ofE with VE{D) = 1 — In and write basa sum 
ofa-KKE andh where a andh are elements ofK. Then VKE^KE) = 1 —4n—dKE/K+2dE/F 

and i/KE(h) = 2 — 4n. 

PROOF. Since vE(b) = l—2n, VKE{O) = 2—4n which is an even number so VKEQI) < 

VKE{anKE) and VKEQI) = 2 — An. We have b = airxE + K so bT = aif^ + h. Therefore 
VKE(bT-b) = VKE(a(/KT

KE-7rKEj) = VKEW+dw/K'We maY write ° = xirE+y, where x 
andy are in F. Then bT = xifE +y, hence vE{bT — b) = VE(X{-KT

E — irE)) = vE(x) + dEjF = 
—2n + dE/F. Comparing two equations, we have I/KE(O) — —4w — d^^ + 2dE/F. m 

We will study the element h in K and a quasicharacter of Kx derived from h. We have 
vxih) = 1 — 2n and will assume 1 + 2n > dKEiE + dE/F, which is the only case we need 
later. There is a quasicharacter g of AT* whose dual blob is h with respect to ijj TrK/F, 

so that the conductor of g is f(g) = \+2n — dKjF and g(k) = X/J TrK/F(h(k — 1)) for 
k E if+n-Wzir+l)l2\ T h e n w e h a v e t h e following: 

PROPOSITION 3.4. The quasicharacter g o N^/K O/KEX has the conductor 2+4n — 
dfCE/F- There is an element 6 in KE such that h+5 is a dual blob ofg oN^^ with respect 
to xjj TXKE/P and VKE($) = 3 - 2n - d^^ - dK/F. 

PROOF. First show that f(g) > */*£/*> ie> 1 + 2« — dK/F — d^^ > 0. There are 
three cases for the values dKjF, dEjF by (3.1) as follows: i) dKjF = s + t, dEjF — s\ 
ii) dKjF = s, dE/F = s + t; and iii) dK/F = s + t, dEjF = s + t, where s is a positive even 
integer and tis a nonnegative integer. Then we have respectively in case i) dKEjK = s, 
dKE/E = s + 2t\ in case ii) d^^ = s + 2t, d^/E = s; and in case iii) d^^ = s, 
^KE/E = s- Using the assumption 1 + 2n — d^^ — dE/F > 0, and comparing case 
by case, we have f(g) > d^^. Therefore, by the Proposition 3.3, the results follow 
immediately, i.e., \(g o N^/*) = 2\(g) - d^^ = 2 + 4n - d^/p, and 1/^(6) = 
2f(i/> Tr^/F) - df^/K - \(g o N^/*) = 3 - 2n - d^^ - dKjF. m 

4. Lifting of supercuspidal representations of GL2. It is a conjecture of Lang-
lands that there should be a natural bijection between the set S{GLM(F)) of equivalent 
classes of irreducible admissible representations of GLM(F) and the set SN(WF) of equiv­
alent classes of N-dimensional semisimple Deligne representations of WF. Bernstein and 
Zelevinsky [Z] had shown that we may restrict our attention to the set 5°(GL#(F)) of 
equivalent classes of irreducible supercuspidal representations of GL#(F) and the set 
SjfiWf) of equivalent classes of N-dimensional irreducible continuous representations 
of WF. The bijection O should satisfy the following conditions: 

(i) 0 ( I 1 0 x ° det) = O(Il) ® \, for every quasicharacter x of F x , 
(ii) cju = det3>(TI), where UJU is the central quasicharacter of n , 

(iii) L(0(n)) = L(TT), e(«D(n)) = e(TI). 
For the definition of L-functions and e-factors, see [Dl], [GJ]. Suppose AT is a field ex­
tension of F. From the conjectural correspondence, there is a map called a lifting &K/F 
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from 5(GL#(F)) to 5(GL#(£)) SO that the following diagram commutes: 

S{GLN(KJ) I - * - f 5 * — SN(WK) 

lifting restriction 

c(r*i / cVt Langlands correspondence 

J ^ G L A T C / O J — • 5N(WF) 

We will collect properties on the correspondence, restriction and lifting, for reference 
see [JL], [L], or for a convenient summary see [GL]. 

PROPOSITION 4.1. Given a Weil representation W(£,0) ofGL2(F), the Langlands 
correspondence gives that 

®(W(£,fl))=Ind|gfl. 

For the one dimensional case we have that: 

PROPOSITION 4.2. If\ is a quasicharacter of GL\(F), then &K/F(X) = X ° NA:/F-

The restriction map of SI(WF) to SI(WK) gives the following: 

PROPOSITION 4.3. LetK/Fbe a quadratic extension. If a representation a ofSi(WF) 
is imprimitive, i.e., a = Ind^F 0, for some quadratic extensionE/Fanda quasicharacter 
0 of E*, then 

(1) Res^(Ind^ 0) = I n d ^ 0 o N ^ / £ ifE ± K, 

(2) ResgOndjg 0) = 0®(TifE = K, TK/F = (r>. 

PROPOSITION 4.4. (1) Given a Weil representation W(£, 0) ofGL2(F) and a qua­
dratic extension KjF which is different from E, 

&K/F(WE, 9)) = V/(KE, 6 o Ha/E). 

(2) Given an admissible representation IT ofGLiiF) and a quasicharacter \ ofFx, 

2*/F(n <8> X ° det) = &K/F(U) (8) x o NK/F o det. 

It is known that when A' = 2i,the £K/F(yV(E,0)) is not a supercuspidal representation. 
When N=2, for the induced representation form, the lifting is known from the inducing 
data , see [K2], [P], except the case that F is 2-adic and K/F is wildly ramified. We 
characterize the generic element of the lifted representation in this remaining case. 

Recall some notations before we prove the main theorem. If I1(J^, i/>, bw, 0e) is a rami­
fied Weil supercuspidal representation, then it is equivalent to W(2s, 0) for some quadratic 
ramified extension E/F and a quasicharacter 0 ofEx such that if b is a dual blob of 0 in E 
then bw and b satisfy the relation (2.13), by Theorem 2.18. Let K be a quadratic ramified 
extension of F which is different from E. Then there is an element /} in KE so that the 
quasicharacter 0 o Nj^ iE of KEX has a dual blob b + /3. We may write b = airxE + h with 
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a,h £ K. Then there is a quasicharacter g ofKx whose dual blob is h and there is an 
element 6 in KE so that the quasicharacter g o N^/x of KEX has a dual blob h + S. (See 
Section 3). We denote a principal order M„ in GL2(A~) by setting that for every integer k 

r p[(*H)/2] pl-«+[*/2] -, 

[ pn+[k/2] p[(k+l)/2] & 
K L K 

THEOREM 4.5. Let Fbea 2-adic field. Suppose that IT is an irreducible Weil super-
cuspidal ramified representation ofGLiiF) of the form H — T\(%n-> ip, bw, 9e)<S>x° det 
where bw is a Weil generic element and 9e is a quasicharacter ofEx = F[bw]x such 
that 9e = ip^w on U^ n E/F . Let Kbea quadratic ramified extension ofF which is 
different from E. Assume 2(n + 1) ^ 2dK/F + dEjF. 

Then the lifting 2 ^ ( 1 1 ) of IT is an irreducible Weil supercuspidal ramified represen­

tation of GLi{K) of the form 2K/F(TI) = n( .%, $, 5,0)®x °det for some quasicharacter 

S of K[B]X such that: 
(i) if 2(/i + 1) > 2dK/F + dE/F, then 

N = l + 2 n - • dKE/Kl^ • 

xjj = \l> TTK/F ITK 

' dK/F - dEjF> 
lK/F 1-4 

1 TtKE/xb + c^ 
where b = TT^/F (aitKE + j3 _ 5) and 

(ii) if2dK/F + 1 < 2(/i + 1) < 2cfe/F + rf£/F, then 

^ = ^Trif/F7rAr 

where 5 = 7r^//r * (<Z7T££ + (3 — 6) and 

fr/F 

6 = 
-NKE/K° 

^KE/Kb + Cj; 

dK/F~l . 

X = Q ' X ° NK/F-

(Hi) if 2(/i + 1) < 2dK/F + 1, then 

N=n^ = il)TxKiF>KK 
\-d> lK/F 

b = 
1 Tr 

~^KE/KD 

KE/Kb + C^ 
where 5 = 7r//F (6 + /3) and 

X = X ° % f . 

PROOF. Let IT = n ( j ^ , ̂ ;, 6W, 0C). From the assumption that 5^ is Weil generic, 
there exists a ramified quadratic field E and an element bofEso that ft and bw satisfy 
the relation (2.13). Then IT is equivalent with W(£, 9) for some quasicharacter 9 ofEx 

whose dual blob is b, by Theorem 2.18. From the Proposition 4.4, the lifting of W(£, 9) 
is that ZK/F(W(E, 9)) = V?(KE, 9 o N^ / z r ) . 
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Consider the case (iii) first: Suppose 2{n + 1) < 2dK/F + 1. Since 2(n + 1) > 3dE/F, 
<JE/F < dxE/F, so f(0) = 1 + In - dE/F < 2dK/F - dE/F = d^^. By Proposition 3.2, 
f (0 o ^KE/E) = f (0) = \+2n- dKEjK. Therefore f (0 o N ^ / £ ) > 2dKE/K - 1 and 
f (0 o NKE/E) + dE/F is odd. These two conditions imply that 0 o N ^ / ^ is not of the 
form poNKE/K for some quasicharacter p ofKx. Because if 0 o N ^ i E = poNj^^, then 
K0°NKE/E) = KP°NKE/K) which is bigger than d^K- S o KP°NKE/K) = ^KP)-^KE/K' 

Wehavef(0oN££/£) = 2\{jp)—dKEjK which contradicts the fact that f ^ o N ^ / ^ + d ^ / ^ 
is odd. By Lemma 1.3 and Proposition 1.2, the representation W(XE,0 o N^ /^ ) is a 
supercuspidal Weil representation. By Proposition 3.2, the dual blob of 0 o NKE/E is 

b + /} with respect to %j) Tr£gyF or ir£/F (6 + /J) with respect to V> Tr^/F ^ K/F Tr^/^. 

Here the conductor f(#) = 1 where $ = ^TTK/ETT' K/F. Since I/KE(^K/F~ {b + /?)) = 

VKE(F£IF f3) = 1 — 2«, we may apply the Proposition 2.1, and we are done. 

In case (i), we have 2(« + 1) > 2dK/F + dE/F. Write b = 0 7 ^ + A where a and h 

are elements of K. There exists a quasicharacter g ofKx whose dual blob is h. Then the 

quasicharacter g o ̂ KE/E has a dual blob h + 6 for some 5 in ££ . (See Proposition 3.4). 

We have f (0 o N ^ / £ ) = 2f (0) - d^E* a n d write # ° ^KE/E = $ ' Q ° N ^ / * where 

0 = 0o NKEJE - (g o ^KE/E)~1 • Since b + (3 — (h+8) — WKKE + /? — <S, we have that 

0(k) = 1>TTm/P(a7rKE+p-W-l) = ^ T ^ / F 4 " ^ / F T r ^ ^ T r ^ ' V ^ X E + ^ - ^ - l ) 

for it G lf^~dKE/E/2. Let 5 = ^^(CWKE + /? - 6). We may check that in this case 

1 + 2n > dfa/E + dEjF- Hence UKE(B) = VKE(-K£IF~ a-KKE) = - 1 - 4« - dj^/K + 

2 ^ / £ + 2dE/F. Now f(0) = 2 - ^ / ^ - VKEQ)) = 3 + An + 2 ^ / F + 2J£/jP. We have 

f (0) > ^KE/K — 1 and f (0) + d^^ is odd. Therefore W(A£, 0) is a Weil supercuspidal 
-NfCE/Kb 

1 ^KE/Kb + C^ 
is of level 1 —2Af where representation, and the generic element b = 

N= l+2n — df^iK/2 — dKjF — dE/F. This completes case (F). 

Now case (ii): Suppose 2dK/F+1 < 2{n +1) < 2dK/F + dE/F. From 2(n +1) > 3</E/F, 

we have rf^/F < dKjF. Hence by Proposition 3.1 2dKjF — d^jE + ^ / F ? so 1 + 2« > 

dfCE/E+dE/F- Therefore we take the same 5, so 0(k) = ijj TrKjF ^ K/F Tr^ /^ 5(A:— 1) for 

k G u S ^ ^ a n d w c h a v e i / j ^ i ) = VKE^K1'"1 P) = ^In^d^E-d^E-dEjE = 
1 - 2n. Therefore f (0) = 1 + 2n - d^^. We may check that f (0) > 2dKE/K - 1 and 

f (0)+dxE/K is odd using d^^ = dE/f> Hence b produces the generic element b of level 
\—2N where N=nin this case. This completes the proof of the theorem. • 

In the case 2(w+1) = 2dK/F+dE/F, f (0) could vary from 0 to 1 +2H—d^jK- Hence the 
lifted representation may be not supercuspidal. We need further information to analyze 
the lifted representation, for example the relation between 0 and 0. 
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