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Abstract

The use of repeated measures analysis of variance (ANOVA) options for the analysis of in vitro
ruminal fermentation gas production profiles is illustrated. Because of the different variances
and covariance structures among profile observations, ordinary ANOVA for more than two-
time points is not recommended. To mitigate this problem, the Greenhouse–Geisser epsilon cor-
rection can be applied to reduce the degrees of freedom, inflated by violation of the sphericity
assumption, for F ratio probability calculations. After this correction, the Box–Greenhouse–
Geisser ANOVA (modified ANOVA) layout appears similar to the layout of a split-plot design
ANOVA with whole plots divided into subplots (incubation time). Any F tests in the main plot
part are valid but F tests involving the time factor from the subplot part needmodification because
time factor, by its very nature, cannot be allocated at random.ApplicationofmultivariateANOVA,
distance multivariate ANOVA, ante-dependence and mixed model analysis are also considered.
All these options lend themselves to wide application in the applied biological sciences.

Introduction

To enhance in vivo capacity for animal feed evaluation, the use of the in vitro gas production
(GP) technique has increasingly spread over the last decades. Following on from the manual sys-
tems of, e.g. Menke and Steingass (1988) and Theodorou et al. (1994), the capacity of the in vitro
GP system of Theodorou et al. (1994) was enhanced by a semi-automation modification
(Mauricio et al., 1999). Further progress was made with the arrival of commercial systems
such as the ANKOM equipment (ANKOM, 2015). Moreover, in addition to inoculum derived
from rumen fluid, further research has shown that inoculum (microbial and fungal) from non-
ruminants and also from faecal matter are viable options (El-Meadaway et al., 1998; Mauricio
et al., 2001; Nielsen et al., 2002; Lopez et al., 2007). The spectrum of use of the in vitro GP tech-
nique now includes characterization of human diets and diet components using inocula from pig
(Williams et al., 2011) and human faeces (Lu et al., 2022). The effects of substrate and inoculum
treatments on in vitro GP fermentation profiles have been studied with respect to model para-
meters and functions of those parameters (France et al., 1993, 2000; Dhanoa et al., 2000). In
parallel, analysis of variance (ANOVA) of GP profile data at each time point has also been
undertaken. However, ANOVA without accounting for ante-dependence associations will only
give gross treatment effects rather than the net effects at those time points in the GP profiles.

Box (1950), citing Wilks (1946), illustrated a compound symmetry test of the hypothesis
that all variances (diagonal values) and all covariances (off-diagonal values) are respectively
equal (matrix V0) v. the alternative hypothesis that all variances (diagonal values a, b, c)
and all covariances (off-diagonal values d, e, f ) are (respectively) not equal (matrix V1).
Illustrating for a case of three-point profile-variates:
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a d d
d a d
d d a
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Box (1954a, 1954b) subsequently defined an index of sphericity (εBox) to check for this sym-
metry, obtained following application of the formula (from Abdi, 2010):
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i
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Here ζij are entries (row i, column j) in the population variance–
covariance matrix and α is the number of profile samples.

Following the work of Box, Greenhouse and Geisser (1959)
proposed a notation for V1 by assuming that each individual pro-
file is a random vector sampled from a p-variate normal distribu-
tion with an arbitrary variance–covariance matrix (Δ as on left
side below) with further assumption that the p-variables have
the same metric which is necessary if one considers that group
profiles have the same shape (Δ on the right side below).
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In the case of growth curve and repeated measures profiles, cor-
relations among the near-time observations tend to be larger com-
pared to observations that are a greater time apart. That means the
profile data variance–covariance matrix is likely to be similar to V1

(or Δ on left) rather than V0. This being the case, Greenhouse and
Geisser (1959) showed that F ratios involving the time factor var-
iances will become biased and will point to lower F probability
values. To mitigate the problem, they proposed a (multiplicative)
epsilon (ε) correction for degrees of freedoms prior to entering
F distribution tables to read F probability values.

Greenhouse and Geisser (1959) further discussed how the dis-
tribution of F values is affected by various elements of the vari-
ance–covariance matrix and hence developed their epsilon
correction to reduce degrees of freedoms before calculating F
probability values:

1 = p2(�stt − �s..)2

(p− 1)

[∑∑
s2
t† − 2p

∑
�s2
t† + p2�s2

††
]

(1)

In this equation, st†are the elements of the matrix Δ, �stt is the
mean of the diagonal terms, �st†is the mean of the tth row (or
tth column), �s†† is the grand mean, and p is the number of
profile samples. For any p-time point profile, the lower bound
of epsilon will be 1 = 1/(p− 1) and it is independent of vari-
ance–covariance matrix values (the authors suggest its use when
profile time-points are greater than the design units net of profile
samples; design units = number of profile samples × number of
replicates). However, actual epsilon value based on profile sample
data needs to be calculated (using Eqn (1) above and the method
described in Abdi, 2010) if net design units or subjects are greater
than the profile time points (Greenhouse and Geisser, 1959).

When the epsilon estimate is close to unity, the Greenhouse–
Geisser correction tends to be conservative because of their ε
value being an underestimate whilst the correction of Huynh
and Feldt (1976) tends to overestimate ε (Abdi, 2010).
Therefore, recommended practice is to use the Greenhouse–
Geiser correction if ε < 0.75 but use the Huynh–Feldt correction
if ε > 0.75. The formula for the Huynh–Feldt correction (from
Abdi, 2010) is

1̃ = s(a− 1)1̂− 2
(a− 1)[s− 1− (a− 1)1̂]

where 1̂ is the estimate for ε; s the number of subjects; and α the
number of profile samples.

The objective of our work was to illustrate the use of a modified
ANOVA procedure (modANOVA) using the Genstat procedure
AREPMEASURES (Payne, 2022), which produces an ANOVA for
repeated measurements. The procedure modANOVA incorporates
the refinements proposed by both Box (1950) and Greenhouse and
Geisser (1959), which are discussed above. Various aspects of rele-
vant methods are simply described but more mathematical details
can be found in the cited references. Along with modANOVA,
other approaches such as ante-dependence analysis, multivariate
ANOVA or residual maximum likelihood parameter estimation in
mixed models, provide suitable alternatives for the analysis of
repeated measures structured data for the purpose of treatment com-
parisons. Raw GP profile data are repeated measures in nature, and
these alternatives can be applied for elucidating the effects of sub-
strate, additives, treatments or inocula on rumen fermentation
kinetics. It should be stated that modelling the GP profile trends of
design unit curves remains a valuable tool for the enhancement of
experimental information and scientific knowledge in general.

Materials and methods

Handling of GP data profiles resembles, as for growth curves,
repeated measurements and sometimes multivariate analysis.
There are choices that can be made for the comparison of sub-
strate and inoculum treatment effects. Some of the options avail-
able are as follows. These are implemented herein using the
statistical software Genstat (VSN International, 2022). Note that
the R Project software and SAS, among others, also provide
these options.

Option 1

The GP curve for each design unit over the entire incubation per-
iod (usually until the upper asymptote is quasi-reached) is mod-
elled with the use of some appropriate function and thereafter
ANOVA can be used to compare treatments on the basis of fitted
model parameters and measures derived from them. For this pur-
pose, the specially designed model of France et al. (1993) or clas-
sic growth functions can be used. For the analysis of non-standard
GP profiles, recent publications by Powell et al. (2020) and
Dhanoa et al. (2021) cover analysis of monophasic, multiphasic,
hybrid-phasic and numerical modelling. Model fitting and
ANOVA can be combined by the use of grouped nonlinear regres-
sion (Heitjan, 1989), also called parallel curve analysis or simply
regression-ANOVA.

Option 2

Using raw GP data, modANOVA based on the methodologies of
Box (1950) and Greenhouse–Geisser (1959) for dealing with the
effects of unequal variances, covariances and correlations among
repeated profile measurements, is a suitable option unlike the use
of ordinary ANOVA without accounting for correlations among
repeated profile measurements taken for all the experimental
units ( = sum of replicates for all profile samples = subjects). The
modANOVA layout will be similar to that of split-plot design
ANOVA (sometimes called split-plot-in-time) but there are
important differences with respect to the subplot part F-ratios
(see above). The Genstat procedure AREPMEASURES (Payne,
2022) implements the above modifications and produces an ana-
lysis of variance for repeated measurements and growth profiles
as is the case with in vitro cumulative GP data.
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Option 3

Another methodology for ANOVA-like analysis is ante-
dependence analysis (Gabriel, 1962; Kenward, 1987), which also
deals with auto and serial correlation in the inter-profile curve
trend. Correlation order-based tests of treatments can point to
any emerging or short-term and overall effects. Once the ante-
dependence order is determined, e.g. using the Genstat procedure
ANTORDER (Ridout and Payne, 2022), this analysis is essentially
equivalent to standard ANOVA for a given time point with (for
example) previous one or two time points as covariates. More
detailed analysis is provided by using Genstat procedure
ANTTEST (Payne and Ridout, 2022). Both the procedures
ANTORDER and ANTTEST allow actual times of profile samples
to be used, thus obviating the need for data to be recorded at
equal time points.

Option 4

Using recorded raw data
For the analysis of one or more dependent variables as affected by
multiple predictors, multivariate ANOVA (MANOVA; Chatfield
and Collins, 1986) is a standard method. Growth or repeated
measurement profiles can be analysed with the use of
MANOVA (Payne and Arnold, 2022) and it does not require
the assumption of sphericity. However, if the time points of the
profiles are greater than the main plot residual degrees of freedom
(DF =N – g; where N = subjects or design units and g = profile
samples) then MANOVA cannot be used. This situation is quite
common with GP, growth and repeated measurement profile
data. However, ante-dependence analysis (Option 3 above) and
mixed model analysis (Option 5 below) can still be used.
Furthermore, as an alternative, Option 4b via the use of the
inter-data-unit-based distance matrix is also available.

Using the data-based distance matrix
Analysis of multivariate distance methodology devised by Gower
and Krzanowski (1999) is implemented in Genstat via the proced-
ure MVAOD (Payne and White, 2021). This option provides a
breakdown of the sums of squared distances between the design
units, similar to that provided for sums of squares in an analysis
of variance. The squared distances between the units in a symmet-
ric matrix are either input or calculated from the profile data. The
methodology implemented in MVAOD can be regarded as pro-
viding an alternative to MANOVA for units whose attributes
are not all continuous variables. This method permits profile sam-
ples greater than the design residual degrees of freedom. For treat-
ment comparison, a permutation-based probability calculation for
treatment effects is available.

Option 5

Residual maximum likelihood (REML), an algorithm for variance
parameter estimation in linear mixed models (Patterson and
Thompson, 1971), can also handle repeated measurement
(hence GP) profile data. In the statistical software Genstat,
mixed model features for analysing repeated measurements
using REML include: (i) time points variate, (ii) treatments for-
mula, (iii) additional random terms formula, (iv) dealing with
equally spaced or irregular time-points, (v) model for correlation
within subject across time, (vi) allowance for heterogeneity across

time, and (vii) additional uniform correlation within subject (for
details see VSN International, 2022).

Data set 1

Gliricidia trees provide a browse plant and source of fodder for
ruminants in the tropics. The data set reported by Lister et al.
(2000) embraced 25 Gliricidia provenances originating from
nine countries (one provenance unidentified) but were grown at
a single site in Honduras (El Zamorano at 14° 1′ N, 87° 2′ W).
Full details are given in Lister et al. (2000) where near-infrared
spectra-based analysis is described. Samples from these trees
were incubated in vitro for up to 140 h using ovine rumen fluid
as the inoculum, and cumulative fermentation GP was recorded
at 3, 6, 9, 15, 19, 24, 27, 33, 38, 44, 51, 59, 69, 82, 96, 120 and
140 h (17 time points, see observed values in Fig. 1). France
et al. (1993) used some of the GP curves to test the fit of the
Mitscherlich equation to GP data over the incubation time
span, so that effects of country of origin on the model parameters
(asymptotic GP or half-life from fractional fermentation rate)
could be assessed. This data set is used to demonstrate
modANOVA using AREPMEASURES (Option 2). For this
option, the number of time points must be less than the degrees
of freedom for the experimental error applicable to whole unit
comparisons (in this particular case equal to the total number
of provenances minus the number of different countries of origin,
i.e. 25–10 = 15). Thus, only 14 incubation times could be used,
and GP values recorded at 69, 120 and 140 h were excluded
from the original data set to run the repeated measures
ANOVA (Option 2).

Data set 2

These data were generated in three experiments reported by
Mauricio et al. (2006) using a semi-automatic in vitro GP tech-
nique (Mauricio et al., 1999). In each experiment, the inoculum
used was bovine rumen fluid and 15 GP profiles were obtained
by recording cumulative GP at 2, 4, 6, 8, 10, 12, 16, 19, 24, 30,
36, 48, 60, 72 and 96 h of incubation. In Experiment 1, which
used five replicates and four treatments (cutting age: 56, 84, 112
and 140 d), the substrate was Andropogon gayanus hay. The data
(Data Set 2a) are used for MANOVA and distance-MANOVA
(Option 4a and 4b, respectively). Experiment 2 examined four trop-
ical grasses: elephant grass (Pennisetum purpureum), sugar cane
(Saccharum officinarum) and two hybrids of sorghum with
Sudan grass (Sorghum bicolor × Sorghum sudanense) using three
replicates. These data (Data Set 2b) are used for ante-dependence
analysis with Genstat procedure ANTTEST (Option 3).
Experiment 3 examined silages of sunflower (Helianthus annuus)
cut when 100% of the grains were mature. Four genotypes were
considered (Rumbossol 91, Victoria 627, Victoria 807 and
Mycogen 93338) and three replicates per genotype were used.
These data (Data Set 2c) are used for mixed model analysis using
the REML algorithm (Option 5).

Results

Modelling the trends of design units generated by repeated mea-
surements adds to the information contained in the raw data in
terms of kinetics, model parameters and meaningful functions
of those parameters (France et al., 1993; Powell et al., 2020;
Dhanoa et al., 2021). This is illustrated in Fig. 1 for Data Set 1,
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with the lines showing the fitted curves when the diminishing
returns equation of Mitscherlich (1909) is fitted. Results obtained
with grouped nonlinear regression (Option 1) are detailed in
Table 1. The accumulated analysis of variance from grouped
regression shows that the function (Mitscherlich) used to fit the
data accounted for most of the variability (93.2%). The inclusion
of the effect of y-intercept increased this percentage to 95.4%,

whereas the effects of x-axis curve position and curve shape
only increased this latter value to a marginal extent. Option 1
allows us to evaluate the suitability of the model to fit the data
over incubation time and to determine the effects of the main
source of variation among curves (in this case country of origin
of the provenances) on the parameters defining the intercepts,
position and shape of the GP curves. Other options (2–5) can

Table 1. Grouped regression ANOVA when modelling in vitro gas production profiles using the Mitscherlich (1909) equation (Option 1, Data Set 1; Lister et al., 2000)

Change * df Sum of squares Mean square F value P value Adjusted R2
S.E.

+model fit*1 2 530 848.26 265 424.13 4635.45 <0.001 93.2 9.58

+A (origin) *2 9 13 063.01 1451.45 25.35 <0.001 95.4 7.88

+B (origin) *3 9 1721.72 191.30 3.34 <0.001 95.6 7.69

+C (origin) *4 9 1294.76 143.86 2.51 0.008 95.7 7.57

Residual 395 22 617.55 57.26

Total 424 569 545.30 1343.27

df, degrees of freedom; F value, variance ratio; P value, F ratio probability; SE = standard error of observations.
Response variable: GP = cumulative gas production for 25 Gliricidia provenances originating in 10 different countries (locations).
Explanatory variable: t = incubation time (h).
Fitted equation: GP = A + B × Ct ≡ A + B × e–kt,.
where A = upper asymptote; B is a parameter related to the position of the curve in the x-axis; C = e–k (constrained to C < 1), k = fractional rate (parameter determining the curve shape).
Accumulated analysis of variance (from grouped regression).
* Change: ‘+’ indicates addition of individual factor intercepts and origin slopes to overall Mitscherlich equation fit.
*1 model fit = overall Mitscherlich equation fit, i.e. effect of incubation time on GP using the equation.
GP = A + B × Rt, so that the adjusted R2 for this factor is the percentage of variance explained by the model.
*2 A (origin) = y-intercepts for each origin, i.e. effect of country of origin on the parameter A.
*3 B (origin) = x-axis curve position, i.e. effect of country of origin on the parameter B.
*4 C (origin) = separate nonlinear curves or curve shape, i.e. effect of country of origin of the parameter C.

Figure 1. In vitro gas production profiles of 25
Gliricidia provenances with country of origin (as
described by Lister et al., 2000; T25 has no
provenance).
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be used for the analysis of GP profile data, and those outlined in
this work should serve that purpose.

A modified analysis of variance (modANOVA; Option 2) is
illustrated in Table 2 using Data Set 1 (limited to 14 time points).
The variance–covariance matrix for these data showed variances
within each time increasing from 1.87 (at 3 h) to 105.4 (at 38 h)
then decreasing to 31.1 at 96 h of incubation; with a mean
value of 54.5. The average covariance and correlation between
incubation times were 39.2 and 0.719, respectively. However,
there was a large variation in covariance, minimum (1.4) with
values at 3 h and maximum (up to 100.8) with values at 33 or
38 h of incubation. Box’s test (both χ2 and F test) indicates that
compound symmetry of the variance–covariance matrix cannot
be assumed (P < 0.001). Thus, data can be analysed by repeated
measures ANOVA without assuming sphericity, using the
Greenhouse–Geisser method. The derived Greenhouse–Geisser
correction factor for the data (ε = 0.124). The modified Box–
Greenhouse–Geisser analysis of variance with the adjustment
accounting for the value of epsilon is given in Table 2. The ana-
lysis showed no significant effect of the country of origin of the
Gliricidia provenance on average GP (P = 0.102), which was con-
firmed in a multiple comparisons of means using the Student–
Newman–Keuls test (Thomas, 1973). Although the Gliricidia
forage tree provenances were from different countries, samples
for in vitro GP were collected from trees grown at a single site.
The site’s soil attributes and the local environment appear to
have had a defining effect on the nutritional quality of these
trees. The effect of incubation time is large because these GP pro-
files were recorded as cumulative GP increased steadily as incuba-
tion time lengthened. If interest is in the net values at the
time-points then the first difference of the trends of the profile
curve may be used instead, as suggested by Box (1950).

Ante-dependence analysis (Option 3) is demonstrated in
Table 3 using Data Set 2b. Application of the procedures
ANTORDER and ANTEST brings out details about the serial-
or auto-correlation structure–property of the data set profiles.
First, the extent of serial correlation between zero-, first- and
second-order (or higher) is determined (first part of Table 3).
After pairwise testing of serial order, pooled order evidence is gar-
nered for the overall order (order 2 in this case; the second part of
Table 3) for ante-dependence analysis using ANTTEST.
Assuming order 2, the third part of Table 3 details treatment

effects (3 columns after the time column) at each data profile
step. These three columns give cumulative treatment effects up
to each relevant time point. In this case, treatment effect signifi-
cance is established from 6 h of incubation (incubation time num-
ber 3 in the sequence) onwards.

Multivariate analysis of variance and covariance (MANOVA;
Option 4a) using recorded raw GP data (Data Set 2a) is illustrated
in Table 4. The procedure analyses the data variates by ANOVA
first as y-variates, and then as covariates in order to obtain the
sums of squares and products (SSP) matrices. The SSP matrices
are then adjusted for the covariates (e.g. using matrix manipula-
tion in Genstat’s CALCULATE directive; VSN International,
2022), and latent root and vector decompositions are done before
the test statistics are calculated (using CALCULATE). MANOVA
calculates Wilks lambda (with approximate F test) and the Pillai–
Bartlett trace among other test statistics (Chatfield and Collins,
1986). Wilks lambda test demonstrates the strength of the rela-
tionship between the dependent variable (MANOVA allows
more than one dependent or y-variable) and the predictor vari-
ables (the lower the value of lambda the better the explained vari-
ation). The actual lambda value indicates the proportion of total
variation not explained by the MANOVA model; this is rather dif-
ferent from an ANOVA F test which tests the explained part of
total variance. The lambda test provides an overall test of the sig-
nificance of treatment effects. Rao’s F probability provides an
expansion of Wilks’s criterion (Rao, 1951). If the probability is
⩽0.05 then significant differences among treatment means are
indicated. The profile sample times need to be equal for
MANOVA. If data are recorded at unequal time points, then it
will be necessary to calculate interpolated data at equal time
points (Dhanoa et al., 2021).

Multivariate analysis of design inter-unit distances (MVAOD;
Option 4b) using Data Set 2a is demonstrated in Table 5. Data
variates may not all be continuous and distributional require-
ments may not be fully complied with for standard MANOVA
(Option 4a). Additionally, MVAOD provides an alternative
when the size of profile samples is greater than net design
units. In MANOVA, actual data values are used but the alternative
methodology of MVAOD uses design inter-unit distances across
all profile samples generating a dissimilarity matrix. Instead of
the sum of squares of actual data values as in simple ANOVA,
in this analysis, the sum of squared distances is used. The total

Table 2. Modified Box–Greenhouse–Geisser analysis of variance (modANOVA; Option 2) with Data Set 1 (gas production profiles for 25 Gliricidia provenances
originated from 10 different countries, each profile comprises gas production recordings at 14 incubation times)a

Source of variation df Sum of squares Mean square F value P value

Among subject stratum

Country of origin (O) 9 10 522.26 1169.14 2.07 0.102

Residual (error for whole unit comparisons) 15 8458.12 563.87 36.86

Within subject stratum (among subunits within whole units)b

Incubation time (T ) 13 432 927.36 33 302.10 2176.78 <0.001

Interaction O × T 117 3230.32 27.61 1.80 0.096

Residual (error for subunits comparisons) 195 2983.26 15.30

Total 349 458 121.32

df, degrees of freedom; F value, variance ratio; P value, F ratio probability.
aThe analysis considers the 25 Gliricidia provenances as the whole units or subjects, and the 14 incubation times as the subunits within the whole units.
bThe df in the within subject stratum were multiplied by the correction factor (Greenhouse–Geisser ε = 0.1241) before calculating F probabilities (if no epsilon correction is applied the P value
would be 0.00014428).
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squared distance between the units is partitioned into compo-
nents that can be explained by each of the terms (e.g. treatment
factors) in the design-based model. The advantage of this
distance-based analysis is that it can handle various types of
data. The units may often be described by a collection of attributes

ranging from continuous measurements to categorical variables,
such as the presence or absence of a particular feature. Output
from MVAOD looks similar to the one-way ANOVA output but
there is no F test available, instead treatment significance prob-
ability is calculated from 999 random permutations. The distance

Table 3. Ante-dependence analysis (Option 3) using Data Set 2b sequential comparison of ante-dependence structures

Unadjusted χ2-statistic Adjustment factor Adjusted χ2-statistic df P value

Order 0 v order 1 563.02 0.538 303.17 13 <0.001

Order 1 v order 2 148.53 0.455 67.51 12 <0.001

Order 2 v order 3 48.51 0.370 17.97 11 0.082

Order 3 v order 4 58.08 0.286 16.59 10 0.084

Unadjusted χ2-statistic Adjustment factor Adjusted χ2-statistic df P value

Order 0 v order 4 818.15 0.409 334.36 46 <0.001

Order 1 v order 4 255.13 0.367 93.55 33 <0.001

Order 2 v order 4 106.59 0.335 35.70 21 0.024

Order 3 v order 4 58.08 0.286 16.59 10 0.084

Test for change at each time*1 Overall test up to each time*2

Time Statistic df P value Statistic df P value

1 1.482 3 0.686 1.482 3 0.686

2 1.828 3 0.609 3.332 6 0.766

3 17.442 3 <0.001 23.047 9 0.006

4 1.468 3 0.690 23.866 12 0.021

5 18.580 3 <0.001 43.478 15 <0.001

6 30.687 3 <0.001 75.643 18 <0.001

7 5.034 3 0.169 80.245 21 <0.001

8 4.425 3 0.219 84.320 24 <0.001

9 38.977 3 <0.001 124.543 27 <0.001

10 0.734 3 0.865 124.762 30 <0.001

11 8.227 3 0.042 132.839 33 <0.001

12 7.570 3 0.056 140.262 36 <0.001

13 3.343 3 0.342 143.356 39 <0.001

14 1.442 3 0.696 144.532 42 <0.001

Assessment of the order of ante-dependence for repeated measures data (GENSTAR ANTORDER procedure)
Comparison of ante-dependence structures with maximum order (4).
From the above two tests an ante-dependence order 2 is appropriate for ANTTEST procedure.
Overall tests of treatment terms assuming an order 2 of ante-dependence structure (GENSTAT ANTTEST procedure).
Tests ‘at each time (*1)’ and ‘test up to each time (*2)’ illustrate emerging effects of the treatments.
Overall test using data from all the times: statistic 164.289, df 48, P < 0.001.

Table 4. Multivariate analysis of variance (MANOVA; Option 4a) using in vitro gas production (GP) profiles of Data Set 2a
Test statistics and probabilities from permutation tests.

Source of variation df Wilks lambda Rao F F df1 F df2 F P value Permutation* P value

Cutting age 3 0.0001132 3.03 45 7 0.068 0.047

Source of variation df Pillai–Bartlett trace Permutation* P value

Cutting age 3 2.759 0.011

The GP recorded at each incubation time constituted one of the y-variables included in this MANOVA (for a total of 15 y-variables).
* Permutation probabilities based on 999 random permutations.
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matrix from this analysis can be used for further multivariate ana-
lyses, e.g. by converting the distances to similarities and then
using them as input for a principal coordinates analysis (see
PCO directive of Genstat; VSN International, 2022). Summary
distances among treatment means shown at the end of Table 5
can be used to look for apparent differences (in this case distances
between treatment four and other treatments are relatively large).

Residual maximum likelihood-based mixed model analysis
(REML; Option 5) using Data Set 2c is illustrated in Table 6.
Any of the available options for the analysis of linear mixed mod-
els can be used when applying the Genstat REML directive,
including the one for repeated measurements which is relevant
for the analysis of in vitro cumulative GP profile data. In GP
data the replicated design units are the substrate (replicated) sam-
ples and are treated as the random effects along with treatments as
the fixed effects. Times of the profile readings can be unequal but
need to be one of the REML model inputs along with many other
model modifying options (for details see VSN International,

2022). In Table 6, information and options of the REML model
are listed before the listing of tests for fixed effects. These tests
include the Wald statistic (Ward and Ahlquist, 2018) along with
the F statistic and F probability. The fixed effects part also
includes information about deleting some terms from the
REML model. Here REML suggests dropping the time and treat-
ment interaction term will make a significant change. Like
ANOVA and modANOVA (Option 2) superscripts can be calcu-
lated for treatment differences (Bonferroni multiple comparisons
are used herein; Hsu, 1996). The Akaike information criterion ( =
725.31; Snipes and Taylor, 2014) and Schwarz (Bayesian) infor-
mation criterion ( = 940.30; Verbyla, 2019) are measures of
REML model goodness of fit, calculated in Genstat using the
VAIC procedure (Payne and Cave, 2022). These coefficients are
a simple way of ranking the models.

Discussion

In vivo digestibility and in situ nylon bag methods (e.g., Blaxter
et al., 1956; Ørskov and McDonald, 1979) provided means of
assessing animal feed quality but due to the limited capacity of
these procedures, laboratory methods were sought to find in
vitro quality measurements. Menke and Steingass (1988) devel-
oped the initial in vitro GP technique to speed up forage matter
quality testing using rumen liquor as the inoculum.
Semi-automated and automated methods of measuring cumula-
tive GP subsequently followed (e.g., Mauricio et al., 1999;
ANKOM, 2015). Non-invasive use of many animal species
(including humans) led to the use of faecal matter-based inocula.
Given the ever-increasing use of in vitro GP to evaluate a variety
of plant products, food processing by-products, animal feeds and
human diets, and such a variety of methods for generating cumu-
lative GP profiles, rapid analysis of GP profile data and sufficient
statistical analysis options are needed. Options outlined in this
work should serve that purpose. There is always the application
of substrate and inoculum treatments that need statistical

Table 5. Multivariate analysis of design inter-unit distances (MVAOD; Option 4b)
for Data Set 2a. Analysis of design inter-unit distances

Term df Sum of squared distance P value*

Cutting age 3 1.043 0.001

Residual 16 0.628

Total 19 1.671

Cutting age (d) 56 84 112 140

56 0.00000

84 0.07243 0.00000

112 0.03173 0.03341 0.00000

140 0.24843a 0.29608a 0.15255a 0.00000

* Probabilities determined from 999 random permutations.
Distances among treatment levels.
aThese distances are relatively large.

Table 6. Residual maximum likelihood-based mixed model analysis (REML; Option 5) for in vitro gas production profiles using Data Set 2c (gas production at 2, 4, 6,
8, 10, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72 and 96 h incubation)
●Tests for fixed effects

Fixed effect Wald statistic Numerator df F statistic Denominator dfa P value

Genotype 53.67 3 17.89 8.0 <0.001

Incubation time 26 404.02 15 1760.27 120.0 <0.001

(Genotype × time) 386.65 45 8.59 120.0 <0.001

Mean

Victoria 627 53.10ª

Victoria 807 60.96ab

Mycogen 65.89bc

Rumbosol 75.08c

aDenominator degrees of freedom for approximate F-tests are calculated using algebraic derivatives ignoring fixed/boundary/singular variance parameters.
REML variance components analysis.
Response variate: gas production (GP).
Fixed model: constant + genotype + incubation time + (genotype × time).
Random model: (genotype × replicates × time) – used as residual term.
Number of units: with three replicates per genotype (4 × 3 × 16) = 192.
Bonferroni test
Akaike information coefficient 725.31.
Schwarz Bayes information coefficient 940.30.
Multiple comparisons between Genotype means.
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evaluation for the detection of any significant effects. In addition
to modelling the profile-related time dimension of subject curves
and the analysis of model parameters and their functions, direct
analyses of raw profile data under five methodology options are
presented in this paper that can be applied even when individual
design unit trends may have different shapes.

Results from the five options, as implemented in the statistical
software Genstat, show flexibility of methodology choice and ease
of application. It is worth re-iterating that the statistical analyses
proposed herein can be implemented in any other statistical soft-
ware or programming language commonly used (e.g., R Project,
SAS, SPSS). The choice of analytical approach (Options 2–5 deli-
neated herein) and successful application depend on the experi-
mental design of the GP study, profile samples and replication
of any GP experiment. Some profiles hold valuable kinetic infor-
mation, so the modelling option (i.e. Option 1) is useful either as
the preferred option or as a supplemental one for obtaining fur-
ther information. Modelling can also identify multiphasic features
of the response profile that allow split-curve information to be
generated.

In addition to recording the amount of gas produced, the sta-
tus of substrate degradation can provide further useful informa-
tion. By recording remaining substrate dry matter (DM) at
various stages of fermentation and the final DM remaining, in
vitro GP can be a suitable surrogate for in vivo digestibility
(Lowman et al., 1999), in situ substrate degradation in the
rumen (Sileshi et al., 1996) or in vivo extent of feed degradation
in the rumen (France et al., 2000). The study of substrate degrad-
ation kinetics in the rumen proper is complicated by the particle
fractions lost with digesta passage, and an advantage of GP is that
substrate can only disappear via microbial degradation (Dhanoa
et al., 2000). France et al. (1993) linked GP information to that
obtained from the rumen proper, proposing a formula for calcu-
lating ruminal extent of substrate degradation while accounting
for relevant passage rate and hence the losses. Another facet of
the GP technique is fluid from the incubation bottles can be
used to determine the volatile fatty acid composition of the test
feed and hence the C2:C3 ratio (Morvay et al., 2011). In GP stud-
ies, sufficient replicates are required to derive robust and represen-
tative GP profiles and reliable fermentation kinetics that can be
extrapolated to the rumen itself. In addition, replication is
required to analyse the effects of substrate and inoculum on fer-
mentation kinetics, or for the comparison among experimental
treatments applied in each study.

The statistical analysis methodologies identified and illustrated
in this communication are for ANOVA-like comparison of sub-
strate and inoculum treatments in any study-design generated GP
profile. For a single-phase GP curve, grouped regression is straight-
forward to implement and to make treatment comparisons in
terms of trend shape and position of the GP curve. However,
this will become more complicated if GP curves consist of multi-
phasic subsections, which appear more likely to arise when using
voided dung rather than rumen fluid as the inoculum. For model-
ling identifiable bi-phasic and tri-phasic GP curves, Dhanoa et al.
(2021) used single- and double-node connected functions (either
a doubled-up same function or hybrid pairs). Modified ANOVA
for repeated measures splits variance between and within plots
and considers the structure of the variance–covariance matrix to
assess the statistical significance of treatments and time effects.
Ante-dependence analysis is useful to detect the critical incubation
times at which differences between treatments become relevant.
Multivariate ANOVA (i.e. MANOVA) integrates the information

gathered at all incubation times to analyse the comparison
among treatments. Too many profile samples over the plateau
part of GP curves may not add much to curve information, likewise
over the lag phase, but can make MANOVA use difficult. So, some
profile samples may be best left out from the selected analysis. If
possible, GP profile readings should be taken at equal time intervals
(it is a requirement for Options 2–4a described above), otherwise
interpolation is needed to obtain equal time intervals from the
trends of each design unit as described in Dhanoa et al. (2021).
The MANOVA option, like modANOVA, requires that the number
of profile time points should be less than the number of design
units (the other options do not have this requirement). Option
4b (MVAOD) is an alternative for a multivariate analysis when
time intervals are unequal. Finally, repeated measures designs can
be analysed as mixed models using REML methodology, a useful
tool to discriminate the effects of experimental treatments from
that attributed to the incubation time. The choice of one or another
option, or the implementation of a variety of them for the analysis
of a given data set, will depend on the objectives of each particular
study.

The profile data analysis options described in this communica-
tion lend themselves to wider applications. In the in vitro GP
method, a second profile set can be obtained by analysing bottle
contents, at the end of incubation, for volatile fatty acids (e.g. acet-
ate and propionate). Profile data responses are common in the agri-
cultural, medical, environmental and other applied sciences. In
animal science, for example, sets of diet proteins, fatty acids, miner-
als, amino acids, etc. should be analysed in totality because of their
inter-correlations (multicollinearity). MANOVA and mixed model
options are applicable. If comparing monthly climate data at two or
more geo-sites using a number of years’ data, then the options
modANOVA, MANOVA, MVAOD and REML may help. The
chemical composition of dairy cow milk at various stages of lacta-
tion could be handled using the options described herein. Diurnal
patterns of water-soluble carbohydrates in crops are a feature much
studied by plant scientists. For designed experiments to test selected
treatments, many covariates in addition to the response variate may
be recorded, so ANOVA (with or without covariates) tends to be
used. Instead of covariates, the response variate might be observed
multiple times leading to repeated measurement profile data and
options described here will be needed.

Conclusion

The options described herein allow analysis of raw GP data in
addition to application of the curve fitting approach. Results
from the ante-dependence methodology are indicative of further
insights into one’s data that should lead to better understanding
and improved inference from the relevant experiment. This
option, in particular, can be used in conjunction with the other
options to extract additional information from the experimental
data. The options described are suited to wider application in
the applied biological sciences generally.
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