Appendix A
 The Legendre functions

The representation functions of orbital angular momentum are (Schiff 1968, Edmonds 1960, Rose 1967) the spherical harmonics

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=(-1)^{m}\left[\frac{(2 l+1)(l-m)!}{4 \pi_{!}^{\prime}(l+m)!}\right]^{\frac{1}{2}} P_{l}^{m}(z) \mathrm{e}^{\mathrm{i} m \phi} \tag{A.1}
\end{equation*}
$$

where

$$
\begin{equation*}
z \equiv \cos \theta \tag{A.2}
\end{equation*}
$$

and where the $P_{l}^{m}(z)$ are the associated Legendre functions. Their properties are discussed in great detail in Erdelyi et al. (1953, vol. 1), which we shall refer to below as \mathbf{E} followed by the appropriate page number.

Scattering problems for spinless particles are symmetrical about the beam direction, which is conventionally taken to be the z axis. This eliminates the ϕ dependence, so we are only concerned with

$$
\begin{equation*}
Y_{l 0}(\theta, \phi)=\left(\frac{2 l+1}{4 \pi}\right)^{\frac{1}{2}} P_{l}(z) \tag{A.3}
\end{equation*}
$$

These Legendre functions are eigenfunctions of the operator for the square of the angular momentum, L^{2}, i.e.

$$
\begin{equation*}
L^{2} P_{l}(z)=l(l+1) P_{l}(z), \quad l=0,1,2, \ldots \tag{A.4}
\end{equation*}
$$

which in the co-ordinate representation becomes

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left[\left(1-z^{2}\right) \frac{\mathrm{d} P_{l}}{\mathrm{~d} z}\right]+l(l+1) P_{l}(z)=0 \tag{A.5}
\end{equation*}
$$

which is Legendre's equation (E, p. 121). For integer l these Legendre functions are polynomials in z, regular in the finite z plane, the first few being

$$
\begin{equation*}
P_{0}(z)=1, \quad P_{1}(z)=z, \quad P_{2}(z)=\frac{1}{2}\left(3 z^{2}-1\right), \quad P_{3}(z)=\frac{1}{2}\left(5 z^{3}-3 z\right) \tag{A.6}
\end{equation*}
$$

However, (A.5) also has solutions for $l \neq$ integer which (E, p. 148) may be expressed in terms of the hypergeometric function

$$
\begin{equation*}
P_{l}(z)=F(-l, l+1 ; 1 ;(1-z) / 2) \tag{A.7}
\end{equation*}
$$

which is singular at $z=-1$ and ∞. These are called Legendre functions of the first kind.

There are also solutions of (A.5) singular at $z= \pm 1$ and ∞ called Legendre functions of the second kind (E, p. 122)

$$
\begin{equation*}
Q_{l}(z)=\pi^{\frac{1}{2}} \frac{\Gamma(l+1)}{\Gamma\left(l+\frac{3}{2}\right)}(2 z)^{-l-1} F\left(\frac{1}{2} l+1, \frac{1}{2} l+\frac{1}{2} ; l+\frac{3}{2} ; z^{-2}\right) \tag{A.8}
\end{equation*}
$$

For integer l the first few are (E, p. 152)

$$
\left.\begin{array}{l}
Q_{0}(z)=\frac{1}{2} \log \left(\frac{z+1}{z-1}\right), Q_{1}(z)=\frac{1}{2} z \log \left(\frac{z+1}{z-1}\right)-1, \tag{A.9}\\
Q_{2}(z)=\frac{1}{2} P_{2}(z) \log \left(\frac{z+1}{z-1}\right)-\frac{3}{2} z .
\end{array}\right\}
$$

These functions satisfy inter alia the following relations which we need in this book.

The reflection relation (E, p. 140) gives

$$
\begin{align*}
P_{l}(-z) & =\mathrm{e}^{-\mathrm{i} \pi l} P_{l}(z)-\frac{2}{\pi} \sin \pi l Q_{l}(z) \tag{A.10}\\
& =(-1)^{l} P_{l}(z), \quad l=\text { integer } \tag{A.11}
\end{align*}
$$

The equation (A.5) is invariant under the substitution $l \rightarrow-l-1$, so (E, p. 140)

$$
\begin{equation*}
P_{l}(z)=P_{-l-1}(z) \tag{A.12}
\end{equation*}
$$

Also ($\mathrm{E}, \mathrm{p} .143$) for real l

$$
\begin{align*}
\operatorname{Im}\left\{P_{l}(z)\right\} & =-P_{l}(-z) \sin \pi l & & z<-1 \\
& =0 & & z \geqslant 1 \tag{A.13}
\end{align*}
$$

The two types of solution are related by the Neumann relation ($\mathrm{E}, \mathrm{p} .154$) for integer l

$$
\begin{equation*}
Q_{l}(z)=-\frac{1}{2} \int_{-1}^{1} \frac{\mathrm{~d} z^{\prime}}{z^{\prime}-z} P_{l}\left(z^{\prime}\right), \quad l=0,1,2, \ldots \tag{A.14}
\end{equation*}
$$

a 'dispersion relation' for $Q_{l}(z)$, from which it is obvious that (E , p. 143)

$$
\begin{align*}
\operatorname{Im}\{Q(z)\} & =0, \quad|z|>1, \quad l=0,1,2, \ldots \\
& =-\frac{\pi}{2} P_{l}(z), \quad-1<z<1, \tag{A.15}
\end{align*}
$$

For $l \neq$ integer

$$
\begin{align*}
\operatorname{Im}\left\{Q_{l}(z)\right\} & =\sin \pi l Q_{l}(-z), & & -\infty<z<-1 \\
& =-\frac{\pi}{2} P_{l}(z), & & -1<z<1 \tag{A.16}
\end{align*}
$$

The reflection relation for the second-type functions is (E, p. 140)

$$
\begin{align*}
Q_{l}(-z) & =-\mathrm{e}^{-\mathrm{i} \pi l} Q_{l}(z) \\
& =(-1)^{l+1} Q_{l}(z), \quad l=\text { integer } \tag{A.17}
\end{align*}
$$

Other useful results are ($\mathrm{E}, \mathrm{p} .140$)

$$
\begin{equation*}
\frac{P_{l}(z)}{\sin \pi l}-\frac{1}{\pi} \frac{Q_{l}(z)}{\cos \pi l}=-\frac{1}{\pi} \frac{Q_{-l-1}(z)}{\cos \pi l} \tag{A.18}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{l}(z)=Q_{-l-1}(z), \quad l=\text { half-odd-integer } \tag{A.19}
\end{equation*}
$$

The orthogonality relation for Legendre polynomials is ($\mathrm{E}, \mathrm{p} .170$)

$$
\begin{equation*}
\int_{-1}^{1} P_{l^{\prime}}(z) P_{l}(z) \mathrm{d} z=\frac{2}{2 l+1} \delta_{l^{\prime}}, \quad l, l^{\prime} \text { integers } \tag{A.20}
\end{equation*}
$$

and some other integral relations are ($\mathrm{E}, \mathrm{p} .170$)

$$
\begin{gather*}
\int_{-1}^{1} P_{\alpha}(-z) P_{l}(z) \mathrm{d} z=\frac{1}{\pi} \frac{2 \sin \pi \alpha}{(\alpha-l)(\alpha+l+1)}, \quad l \text { integer, } \alpha \text { anything } \\
\int_{1}^{\infty} P_{\alpha}(z) Q_{l}(z) \mathrm{d} z=\frac{1}{(l-\alpha)(l+\alpha+1)}, \quad l, \alpha \text { anything } \tag{A.21}\\
P_{\alpha}(-z)=-\frac{\sin \pi \alpha}{\pi} \int_{1}^{\infty} \frac{\mathrm{d} z^{\prime} P_{\alpha}\left(z^{\prime}\right)}{z^{\prime}-z} \tag{A.23}
\end{gather*}
$$

The asymptotic behaviour as $z \rightarrow \infty$ for fixed l may be obtained by rewriting (A.7) as (E, p. 127)

$$
\begin{align*}
P_{l}(z)= & \pi^{-\frac{1}{2}} \frac{\Gamma\left(l+\frac{1}{2}\right)}{\Gamma(l+1)}(2 z)^{l} F\left(-\frac{1}{2} l,-\frac{1}{2} l+\frac{1}{2} ;-l+\frac{1}{2} ; z^{-2}\right) \\
& +\pi^{-\frac{1}{2}} \frac{\Gamma\left(-l-\frac{1}{2}\right)}{\Gamma(-l)}(2 z)^{-l-1} F\left(\frac{1}{2} l+\frac{1}{2}, \frac{1}{2} l+1 ; l+\frac{3}{2} ; z^{-2}\right) \tag{A.24}
\end{align*}
$$

Then since $F \rightarrow 1$ as $z \rightarrow \infty$ we have (E, p. 164)

$$
\begin{align*}
P_{l}(z) & \underset{z \rightarrow \infty}{\longrightarrow} \pi^{-\frac{1}{2}} \frac{\Gamma\left(l+\frac{1}{2}\right)}{\Gamma(l+1)}(2 z)^{l}, \quad \operatorname{Re}\{l\} \geqslant-\frac{1}{2} \tag{A.25}\\
& \underset{z \rightarrow \infty}{\longrightarrow} \pi^{-\frac{1}{2}} \frac{\Gamma\left(-l-\frac{1}{2}\right)}{\Gamma(-l)}(2 z)^{-l-1}, \quad \operatorname{Re}\{l\} \leqslant-\frac{1}{2} \tag{A.26}
\end{align*}
$$

Similarly, from (A.8),

$$
\begin{equation*}
Q_{l}(z) \underset{z \rightarrow \infty}{\longrightarrow} \pi^{\frac{1}{2}} \frac{\Gamma(l+1)}{\Gamma\left(l+\frac{3}{2}\right)}(2 z)^{-l-1} \tag{A.27}
\end{equation*}
$$

The asymptotic behaviour as $l \rightarrow \infty$ for fixed z is rather more difficult (E, pp. 142, 162; Newton 1964):

$$
P_{l}(z) \underset{l \rightarrow \infty}{\longrightarrow}(2 \pi l)^{-\frac{1}{2}}\left(z^{2}-1\right)^{-\frac{1}{4}} \mathrm{e}^{\xi}, \quad \operatorname{Re}\{l\} \geqslant 0
$$

where

$$
\begin{aligned}
\xi & \equiv 2(\operatorname{Re}\{l\}+1) \log \left[\left(\frac{z+1}{2}\right)^{\frac{1}{2}}+\left(\frac{z-1}{2}\right)^{\frac{1}{2}}\right], \quad z>1 \\
& \equiv 2|\operatorname{Im}\{l\}| \tan ^{-1}\left(\frac{1-z}{1+z}\right)^{\frac{1}{2}} \quad z^{2}<1
\end{aligned}
$$

so

$$
\begin{equation*}
\left.\left|P_{l}(z)\right|_{l \rightarrow \infty} l^{-\frac{1}{2}} \mathrm{e}^{[\operatorname{II}\{l\}} \operatorname{Re}\{\theta\}+\operatorname{Re}\{l] \operatorname{Im}\{\theta\} \right\rvert\, f(z) \tag{A.29}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left|\frac{P_{l}(z)}{\sin \pi l}\right|_{l \rightarrow \infty}^{<} l^{-\frac{1}{2}} \mathrm{e}^{\mid \operatorname{Im}\{l\}} \operatorname{Re}\{\theta\}+\operatorname{Re}\{l\} \operatorname{Im}\{\theta\}|-\pi| \operatorname{Im}\{l\} \right\rvert\, f(z) \tag{A.30}
\end{equation*}
$$

Also

$$
\begin{equation*}
Q_{l}(z) \underset{| || | \rightarrow \infty}{\longrightarrow} l^{-\frac{1}{2}} \mathrm{e}^{-\left(l+\frac{1}{2}\right) \zeta(z)} \tag{A.31}
\end{equation*}
$$

where $\zeta(z) \equiv \log \left[z+\left(z^{2}-1\right)^{\frac{1}{2}}\right]$.
From (A.7) we see that $P_{l}(z)$ is an entire function of l, while from (A.8) it is clear that $Q_{l}(z)$ has poles in l at negative integer values due to the Γ-function in the numerator, and from (A.18)

$$
\begin{equation*}
Q_{l}(z) \approx \pi \frac{\cos \pi l}{\sin \pi l} P_{-l-1}(z), \quad l=-1,-2,-3, \ldots \tag{A.32}
\end{equation*}
$$

