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Abstract. A magnetic alternative to the standard viscous accretion 
disc is presented. The magnetic field is generated and maintained in 
the disc by a dynamo mechanism. Magnetic stresses dominate in the 
advection of angular momentum, and only weak turbulence is needed to 
generate the required field. 

1. Introduction 

Accretion discs play a central role in stellar astrophysics. They occur around 
the compact components in close binary stars, around young stellar objects in T 
Tauri stars, and are also believed to exist in active galactic nuclei. They are usu
ally the main luminosity source in such systems, derived from the gravitational 
binding energy released by infalling matter. 

The fundamental problem in disc theory is to explain the angular momen
tum advection required to allow inflow of material to the accreting object. Stan
dard molecular viscosity generates azimuthal forces which are far too weak to 
account for this advection. An anomalous viscosity must therefore be invoked 
and the standard disc model due to Shakura and Sunyaev (1973) uses a param
eterized form of turbulent viscosity. 

This paper presents a magnetic alternative to the standard viscous disc. The 
magnetic field is generated and maintained in the disc by a dynamo mechanism. 
Azimuthal field is created by shearing of poloidal field and the feedback of B^ 
to Bp is accomplished by a turbulent a—process. The Balbus-Hawley instability 
is invoked to generate turbulence with the necessary finite mean helicity. For 
magnetic diffusion due to buoyancy, magnetic stresses dominate viscous stresses 
in the advection of angular momentum. Only weak turbulence is needed to 
generate the required magnetic field. 

2. The Magnetic Disc Equations 

An axisymmetric, steady disc is considered around a non-magnetic accreting 
star of mass M and radius R. Cylindrical polar coordinates {w,<f>,z) are used, 
with the origin at the centre of the star and the central plane corresponding to 
2 = 0. The external medium is taken to be a vacuum. 

The structure of the magnetic field must lead to an azimuthal force on rings 
of disc material, for net angular momentum advection. For a vacuum exterior, 
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Bij, vanishes on the disc surfaces and it follows from (3) that a net BwBj, stress 
is necessary for magnetic angular momentum advection. A quadrupolar-type 
field is the most easily generated in such a disc (e.g. Campbell 1996) and has 
the properties 

| B „ / B * | < 1 , \BW/BZ\ ~ m/h > 1, (la,b) 

where h(w) is the disc height and the first relation follows for an aw—dynamo 
while the second is a consequence of V • B p = 0. 

The two small quantities \B„/B^\ and h/w allow the fundamental equations 
to be reduced to (see Campbell 1992); 

(GM\h z vl ldP n ,n , . 
V4, = vK=[ , « + - — = (), 2a,b 

V«JL(*>2Q) = T ^ ^ 2 ^ ^ ) + ^ £(****). (3) 
ow Ho&Jp ozu /lop oz 

dBw d2B* <mK 
r>-dT = aB* T1-d^ = -™B°>^> ( 4 a ' b ) 

— * = (™PV™) + jr {pvz) = 0, (5) 
w ozu oz 

with, 

7] = ™ +c[ h, a = i 0, z = 0, where a = e [tl\ . (6a, b) 
(/Wc)* 1-5(07), -h<z<0, Kf>cJ 

Equations (2a,b) and (3) are the w, z and (//-components of the momentum equa
tion, (4a,b) are the poloidal and toroidal components of the induction equation, 
and (5) is the continuity equation. The magnetic diffusivity, r), is due to buoy
ancy, with £ < 1 due to turbulent reconnection, and a simple form is taken for 
the turbulent a function, with e < 1. It can be shown that the ratio of the 
azimuthal viscous and magnetic forces is 

Fv4,/Fmt ~ £?£2 < 1, (7) 

so Fvtf, is ignorable in (3). 

3. Vertical Integrals 

Combining (3) and (5) and integrating vertically, using the surface conditions 
Bj,(zu,±h) = p(w,±h) = 0, gives 

•f B^B^dz) = 0, s & ^ + WI *•***•]=«, <8» 
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where M is the mass transfer rate. If fi turns over at the edge of a boundary 
layer of width S near the accretor, then BWB^ = 0 can be applied at w = R + S 
and radial integration of (8) yields 

I 0 47TE72 
(9) 

A quadrupolar-type magnetic field has the surface conditions B^,(w,h) = 
Bw{w,h) — 0, the latter following from the thin disc approximation. Equation 
(4a) can be used to express the vertical integral of BWB$ in terms of B^(zu, 0) 
and (9) then gives 

Bl(n,0) 
po{GM)iMa 

1 -
R\2 

VJ 2irzc2T] 

Vertical integration of (2b) yields 

Pc=zQ^ / zpdz. 
Jo 

The thermal problem for an optically thick disc leads to 

is -iff /r»\ T Y9 nt 
Pc2 = — [-) hF+pc2 , with P = -pT, 

4CT \pj p 

(10) 

(11) 

(12a,b) 

where a is the Stefan-Boltzmann constant, p the mean molecular weight, K a 
Kramer opacity constant and F+ the surface flux. 

4. The Dynamo 

For a thin disc, the azimuthal magnetic field can be expressed in the separable 
form B^ = B,f,(w)f^,{z/h). Substitution in (4a,b) leads to 

f4> = A ( e " ^ - 1 ) - 2eK«-1V2cos[V3K(<; - l ) /2 - jr/3]) 

where A is a constant, £ = z/h and the eigenvalues K satisfy 

2 cos(\/3A"/2) + exp (3tf/2) = 0, with K3 = 
3QKh3a 

(13) 

(14a, b) 

5. The Disc Solution 

Equations (6) and (10)-(14) can be used to derive the radial structure of the 
disc. The result is; 
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where Mi = M/MQ, M_i0 = M/10~10M©yr_1, OT8 = ro/108m and 

!=\-{w/R)l2. 

(20) 

(21) 

(22) 

6. Conclusions 

The dimensionless quantity e expresses the strength of the turbulence. Self-
consistent solutions are possible for e as small as 10~4, corresponding to very 
weak turbulence. Although the radial structure is similar to the standard vis
cous disc, the viscous force is negligible in the present case. The eigenvalue 
dependence of the magnetic disc allows different states. Typical values of B^ in 
the central plane are ~ 100 G, these being weakly dependent on K. However, 
the central temperature increases with \K\. This property of the magnetic disc 
may be able to be related to the outburst behaviour of discs in binary stars. 
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