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Abstract. One of the main goals in cosmology is to understand how the Universe evolves, how
it forms structures, why it expands, and what is the nature of dark matter and dark energy.
Next decade large and expensive observational projects will bring information on the structure
and the distribution of many millions of galaxies at different redshifts enabling us to make
great progress in answering these questions. However, these data require a very special and
complex set of analysis tools to extract the maximum valuable information. Statistical inference
techniques are being developed, bridging the gaps between theory, simulations, and observations.
In particular, we discuss the efforts to address the question: What is the underlying nonlinear
matter distribution and dynamics at any cosmic time corresponding to a set of observed galaxies
in redshift space?

An accurate reconstruction of the initial conditions encodes the full phase-space information
at any later cosmic time (given a particular structure formation model and a set of cosmological
parameters). We present advances to solve this problem in a self-consistent way with Big Data
techniques of the Cosmic Web.

Cosmology is experiencing a golden era. A large number of galaxy surveys are planned
to produce an enormous avalanche of data. These aim at understanding the nature of dark
matter and dark energy, two still unknown components, which make up about 95% of
the whole energy budget in the Universe. The scientific goal is to unveil the accelerated
expansion of the Universe and the hidden mechanisms of cosmic structure formation,
which ultimately led to the place we occupy in the cosmos.

Answering these questions from analyzing vast amounts of data will demand complex
data mining techniques able to extract the maximum cosmological information. In par-
ticular we aim at doing a global analysis of the data to break all possible degeneracies
making the least possible assumptions. This implies using as input data in such a joint
analysis the closest form to the raw data. Moreover, one would like to include as many
data sets as possible, to combine them in a self-consistent way. These would range from
the cosmic microwave background (CMB), over the 21 cm line, the Lyman alpha (and
beta) forest, the Lyman alpha emitters, the distribution of quasars, galaxies, and clusters,
to the corresponding lensing maps throughout cosmic history. Focusing for instance on
just the galaxy distribution, a number of issues needs to be considered. These can be re-
lated to observational systematics, such as, the survey geometry; the completeness on the
sky; the photometric calibration; the photometric redshift uncertainty (for photometric
surveys); the stellar contamination; etc. Other systematic effects can be due to intrinsic
physical aspects, such as, the nonlinear, nonlocal, stochastic, and assembly (luminosity
dependent) galaxy bias; the coherent and dispersed peculiar velocities; the gravitational
mode coupling; the baryonic effects; etc. The complexity of the problem scales dramati-
cally with the volume and resolution we need to achieve, pushed by the requirements of
the new generation of surveys covering increasingly larger volumes and fainter objects.

257

https://doi.org/10.1017/S1743921316009972 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316009972


258 F.-S. Kitaura

New galaxy surveys aim at going deeper in redshirt by not only using longer exposure
times to determine the redshifts with absorption spectra, but also exploiting the charac-
teristic OII doublet seen in emission for strongly star forming galaxies (see, e.g., Dawson
et al. 2013). Such objects are correspondingly called emission line galaxies (eLGs). As a
consequence a large variety of galaxies tracing different density regimes of the large-scale
structure will be available. In addition to full gravity calculations, effective theories based
on analytical models of structure formation become necessary to shed light on the physical
problem and save computational costs inherent to N -body based computations. We will
discuss below how such models enable us to make a Big Data analysis of the cosmic web.

0.1. The legacy of Zel’dovich
The year 2014 was the commemoration of the 100th birth anniversary of Yakov Boris-
sowitsch Seldowitsch, also known in English as Zel’dovich. While his contributions range
from chemistry, over hydrodynamics, atomic nuclei, elementary particles to astrophysics,
we want to highlight one of his main contributions to cosmology: the formation of the
so-called Zel’dovich pancakes, i.e., the cosmic filamentary network. Zel’dovich proposed
in 1970 an elegant solution to cosmological structure formation based on what we nowa-
days call linear Lagrangian perturbation theory, or Zel’dovich approximation, in which
matter tracers move along the paths defined by the initial displacements at early times,
or equivalently high redshifts. This approximation is able to describe remarkably well
the quasi-nonlinear regime of structure formation and in particular the formation of the
cosmic web. However, this picture led to the top-down scenario, where large structures
form first and then are fragmented to form smaller ones, which is disfavored by obser-
vations. Simulations based on N -body solvers during the 80s and 90s, describing the
interaction between matter tracers forming virialised structures, helped to develop the
current bottom-up paradigm, in which smaller structures merge to form larger ones.
After the accuracy of gravity solvers was found to be crucial to understand structure
formation and computational progress made it possible to perform ever larger N -body
simulations, the Zel’dovich approximation was confined during some period of time to
academic and rather historical studies. Nevertheless, the need to understand the large-
scale structure in rapidly increasing volumes pushed by the development of large galaxy
redshift surveys starting during the 2000s with the Sloan Digital Sky Survey, has drawn
the attention back to approximate gravity solvers, and analytical models. In fact only the
order of a dozen large volume N -body simulations have been done, which do not achieve
the resolution required for eLGs. Luckily some part of the astrophysics community never
ceased investigating Zel’dovich’s legacy and set the basis for a whole branch of methods,
which are turning out to be very useful to analyze and understand observations of the
large-scale structure.

Let us list here some of the methods which rely on the Zel’dovich approximation and
find modern applications:
• setup of initial conditions for N-body simulations

The Zel’dovich approximation has turned out to be very useful to setup N -body simu-
lations by relating the primordial fluctuations of the Universe to the initial velocities of
matter particles (Springel et al. 2005). While starting at high enough redshifts (>∼ 100)
the plane Zel’dovich approximation is still being used to setup initial conditions, more
sophisticated versions have been developed including second order Lagrangian perturba-
tion theory, i.e., tidal field corrections, which however follow the same idea introduced
by Zel’dovich. These have become standard and a number of codes are publicly available
(Crocce et al. 2006; Jenkins 2009), including primordial non-Gaussianities (Scoccimarro
et al. 2012).
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• mock galaxy catalogues
Full N -body simulations are necessary to enable an accurate understanding of structure
formation, and, in particular, the distribution of galaxies. However, they are too expen-
sive to be massively produced to compute covariance matrices, and, hence, derive the
error bars corresponding to the measured galaxy clustering from observations. Neverthe-
less, these calculations are necessary to obtain reliable reference halo catalogues. One can
aim at including all known physical processes in structure formation simulations, however
covering very limited volumes (see, e.g., Illustris simulations, Vogelsberger et al. 2014). A
number of techniques can convert dark matter halo catalogues into simulated galaxy ones,
such as semi-analytic models (e.g., White & Frenk 1991, Kauffmann et al. 1993, Cole
et al. 1994, Somerville & Primack 1999, Cole et al. 2000, Croton et al. 2006, De Lucia &
Blaizot 2006, Benson 2012), halo abundance matching (HAM, e.g., Kravtsov et al. 2004,
Tasitsiomi et al. 2004, Vale & Ostriker 2004, Conroy et al. 2006, Kim et al. 2008, Guo
et al. 2010, Wetzel et al. 2010, Behroozi et al. 2010, Trujillo et al. 2011, Leauthaud et al.
2011), or halo occupation distribution (HOD, e.g., Berlind et al. 2002,Kravtsov et al.
2004, Zentner et al. 2005, Zehavi et al. 2005, Zheng et al. 2007, Skibba & Sheth 2009,
Ross & Brunner 2009, Zheng et al. 2009, White et al. 2011) techniques. A number of
methods have pioneered the efforts of producing halo catalogues with approximate grav-
ity solvers, such as the peak-patch formalism (Bond & Myers 1996), Pinocchio (Monaco
et al. 2002), and PThalos (Scoccimarro & Sheth 2002). These approaches were how-
ever far from achieving percentage accuracy in reproducing the clustering statistics, and
therefore more recent methods have been developed, such as PATCHY (Kitaura et al.
2014) and EZmocks (Chuang et al. 2015). The latter ones rely on a set of effective bias
parameters, which can be calibrated with reference catalogues to obtain the desired high
accuracies in the different 1-, 2-, 3- point statistics, aiming at being precise at the 4-point
statistics (covariance matrices). All these methods rely in some form or the other on the
Zel’dovich approximation.
• speed-up of N-body solvers

Another recent idea relies on exploiting the accuracy of Lagrangian perturbation the-
ory to efficiently solve gravity, and compute the remaining mode coupling term with
an N -body solver, saving hereby a considerable amount of computational effort (Tassev
et al. 2013). A similar idea is applied using the spherical collapse model for the short
range force to yield approximate extremely efficient structure formation solvers using
augmented Lagrangian perturbation theory (ALPT, Kitaura & Heß 2013).
• modification of cosmological parameters in an N-body simulation

The cosmology of an N -body simulation can be modified for many purposes to great
accuracy by using the Zel’dovich approximation to trace the dark matter particles to
higher redshifts and then back to low redshifts, changing the cosmological parameters in
this process (Angulo & White 2010).
• modification of large-scale modes in an N-body simulation

By constructing a simulation, which has only small-scale power, one can add different
large-scale power realizations to it relying on the Zel’dovich approximation. Care must be
taken to correct for the mode coupling originated through the large-scale modes, which
cause a local modification of the growth. Therefore by looking up the positions of dark
matter particles at different redshift snapshots in the N -body simulation, one can mimic
that mode coupling. This technique allows to make a reduce number of N -body simu-
lations combined with large numbers of Zel’dovich large-scale calculations to compute
covariance matrices (Schneider et al. 2011).
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Figure 1: Flowchart of the KIGEN-code
based on a Bayesian Networks Machine
Learning approach. The primordial den-
sity fluctuations (initial conditions) are
obtained from iteratively sampling Gaus-
sian fields, which lead to cosmic structures
compatible with the distribution of galax-
ies given a particular structure formation
model. Starting from some initial guess
(steps 0-3) structure formation is simu-
lated forward (steps 4-5), observational ef-
fects like redshift-space distortions caused
by peculiar motions (steps 6-7) and selec-
tion function effects according to the mag-
nitude limited survey (step 8) are taken
into account and the resulting mock obser-
vations (step 9) are matched with the ob-
servations in a likelihood comparison pro-
cess (steps 0-1). The results are used to
improve the initial conditions in the next
iteration.

• modeling the correlation function of halo clustering
The Zel’dovich approximation has been demonstrated to give a precise description of
the gravitational mode coupling introduced in the baryon acoustic oscillations (Tassev &
Zaldarriaga 2013). Hence it can be used to model the correlation function after cosmic
evolution (McCullagh & Szalay 2012). Including galaxy bias and redshift space distortions
originated by the peculiar motions of galaxies requires additional modeling (White 2015).
• reconstruction of baryon acoustic oscillations

The baryon acoustic oscillations (BAO) can be used as a standard ruler to measure the
scale of the Universe at different epochs, and thereby study dark energy. However, they
are distorted by gravitational evolution. To enhance the BAO signal one can undo grav-
ity by moving the galaxies back in time using the Zel’dovich approximation (Eisenstein
et al. 2007).
• reconstruction of primordial fluctuations

Lagrangian perturbation theory can be used to recover the initial conditions of the Uni-
verse on scales smaller than the BAO scale, as we will discuss below.

All the above-mentioned techniques enable an efficient analysis of the large-scale struc-
ture. We will discuss below how these techniques can be combined with Bayesian tech-
niques to recover the full phase space information of the cosmic web.

1. Big Data of the Cosmic Web
The analysis of the large-scale structure from a galaxy distribution requires the charac-

terization of the underlying dark matter field, which governs the dynamics. Although the
primordial fluctuations are closely Gaussian distributed, gravity couples different modes
and the formation of the cosmic web introduces an anisotropy in the three-point corre-
lation function. One therefore needs, from a statistical point of view, to jointly constrain
all the higher order moments of the dark matter distribution, the galaxy bias, and the
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peculiar velocity field (Kitaura & Enßlin 2008). This can be a very complex task from
the mathematical and computational point of view (Schaap & van de Weygaert 2000,
Kitaura et al. 2010, Jasche & Kitaura 2010, Jasche et al. 2010, Platen et al. 2011, Kitaura
et al. 2012c), especially including higher order correlation functions (e.g., Kitaura 2012).

The initial conditions of the Universe encode the full phase-space (density and peculiar
velocity fields) information of any later cosmic time with a given cosmological structure
formation model. It is thus tempting to reconstruct the initial conditions to characterize
the large-scale structure.

Previous pioneering attempts to recover them have in most of the cases either ignored
the relative movement of structures due to gravitation (see, e.g., Weinberg 1992, Kravtsov
et al. 2002, Klypin et al. 03), or relied on linear theory (Nusser 1992, Kolatt et al. 1996,
Mathis et al. 2002, Eisenstein et al. 2007, Padmanabhan et al. 2012, Doumler et al. 2013).
Some nonlinear attempts can be found in the literature (see, e.g., Gramann93, Croft &
Gaztanaga 1997, Narayanan 1998, Monaco & Efstasthiou 1999, Kitaura & Angulo 2012).
Other approaches have aimed at solving the boundary problem of finding the initial
positions of a set of matter tracers governed by the Eulerian equation of motion and
gravity with the least action principle (see Peebles 1989, Nusser et al. 2000, Branchini
et al. 2002). A similar approach consists on relating the observed positions of galaxies in
a geometrical way to a homogeneous distribution by minimizing a cost function (Frisch
et al. 2002, Brenier et al. 2003, Lavaux 2010). All these approaches have one fundamental
aspect in common: they aim at finding a single optimal solution to the initial conditions
boundary problem.

Nevertheless, once shell-crossing starts, two matter tracers can have extremely close
positions, but very different peculiar motions. It, thus, becomes impossible to know where
the tracers came from in a unique way. Moreover, matter collapses to compact objects,
which did not exist in the past, but had an extended Lagrangian region. Therefore,
statistical forward approaches have been introduced (see the KIGEN-code: Kitaura 2013,
Kitaura et al. 2012 and other approaches: Jasche & Wandelt 2013, Wang et al. 2013).
While KIGEN is a particle-based approach, the other approaches are grid based. Patrick
Bos presented in this IAU meeting the first method of the latter kind, which also includes
a self-consistent treatment of RSD.

These methods exploit the fact that the statistical description of the density fields at
the initial conditions is simple, as it must be closely Gaussian distributed. In particular
the KIGEN-code permits one for the first time to deal with any kind of structure forma-
tion model in a probabilistic way. It is based on a Bayesian networks machine-learning
algorithm, which iteratively samples Gaussian fields, whose phases are constrained by the
distribution of observed tracers given a structure formation and a cosmological model. It
also includes redshift-space distortions (coherent and virialised peculiar motions) in the
likelihood comparison to the observations. In this sense, it is also the first self-consistent
phase-space reconstruction method.

One can write down the Hamiltonian equations of motion for any analytical struc-
ture formation model, and sample from a posterior defined with such a model within
a Bayesian approach. However, every time one changes the structure formation model
one needs to rewrite the Hamiltonian sampler. Also it is very difficult to include in a
self-consistent way RSD. The approach used in KIGEN splits the sampling problem into
two main Gibbs sampling steps. The first step assumes that the positions of dark matter
particles at the initial conditions tracing the primordial fluctuations are known. This is a
statistical problem known in cosmology as the constrained realization (Hoffman & Ribak
1991, van de Weygaert & Bertschinger 1996), in which the Gaussian field is sampled
compatible with a number of constraints. The second step is based on assuming that the
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Figure 2: The upper panel shows the sky projection of all galaxies in the 2MRS catalog
(red dots) at distances of 170 to 280 million light-years and their exquisite correlation
with the mean over 25 reconstructed samples of the nonlinear ALPT cosmic web (grey
scale) using the KIGEN code. The lower panel shows the same projection, but for the
dark matter field of one constrained N -body simulation.

primordial Gaussian field is known, and given a set of constraints at low redshift, one
needs to find the constraints at high redshift. This problem is also a statistical problem
which needs to include a structure formation model translating the position of matter
tracers at initial times to collapsed objects at late times, which can be in turn compared
with the position of observed objects. A likelihood comparison process selects the col-
lapsed objects, which are compatible under certain criteria (some minimum distance with
a scatter). Since these collapsed objects have been obtained from a constrained simula-
tion starting at initial times, we have full knowledge of it phase-space at all times. This
enables us to look up the linking list of objects and the corresponding initial positions.
Once we have them we can go to the first step. One can include RSD in the position
of the objects and all kind of systematic effects. We note, that this approach is com-
pletely flexible to adopt any kind of structure formation model. As a generalization one
can substitute positions of matter tracers with displacement fields (Kitaura in prep.).
The method does not change. Here the idea is based on the reverse concept of setting
initial conditions for an N -body simulation with the Zel’dovich approximation. In the
same way, a Gaussian field determines the initial linear displacement field, the reverse is
also true. One has only to consider that the likelihood comparison must be done with a
nonlinear displacement, while the constrained realization must be done with the linear
one.

The flowchart of the KIGEN Bayesian Networks Machine Learning approach is pre-
sented in Fig. 1. We note that the likelihood comparison can be used to improve the
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Figure 3: Left panel: slice through the super-galactic plane of the rendering of dark matter
particles moved to redshift space from one particular constrained simulation presented
in Heß et al. (2013), where the plots are instead shown based on the haloes to avoid an
excess of virial motions, and the 2MRS galaxies (including <5% mocks in the galactic
plane) are represented with red dots. Right panel: same slice, but after applying the
phase-space mapping with the method presented in Abel et al. (2012). (Credit for the
phase-space computation based on the reconstruction performed with KIGEN: Steffen
Heß, Devon Powell, Ralf Kaehler & Tom Abel 2012). The lower panel shows the peculiar
velocity field obtained with KIGEN using ALPT.

initial conditions since we have the full information available about the trajectories of
the matter tracers from some starting high redshift until the redshift of the observations.

The KIGEN-code has been tested with a semi-analytic halo-model based galaxy mock
catalog to demonstrate that the recovered initial conditions are closely unbiased with
respect to the actual ones from the corresponding N-body simulation (seeKitaura 2013).
It has also been applied to the Two-Micron All-Sky Redshift Survey (2MRS: Huchra
et al. 2012) to perform a cosmography analysis and determine the proper motion of
the Local Group finding a close agreement with the direction of the Cosmic Microwave
Background (CMB) dipole and explaining about 80 % of its speed (see Figs. 2, 3 and
Kitaura et al. 2012), and to search for the missing baryons in the warm hot inter-galactic
medium (Suarez-Velasquez et al. 2013). A thorough analysis of the high performance
of the KIGEN-code and its robustness with constrained N -body simulations has also
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been done (see Heß et al. 2013). We have also investigated the cosmic web in the local
Universe (Nuza et al. 2014). Here it could be shown that the relation between galaxy
morphology and environment becomes clearer when properly correcting for RSD. The
left panel in Fig. 3 shows that the likelihood comparison is done in redshift space. The
knowledge of the primordial fluctuations opens a new possibility to analyze the cosmic
web by using the full phase-space (Shandarin et al. 2012, Abel et al. 2012, Falck et al.
2012). We present a first application of such a method on observations in the right panel
of Fig. 3, showing the reconstructed real-space cosmic web.

2. Conclusions
The huge amount of data from galaxy surveys will permit us to map the Universe with

unprecedented accuracy. We have reached an era in which we need to develop complex
data mining techniques to extract the hidden information in the data. We have shown
that great advances are been carried in the study and characterization of the large-scale
structure. Here we find that the statistics of the cosmic primordial fluctuations are well
described by Gaussian distribution functions. Within a Bayesian framework, we can thus
use simple priors and encode the physical structure formation models in the likelihood,
when comparing to observations. Many developments need still to be done, to sample over
the cosmological parameters, over the growth rate, and over the bias model, to include
light-cone effects, and to include in the analysis additional cosmological probes, such as
CMB, lensing, Lyman-alpha forest, etc. This is an exciting time to work in cosmology.
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