
J. Plasma Phys. (2023), vol. 89, 905890306 © The Author(s), 2023.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377823000466

Drift of ablated material after pellet injection
in a tokamak

O. Vallhagen 1,†, I. Pusztai 1, P. Helander 2, S.L. Newton3 and T. Fülöp 1

1Department of Physics, Chalmers University of Technology, Göteborg SE-41296, Sweden
2Max-Planck Institut für Plasmaphysik, 17491 Greifswald, Germany

3United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

(Received 31 January 2023; revised 7 May 2023; accepted 9 May 2023)

Pellet injection is used for fuelling and controlling discharges in tokamaks, and it is
foreseen in ITER. During pellet injection, a movement of the ablated material towards the
low-field side (or outward major radius direction) occurs because of the inhomogeneity
of the magnetic field. Due to the complexity of the theoretical models, computer codes
developed to simulate the cross-field drift are computationally expensive. Here, we present
a one-dimensional semi-analytical model for the radial displacement of ablated material
after pellet injection, taking into account both the Alfvén and ohmic currents which
shortcircuit the charge separation creating the drift. The model is suitable for rapid
calculation of the radial drift displacement, and can be useful for e.g. modelling of
disruption mitigation via pellet injection.
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1. Introduction

Pellet injection is an effective tool for modifying the density profile in fusion devices,
and can be used for both fuelling and plasma control (Pégourié 2007). It has also been
employed successfully to mitigate transient events in tokamaks, e.g. edge localised modes
(Lang et al. 2015) and disruptions (Reux et al. 2021). The use of pellets to control such
events is also planned for ITER (Baylor et al. 2009; Hollmann et al. 2015; Lehnen et al.
2018).

In order to assess the performance of pellet injection schemes for future tokamaks, such
as ITER, it is important that accurate estimates of the modified density profile created by
the pellets are included in the modelling tools used to simulate such events. This can only
be achieved through an understanding of the underlying physics of the mass deposition
after pellet injection.

When a pellet is injected into a hot, magnetically confined plasma, it travels through the
plasma in solid form while the outer layers are continuously ablated by the energy flux
from the hot background plasma, resulting in material being deposited along the pellet
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trajectory. The cloud of ablated material initially has a cold dense structure – a plasmoid –
which drifts towards the low-field side of the torus. This is caused by the charge separation
that takes place due to electron and ion drifts in the inhomogeneous magnetic field, leading
to the build-up of a vertical electric field, and the resulting E × B-drift moves the ablated
material across magnetic field lines, where E and B denote the electric and magnetic field,
respectively (Parks, Sessions & Baylor 2000; Rozhansky et al. 2004; Pégourié et al. 2006).

The strength of the electric field, and hence the drift velocity, is determined by
the mechanisms which can shortcircuit the charge separation inside the plasmoid. The
dominant ones are the emission of Alfvén waves from the two ends of the plasmoid
(Parks et al. 2000) and the flow of ohmic current parallel to the field lines (Pégourié
et al. 2006). Mathematically, the evolution of the pellet cloud is governed by a vorticity
equation similar to that used to describe so-called blob transport in the plasma scrape-off
layer (Krasheninnikov, D’Ippolito & Myra 2008).

There is a wealth of experimental evidence for radial cross-field drift following pellet
injection in current tokamaks and stellarators, e.g. in DIII-D (Baylor et al. 2007), ASDEX
Upgrade (Lang et al. 1997; Müller et al. 1999), FTU (Terranova et al. 2007), MAST
(Garzotti et al. 2010) and W7-X (Baldzuhn et al. 2019). However, these studies consider
small fuelling pellets, and there is much less experimental data on radial drifts from
strongly perturbing pellets used for disruption mitigation, although there are recent
indications that radial drifts may be important also in such cases at DIII-D and JET
(Kong et al. 2022; Lvovskiy et al. 2022). Due to the complexity of the theoretical models,
computer codes developed to simulate the cross-field drift are computationally expensive
(Strauss & Park 1998, 2000; Aiba et al. 2004; Ishizaki & Nakajima 2011; Samulyak et al.
2021). Therefore, simplified scaling laws, based on current experimental observations, are
often used (Baylor et al. 2007; Koechl et al. 2018). Such expressions are of limited use
for modelling ITER plasmas, which will have much higher temperatures and magnetic
fields. In many cases, e.g. in the currently used disruption mitigation models, the radial
drift of the pellet cloud is neglected altogether, for simplicity (Vallhagen et al. 2022). This
is particularly problematic in the case of pure hydrogen pellets (Matsuyama 2022), as their
clouds can reach significant over-pressure due to negligible radiative energy losses, thus
their drifts can be large and therefore affect the pellet penetration and material deposition
substantially.

The purpose of this paper is to develop a semi-analytical model for the cross-field
drift motion of the ionised plasmoid, taking into account both the Alfvén and ohmic
currents. Our aim is to extract the key physical mechanisms described by the codes
mentioned above and condense the result into a computationally efficient model. We
consider current conservation directly, rather than formulating a vorticity equation for the
system, generalising the description of the parallel connection of the ohmic current, and
clarifying elements present in the existing literature. Factors such as the assumed shape of
the plasmoid and our neglect of its structure along the magnetic field will quantitatively
affect the plasmoid dynamics, but will not affect the qualitative nature of the results
presented here.

2. Physical model

The motion of the plasmoid arises because of an E × B-drift in the direction of the
major radius; the electric field builds up due to the current from the magnetic (curvature
+ ∇B) drift of the particles, while the time variation of this electric field gives rise to a
partially cancelling polarisation drift current. The total radial shift is determined by the
drift velocity reached and its duration, which is approximately the time it takes for the
cloud to expand one connection length along the field lines (t ∼ πRmq/cs, where Rm is the
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major radius, cs is the sound speed and q is the safety factor or inverse of the rotational
transform of the magnetic field). At this time, magnetic drift currents in the outboard and
inboard portions of the cloud cancel out (analogously to a tokamak equilibrium).

In order to mathematically describe the pellet dynamics, we formulate the
current-conservation equation for the system, describing the balance between the divergent
parts of the currents necessary to maintain quasineutrality. Working within a single-fluid
formalism, we introduce the mass density ρ, the mass flow velocity v, which appears in
the total time derivative dt = ∂t + v · ∇, the total pressure including the electron and ion
pressure components p = pe + pi, as well as the current density and the magnetic field
vectors, j and B. In addition, B = bB with the unit vector b, the curvature vector of the
field lines is κ = b · ∇b, and μ0 denotes the vacuum permeability.

The pellet cloud has higher pressure than the surrounding plasma since it is continuously
heated by hot electrons from the latter (Parks & Turnbull 1978). A current perpendicular
to the magnetic field lines arises in response to this excess pressure, but we note that
the dynamics involved in the drift of the plasmoid is slower than the timescale of
compressional Alfvén waves, so that the largest terms in the magnetohydrodynamic
(MHD) force balance equation

ρ
dv

dt
= j × B − ∇p, (2.1)

describe an approximately static force balance between the plasma pressure and the
magnetic field. The total current takes the form

j = j‖b + B × ∇p
B2

+ ρ

B
b × dv

dt
, (2.2)

and the divergence of the diamagnetic current, the second term on the right, describes the
charge accumulation due to the magnetic drifts (driven by field line curvature and field
strength inhomogeneity). This is approximately given by

∇ ·
(

B × ∇p
B2

)
= ∇ ·

[
p∇ ×

(
B
B2

)]
≈ ∇ ·

(
2p

b × ∇B
B2

)
≡ ∇ · j∇B. (2.3)

Using (b × ∇B)/B = b × κ we can write the expression for current conservation in the
form

0 = ∇ · j ≈ ∇ ·
[

j‖b + b
B

×
(

2pκ + ρ
dv

dt

)]
. (2.4)

The time-dependent term in (2.4) is the current due to the polarisation drift

jĖ = ρ
b
B

× dv

dt
. (2.5)

The resistive-MHD Ohm’s law E + (v × B) = ηj implies that, in the limit of modest
resistivity η, the perpendicular mass flow v⊥ is dominated by E × B motion. For the
low-frequency process of interest inside the pellet cloud, the electric field is electrostatic
E = −∇φ, with the electrostatic potential φ, and thus we write the cross-field velocity as
v⊥ ≈ (b × ∇φ)/B.
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The parallel current (j‖) must adjust to make the total current divergence free; that is

∇ · j = ∇ · [j‖b + j∇B + jĖ

] = 0. (2.6)

Eliminating the contribution which describes the balance of the diamagnetic and parallel
currents in the background equilibrium plasma, we are left with the perturbation of the
current continuity equation driven by the excess pressure of the plasmoid.

In the very early phase of plasmoid acceleration, j∇B is approximately balanced by jĖ .
At such short times, the length of the pellet cloud is much shorter than the distance around
the torus, t � Rmq/cs, and the plasmoid is thus poloidally and toroidally localised. If the
aspect ratio of the torus is large, the curvature vector of the magnetic field is approximately
κ = −R̂/Rm, where R̂ is the unit vector in the direction of increasing major radius. For
convenience we introduce the unit vector Ŷ = b × R̂, so the direction of j∇B is −Ŷ , which
is nearly vertical. As the electric field rises in this early stage, jĖ evolves to point in the Ŷ
direction everywhere in the cloud. Later the j‖ term starts to dominate over jĖ in balancing
j∇B, setting the quasi-steady speed of the plasmoid.

We may integrate (2.4) over some convenient volume V with boundary ∂V , and apply
the divergence theorem to obtain

0 =
∫

∂V

[(
ρ

B
dv

dt
− 2p

BRm
Ŷ
)

+ j‖b
]

· n̂ dS, (2.7)

where n̂ is a unit vector pointing outwards from V . We align the integration volume V with
the cloud by choosing it to be a magnetic flux tube extending along the length of the cloud.
Since the magnetic field lines are curved, the end faces of the flux tube, which we denote
by δS, are not quite parallel. We choose the flux tube to have rectangular cross-section
with the lower boundary running through the middle of the cloud, separating the upper,
blue and lower, red, parts of the cloud shown in figure 1, where the integration volume V
is sketched. The length of the cloud along the field line is Lcld, and the upper boundary of
the domain is located just above the cloud.

For simplicity, we assume that the pellet is injected in the horizontal midplane and
therefore (by symmetry) is always located in the middle of the cloud in the direction along
the magnetic field and in the vertical direction. The surface normal ŷ of the lower surface
of V coincides with Ŷ in the poloidal plane that contains the pellet, and rotates in the
poloidal plane as one follows the field line along the flux tube V . The relation between ŷ,
Ŷ and R̂ is

ŷ = cos θ Ŷ + sin θ R̂, (2.8)

where θ ≈ ϕ/q ≈ z/qRm is the poloidal angle, ϕ is the toroidal angle and z is the
coordinate along the magnetic field lines; we take z = 0 in the poloidal plane of the
pellet. The dimensions of the integration volume in the R̂ and ŷ directions are 	R and
	y, respectively.

The contribution from the first term, jĖ , to (2.7) thus becomes

IĖ =
∫ Lcld/2

−Lcld/2

∫ 	R

0

ρ

B2

dEy

dt
ŷ · ŷ dR dz = n̄〈mi〉	R

(1 + 〈Z〉)B2

dEy

dt
, (2.9)

where we have noted that the field-line-integrated mass density is n̄〈mi〉/(1 + 〈Z〉)
(neglecting the mass of the electrons), n̄ = ∑

i n̄i + n̄e = ∑
i n̄i(1 + 〈Z〉) is the field-line-

integrated total density of all species (including electrons) inside the cloud (with n̄i and ne
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(a)

(d )

(b) (c)

FIGURE 1. Schematic views of the ablation cloud and the field lines connecting the various
parts of it from different perspectives; the green lines indicate the boundaries of the integration
volume V: (a) parallel currents and magnetic drift currents indicated in the y–z plane, (b) from
the side looking in the toroidal direction, (c) from the top and (d) with unwrapped field lines
(black dashed), connecting different parts of the cloud after a distance L. The cloud expands at
the speed of sound cs in both directions, so that Lcld = 2cst. We assume the pellet ablation cloud
to be symmetric in z (and y) with respect to the y (z) axis in (a). The pellet is indicated in (b,c)
by the black dot, from which the cloud diverges.

denoting the field-line-integrated density of ion species i and electrons, respectively), 〈mi〉
is the average ion mass inside the cloud and 〈Z〉 is the average ion charge inside the cloud.

Considering the second term, j∇B, we assume that the pressure is constant along the
field lines inside the cloud, with equal electron and ion temperatures, denoted by T . The
contribution from the second term of (2.7) then becomes

I∇B =
∫ Lcld/2

−Lcld/2

∫ 	R

0
−2( p − pbg)

BRm
Ŷ · ŷ dR dz =

∫ Lcld/2

−Lcld/2
−2( p − pbg)	R

BRm
cos

(
z

qRm

)
dz

= −4( p − pbg)	Rq
B

sin
(

Lcld

2qRm

)
= −4(n̄T − LcldnbgTbg)	Rq

BLcld
sin
(

Lcld

2qRm

)
. (2.10)

The background pressure pbg enters via the contribution from the upper surface of the
integration volume. We see, as noted in the introduction, that the assumptions simplifying
the parallel structure of the cloud will quantitatively affect the final results, but accounting
for parallel structure will not affect the essential qualitative description of the plasmoid
motion.

The key to calculating how the parallel current contributes to the drift motion is to find
the relation between the parallel current j‖, which flows through the background plasma
(beyond the ends of the cloud), and the electric field responsible for E × B motion, which
are related via the electrostatic potential φ along the plasmoid length. As the pellet flies
through the plasma, it undergoes continuous ablation and thus generates a sequence of
ablation clouds residing on different field lines. Each of these clouds expands along the
magnetic field whilst drifting across it. It is important to note that the cloud drift velocity
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FIGURE 2. Sketch of the electrostatic potential φ(z) along a field line connecting the two ends
of the cloud, at different values of y, characterised by potentials φA and φB. We show three
representative times: at τ1 < L/(2CA) potential perturbations propagating out from the ends
of the cloud at the Alfvén speed have not yet met along the field line (solid black line). The
perturbations meet at τ2 = L/(2CA) (dashed blue). After a long time (compared with Alfvén time
scales), τ3 
 L/(2CA), the potential has reached a quasi-steady state where an ohmic current
flows between the connected ends of the cloud (dash-dotted green). Note that the cloud length
Lcld is exaggerated in the figure; in reality it is much shorter than the distance along the field line
between the connected ends of the cloud.

exceeds the speed of the pellet. We can thus regard the pellet as stationary, which simplifies
our discussion.

With these facts in mind, we now study the evolution of the electrostatic potential along
each field line. We fix our attention on one particular field line and denote by τ the time
that has elapsed since pellet material first arrived there. This time is in general different
from the time t that has passed since this material was originally ablated from the pellet.
(Alternatively, in the limit of very high electrical conductivity, it is possible to regard the
field lines as ‘frozen into’ the pellet cloud, in which case it is better to consider a field line
moving with the pellet cloud. In this case t = τ .)

It is convenient to introduce L, the distance along a field line, outside the cloud, which
connects the two ends of the cloud; note that L depends on the coordinates identifying a
field line and may be different for different field lines in our integration volume V . In our
large-aspect-ratio approximation, the value of L = 2πRmN is equal to the circumference
of the torus, 2πRm, times the number of turns, N, after which the field line connects the
two end caps of V . This number will in general vary over the cross-section of the flux tube.

The evolution of the electrostatic potential along a field line connecting the oppositely
charged parts of the cloud after a length L is illustrated in figure 2. The physical picture
of the evolution of this potential is the following: the interface between the end of the
plasmoid and the background plasma represents an evolving perturbation, expanding along
the field lines at the local sound speed cs of the pellet material inside the plasmoid.
The potential difference between the cloud and the background plasma, along with the
plasmoid drift, excite shear Alfvén waves, which are emitted from these interfaces and
propagate away from the plasmoid, along field lines through the background plasma, at
the local Alfvén speed, CA. For τ � L/(2CA), the potential perturbations associated with
the Alfvén waves will not have reached each other yet. Thus, the current carried away
from the ends of the cloud is determined by the polarisation current resulting from the
time-varying potential at the wave fronts, giving rise to the Alfvén current (Scholer 1970).
When τ = L/(2CA), the waves emerging from the opposite sides of the cloud meet and
interfere with each other. Eventually, a steady state, without propagating waves, is reached
when τ 
 L/(2CA). At this stage, the parallel current is instead determined by Ohm’s law.
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Thus, the dominant contribution to the j‖ current, in the initial phase, is associated with
the Alfvén wave propagating from the ends of the drifting cloud (Parks et al. 2000). It is
proportional to the electric field inside the cloud, as outlined below, and can be described
by the so-called Alfvén conductivity, ΣA = 1/RA = 1/(μ0CA). In the later stages, the
ohmic current along the field lines connecting the oppositely charged parts of the cloud
(Pégourié et al. 2006) becomes dominant. There is also a contribution to the current caused
by the drift resulting from the cloud viscosity, which has been shown by Rozhansky et al.
(2004) to be less significant and will be neglected here.

2.1. Parallel current
When calculating the contribution of j‖ to the integral (2.7), only the end caps (area δS)
of this flux tube will contribute, as otherwise b · n̂ = 0. Consider first the contribution
from a smaller flux tube, whose end caps have area ∂s<, that only contains field lines
for which CAt � L/2, that is, for which Alfvén waves propagating from the ends of the
cloud have not had time to meet. As the parallel electric field E‖ is small in the established
hot background plasma outside the cloud, except at the wave front, we can express E‖ in
Fourier space as

E‖ = −ik‖φ + iωA‖ ≈ 0, (2.11)

and relate the electrostatic and vector potential via the Alfvén speed

A‖ = φ/(ω/k‖) = φ/CA. (2.12)

Using Ampère’s law we can relate j‖ to A‖ and thence to φ as

j‖ = −∇2
⊥A‖
μ0

= − ∇2
⊥φ

μ0CA
. (2.13)

Assuming that the whole cloud moves at the same radial velocity, the electric field
Ey = −∂φ/∂y must be constant inside the cloud, i.e.

∇2
⊥φ = −Ey

[
δ( y − 	y) − δ( y + 	y)

]
, (2.14)

where δ denotes the Dirac delta function. If we set ∂s< to the part of ∂S for which
CAt < L/2, the contribution from the Alfvén part of the parallel current becomes

I‖,A = 2
∫

∂s<

Eyδ( y − 	y)
μ0CA

dy dR

= 2
∫ 	R

0

∫ 	y

0
Θ(∂s<; y, R)

Eyδ( y − 	y)
μ0CA

dy dR

= 2PA	R
Ey

μ0CA
= 2PA	R

Ey

RA
, (2.15)

where the function Θ(∂s; y, R) is 1 for the y and R values corresponding to field lines
crossing the surface ∂s where CAt < L/2 is satisfied, and zero otherwise; and PA is the
fraction ∂s</∂S.

Now consider the field lines crossing the area ∂s>, i.e. the field lines for which CAt 

L/2. On these field lines, the Alfvén waves emanating from either side of the cloud have
already met and decayed, and there is no longer any polarisation current. Only the ohmic
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current j‖ remains and, being divergence free, it must be constant along the field in the
large-aspect-ratio limit. This current is related to the parallel electric field by Ohm’s law

j‖ = σ‖E‖ = −σ‖∇‖φ. (2.16)

As j‖ is constant along the field lines, so is ∇φ, which means that

j‖ = σ‖E‖ = −σ‖
φB − φ

L
= −σ‖

Ey( yB − y)
L

, (2.17)

where y denotes the vertical coordinate at which the field line emanates from one end of
the cloud and yB that where it hits the other end. The electric field Ey has been assumed to
be constant along the field line.

Let us now denote by ∂si the subset of δs> containing only field lines connecting to
the opposite side of the cloud after a distance L = 2πRmi, i.e. connecting after exactly i
toroidal turns. If i 
 1, the connection is essentially random, so that the values of y and
yB are uncorrelated and

∫
yB dy = 0. The total ohmic current flowing along field lines in

δsi thus becomes

I(i)
‖,ohm(τ 
 L/(2CA)) = −2

∫
∂si

σ‖
Ey( yB − y)

L
dy dR

= −2Pi

∫ 	y

0

∫ 	R

0
Θ(∂s>; y, R)σ‖

Ey( yB − y)
2πRmi

dy dR

= Piσ‖
Ey	y2	R

2πRmi
, (2.18)

where Pi = δsi/∂S is the fraction of the cloud connecting to the opposite side after i
toroidal turns. This result is similar to the corresponding expression, equation (2), in
Commaux et al. (2010), up to an order-unity factor accounting for the finite electron
collision time. The total ohmic current is obtained by summing over all values of i.

For τ � L/(2CA), the current will make a transition from 0 to I(i)
‖,ohm(τ 
 L/(2CA))

1

over a time scale similar to L/CA, so that we can write

I‖,ohm =
∞∑

i=1

f
(

τ

L/(2CA)

)
I(i)
‖,ohm(τ 
 L/(2CA)), (2.19)

where f (0) = 0 and f → 1 for large arguments. The detailed form of f is determined by
the interaction of the Alfvén waves propagating from opposite sides of the cloud, which is
outside the scope of the present work. Here, we instead make the approximation that f =
θ(τ/(L/(2CA)) − 1), where θ is the Heaviside step function. This is also used in Pégourié
et al. (2006). Note that this assumption on f underestimates the time until the onset of
the ohmic current, thus overestimating the importance of the ohmic current contribution.
With this assumption for f , we can write the total ohmic current as

I‖,ohm =
N∑

i=1

I(i)
‖,ohm(τ > L/(2CA)), (2.20)

where N = 2CAτ/(2πRm)� = τ/t0� is the maximum number of toroidal turns the
Alfvén wave front has had time to make, with t0 the time for the Alfvén wave to propagate

1This only applies to field lines in the interior of ∂S; at the boundary of ∂S the initial current is I‖,A. However, as the
ohmic current is proportional to the cross-sectional area, the boundary of ∂S gives a negligible contribution to the ohmic
current.
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one turn around the torus, accounting for the fact that emission is from both ends of the
cloud. The notation x� gives the greatest integer less than or equal to x.

2.1.1. Fraction of the cloudlet cross-section connected to the opposite side
We will now calculate the fraction Pi of the cloudlet cross-section that connects to the

opposite side during the ith turn, assuming an irrational safety factor on the flux surface.
We note though that rational flux surfaces have been shown to affect the ablation process
– owing to the smaller reservoir of hot electrons that can enter the pellet cloud – and can
also produce a drift braking effect, caused by the effective shortcircuiting of the potential
variation along field lines (Commaux et al. 2010; Sakamoto et al. 2013). Our model does
not account for this, and as such it may provide a conservative upper estimate of the drift
distance. As we shall see, most of the contribution to the current comes from terms with
i 
 1, i.e. from field lines that encircle the torus many times before connecting the two
ends of the cloud. According to Weyl’s lemma (Helander 2014), whether a given field line
starting from one side of the cloud connects to the other side in a large number of turns
is essentially random. We can thus speak of the probability of such a connection, and this
probability depends on the fraction of the poloidal cross-section that the cloudlet covers,
which is 	y/(πr), where r is the characteristic minor radius at the cloudlet position.
Therefore, the total connected fraction Ptot

con increases between turn N and N + 1 in the
following way:

Ptot
con(N + 1) − Ptot

con(N) = 	y
πr

(
1 − Ptot

con(N)
)
. (2.21)

The solution of this difference equation is

Ptot
con(N) = 1 −

(
1 − 	y

πr

)N

, (2.22)

and we can now express

Pi = Ptot
con(i + 1) − Ptot

con(i) = 	y
πr

(
1 − 	y

πr

)i

. (2.23)

This estimate is consistent with figure 3 in Pégourié et al. (2006). We can also express the
fraction PA (determining the size of the Alfvén current) as PA = 1 − Ptot

con.
Combining (2.18), (2.20) and (2.23), the ohmic current contribution can now be

expressed as

I‖,ohm =
N∑

i=1

Piσ‖
Ey	y2	R

2πRmi
= Ey	R

Reff
, (2.24)

with the inverse effective resistivity 1/Reff given by

1
Reff

=
N∑

i=1

Piσ‖
	y2

2πRmi
= σ‖

	y3

2πRmπr

N∑
i=1

1
i

(
1 − 	y

πr

)i

. (2.25)

For N → ∞ we may use
∑∞

i=1(1 − x)i/i = − ln x, giving

1
Reff

= σ‖
	y3

2π2Rmr
ln

πr
	y

. (2.26)

Concerning when the N → ∞ limit is meaningful to take, we must appreciate that,
depending on the resistivity of the cloud, the cloud may or may not be frozen into the
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magnetic field, which determines whether field lines are dragged along with the cloud, or
the field lines slip with respect to the cloud.2 It is worth re-iterating that the generation of
Alfvén waves by the propagating potential perturbation – and so the existence of Alfvén
resistivity – does not require the field lines to be frozen in on the drift time scale.

As we will see later, the number of connected turns N becomes large during the drift
motion, so that taking N → ∞ is a valid approximation for the majority of the drift
motion, as long as the magnetic field diffusion is slow enough (i.e. the cloud temperature
is high enough) that the cloud does not become disconnected from the field lines where
the electrostatic potential has been set up.

The picture becomes more complicated if the magnetic field diffusion time scale is
fast compared with the drift motion. This is typically the case for low cloud temperatures
(e.g. pellets doped with highly radiating impurities), where the conductivity in the cloud
is low and the resistive diffusion coefficient is large. In this case, the potential along a
given field line will not only be determined by the local cloud properties, but will be
affected by all material which has drifted past the field line under consideration. When
pellet material first arrives, the Alfvén current dominates. On the other hand, long after the
ablation flow started to cross a given field line, the potential along this field line will reach
a quasi-stationary profile similar to the case when the field line remains frozen into the
cloud for a long time, and thus N → ∞ also in this case. As the pellet motion is typically
slow compared with the other processes of interest, the latter limit should dominate for the
majority of the ablated material in most cases even for low cloud temperatures.

The fraction of connected field lines, PA, converges somewhat slower than the effective
resistivity Reff. We therefore keep N finite in the expression for PA for hot clouds. For
cold clouds, for the first material drifting past a new part of the background plasma N
remains equal to zero, and PA = 1. However, as the potential reaches its quasi-stationary
value, PA → 0 for the whole drift motion (i.e. the parallel current will be dominated by
the ohmic component).

2.2. Current balance
We are now finally ready to sum up the various contributions to the current balance and
obtain an equation for Ey in terms of the parameters characterising the pellet cloud and the
background plasma. From (2.7) we have

0 = I∇B + IĖ + I‖,A + I‖,ohm

	R

= −4(n̄T − LcldnbgTbg)q
BLcld

sin
(

Lcld

2qRm

)
+ n̄〈mi〉

(1 + 〈Z〉)B2

dEy

dt
+ 2PA

Ey

RA
+ Ey

Reff
. (2.27)

Note that the factor sin (Lcld/qRm) will start to oscillate when t ∼ qRm/cs, as Lcld ∼ cst, and
the amplitude of the term in which this appears in (2.27) decreases as 1/Lcld ∝ 1/t; this
oscillation, together with the pressure equilibration (which occurs when n̄T = LcldnbgTbg),
effectively sets the time scale of the drift duration and eventually leads to a finite
displacement for the drift. Also note that cst0/qRm ∼ cs/CA is small for typical fusion
plasma parameters, meaning that N becomes large during the drift duration, motivating us
to take the upper limit of the sum in (2.25) to be infinite, when calculating Reff.

2Figure 3 of Hoare et al. (2019) is a nice example from the scrape-off layer filament literature of exploring this
transition numerically.
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If the plasmoid and background-plasma properties do not depend on Ey, (2.27) becomes
a linear first-order ordinary differential equation in Ey, which can be written in the form

dEy

dt
+ g(t)Ey = f (t), (2.28)

with

g(t) = (1 + 〈Z〉)B2

n̄〈mi〉
(

2PA
1

RA
+ 1

Reff

)
, (2.29)

and

f (t) = 4(1 + 〈Z〉)B
〈mi〉Lcld

(
T − Lcldnbg

n̄
Tbg

)
q sin

(
Lcld

2qRm

)
. (2.30)

This equation can be solved by using an integrating factor eG(t), so

Ey = e−G(t)

(
Ey0 +

∫ t

0
eG(t)f (t) dt

)
, (2.31)

where Ey0 = Ey(t = 0) and G(t) = ∫ t
0 g(t) dt. For a hot cloud, we have

G(t) = (1 + 〈Z〉)B2

n̄〈mi〉

(
2

[
1 −

(
1 − 	y

πr

)N+1
]

πr
	y

t0

RA
+ t

Reff

)

= 2

[
1 −

(
1 − 	y

πr

)N+1
]

πr
	y

Reff

RA

t0

tacc
+ t

tacc
, (2.32)

where we have defined

tacc = n̄〈mi〉Reff

(1 + 〈Z〉)B2
. (2.33)

This is the characteristic acceleration time scale if the ohmic current dominates over the
Alfvén current; if Reff/RA is small (corresponding to a hot background plasma), or in
the case of a cold cloud long after the ablation flow started to cross the local field line, the
expression (2.32) reduces to

G(t) = t
tacc

. (2.34)

For a cold cloud shortly after the ablation flow started at the local field line, where PA = 1,
(2.32) reduces to the same expression but with Reff replaced with RA in the expression for
tacc.

Finally, as the radially outward drift velocity of the cloudlet is due to the E × B motion,
it can be estimated as Ey/B. Time integration leads to an expression for the net radial
displacement

	r = 1
B

∫ ∞

0
Ey dt. (2.35)

3. Parallel expansion and the final drift displacement

In this section, we complete the description of the pellet cloud by defining the density
source resulting from pellet ablation. We then evaluate the drift of the pellet cloud,
demonstrating its dependence on pellet composition and background-plasma temperature.
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3.1. Model for the line-integrated density and cloud expansion
The line-integrated density can be determined based on an estimate of how many particles
the cloud contains when it detaches from the pellet source. The latter can be obtained as
the product of the ablation rate and the time during which the pellet source is ablating
inside the cloud.

A widely used estimate for the mass ablation rate is given by

G = λ(X)

(
TkeV

2

)5/3 ( rp

rp0

)4/3

n1/3
e20, (3.1)

where λ(X) = [27.1 + tan (1.48X)]/1000 kg s−1, X is the molecular fraction of deuterium
in the pellet, TkeV is the background electron temperature in keV, rp is the pellet radius,
rp0 = 2 mm and ne20 is the background electron density in units of 1020 m−3 (Parks 2017).
This expression is based on a version of the neutral gas shielding model (Parks & Turnbull
1978) that allows the pellet material to have both hydrogenic and noble gas components.

To determine the average detachment time (during which the pellet source contributes to
the cloud), we estimate the initial acceleration v̇0 = v̇(t = 0) = Ėy(t = 0)/B by balancing
the first two terms in the current balance equation (2.27). The last two terms in (2.27) can
be neglected, since in the initial phase, Ey is small. The time derivative of the electric field
then becomes

dEy

dt
= 2B(1 + 〈Z〉)

n̄〈mi〉Rm

(
n̄T − LcldnbgTbg

)
, (3.2)

so that the initial acceleration is

v̇0 = 1
B

dEy

dt
= 2(1 + 〈Z〉)

〈mi〉Rm

(
T0 − nbg

n0
Tbg

)
, (3.3)

where n0 = n̄/Lcld is the initial cloud density and T0 is the initial temperature.
Initially, the pellet cloud is neutral, and it expands radially, but as soon as the particles

are ionised, the expansion will continue along the magnetic field lines. The initial parallel
expansion takes place at the speed of sound at a temperature of approximately T0 (which is
of the order of a few eV), and starts from a spherical cloud of cross-sectional area π	y2.
We can therefore estimate the density from mass conservation according to

G = 2n0〈mi〉cs(T0)π	y2 ⇒ n0 = G
2〈mi〉cs(T0)π	y2

. (3.4)

The average distance the ablated material must drift before it exits the initial expansion
tube around the pellet is 	y. Assuming that the initial motion has a constant acceleration
we find

	y = v0tdet + v̇0t2
det/2, (3.5)

and the average detachment time thus becomes

tdet = −v0

v̇0
+
√(

v0

v̇0

)2

+ 2	y
v̇0

, (3.6)

where v0 = vp is the initial cloud velocity relative to the pellet, which is equal in magnitude
but opposite in sign to the pellet velocity (assuming the cloud would be frozen in to the
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field lines where it was ablated in the absence of the E × B acceleration). During the
detachment time tdet the cloud expands to a length

Lc = 2cs(T0)tdet, (3.7)

which serves as an initial condition for the cloud length for the remainder of the drift
motion. The line-integrated density is thus

n̄ = Gtdet

〈mi〉π	y2
. (3.8)

When the cloud detaches from the pellet, the temperature initially rises quickly due
to the heating from hot electrons in the background plasma, but the details depend on
the density and composition of the cloud. At low densities, the mean free path of the
background-plasma electrons in the cloud is longer than the cloud itself. These electrons
thus pass through the cloud and heat it relatively uniformly (Aleynikov et al. 2019; Arnold,
Aleynikov & Helander 2021; Runov et al. 2021). Most of the literature, however, considers
the opposite limit of a dense cloud, where the stopping power is so great that the hot
electrons cannot easily pass through it. We only consider this case but note that it becomes
inapplicable at low cloud densities and high background-plasma temperatures. The heating
also depends on the pellet composition; if the pellet contains even a small amount of a
high-Z radiative component, the radiation from the pellet cloud quickly reaches a balance
with the heating from the background plasma, and therefore the temperature rises far more
slowly (Matsuyama 2022). For pure hydrogen pellets, on the other hand, the radiation is
too weak to have a major impact on the energy balance, and then the cloud temperature
will relatively quickly increase to several tens of eV.

The dependence of the cloud temperature on the background-plasma temperature will
be rather weak, as a higher background-plasma temperature means both an increased
heating and an increased ablation rate, giving more particles to absorb and, in the case
of a high-Z-doped pellet, radiate away the energy. The heat flux scales as qbg ∼ T3/2

bg
(neglecting any scaling of the cloud cross-sectional area with the temperature), and the
ablation rate scales as G ∼ T5/3

bg , so that the cloud temperature scales as T ∼ qbg/G ∼
T−1/6

bg , i.e. a very weak scaling. Typical values for the cloud temperature, based on
the results presented in Matsuyama (2022), are T = 5 eV for neon-doped pellets and
T = 30 eV for pure hydrogen pellets. In the following we will assume the
cloud temperature is constant during the drift motion and is independent of the
background-plasma temperature. This approximation is, of course, quite crude but not
more so than other simplifications we have employed.

Finally, as long as the cloud pressure is much higher than the background-plasma
pressure, the cloud will expand by approximately the speed of sound inside the cloud,
cs ≈ √

(γe〈z〉 + γi)T/〈mi〉, with γe = 1 and γi = 3, and will slow down when the cloud
pressure becomes comparable to the background-plasma pressure. Here, we assume
that the expansion speed is equal to cs as long as the cloud pressure is higher than
the background-plasma pressure, and then stops immediately when the cloud pressure
becomes equal to the background-plasma pressure, i.e.

Lcld ≈ Lc + 2cs min(t, tpe), (3.9)

where the pressure equilibration time is

tpe = Tn̄
2csnbgTbg

. (3.10)
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With the parallel dynamics model presented here, we have all the details needed to
evaluate the electric field inside the cloud, and the drift displacement can be calculated
by evaluating the integral in (2.35). Analytical expressions for the drift displacement in
various limits are given in Appendix A.

Before evaluating the above expressions for the drift displacement for an ITER-like
scenario, as a validation exercise, we evaluate the drift distance for parameters
representative of a JET shattered pellet injection (SPI) experiment studied by Kong
et al. (2022) using the JOREK code; discharge #96874. Here, the drift displacement was
accounted for by imposing a fixed prescribed shift between the ablating pellet shard and
the location where the ablated material is eventually deposited. A shift of 	r = 30 cm was
found to yield the best agreement to the experimental density evolution. We choose this
case due to the availability of an estimate of the total drift displacement under experimental
conditions as close as possible to the ITER-like scenario studied below in § 3.2.

The injected pellet consisted of 1.6 × 1023 deuterium atoms and was shattered into ∼300
shards, which, using the Parks size distribution model (Parks 2016), gives a characteristic
shard radius of rp = 0.6 mm. However, as shards of larger volume contribute more to the
density build-up – that was matched to the experiment – we consider a representative pellet
shard radius of rp = 1 mm in our estimate. Lacking values for 	y and T for the specific
case, we set 	y = 1.25 cm and T = 30 eV based on simulation results by Matsuyama
(2022) of the same ITER-like scenario as the one studied below in § 3.2. Finally, using the
representative geometrical and background plasma parameters v0 = 300 m s−1, q = 1.5,
B = 3.45 T, Rm = 3.5 m, r = 0.5 m, nbg = 8.5 × 1019 m−3 and Tbg = 7 keV (Kong et al.
2022), we arrive at an estimated drift displacement of 	r = 28 cm, in good agreement
with the value found to match the experimental data. Although this estimate may be
altered by a factor ∼2 within reasonable ranges of the relevant parameters, this result
suggests that the present model is sufficiently accurate for order-of-magnitude estimates
and qualitative studies, such as those performed for an ITER-like scenario in the next
subsection.

3.2. Calculation of the drift distance in an ITER-like scenario
We now evaluate the above expressions for the drift displacement for parameters of interest
in an ITER-like scenario, similar to that studied by Matsuyama (2022). In this scenario, the
drifting pellet cloud is ablated from a pellet shard with radius rp = 2 mm located at major
radius Rm = 5 m and travelling with a speed of v0 = 500 m s−1 towards the high-field side
(i.e. the injection is from the low-field side). We also assume that the cloud is initially
stationary in the laboratory frame, so that Ey0 = 0. The background plasma has a free
electron density of nbg = 1020 m−3 and the magnetic field strength is B = 5 T. Moreover,
we set q = 1, 	y = 1.25 cm, (based on simulation results by Matsuyama 2022) and the
average charge for the neon is approximately 〈ZNe〉 ≈ 2 at 5 eV. The background-plasma
temperature Tbg and the pellet composition will be varied.

Matsuyama (2022) uses a model similar to that used by Pégourié (2007), adapted to
mixed neon–deuterium pellets, including a neutral gas and plasma shielding model for
the pellet ablation and a volume-averaged single-cell Lagrangian model for the parallel
expansion. However, Matsuyama (2022) only considers the early stages of the drift motion
during the first 130 μs after the cloud has detached from the pellet, for a single isolated
cloud, and does therefore not include the effect of ohmic currents and rotational transform.
Thus, the model by Matsuyama (2022) accounts for the same physical mechanisms
concerning the drift motion as ours in the case of a cold cloud shortly after the ablation
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(a) (b)

FIGURE 3. Drift displacement as a function of background-plasma temperature and pellet
composition for cold clouds (30 eV for pure hydrogen, 5 eV otherwise), with different integration
times and assumptions for the parallel current. In panel (a) the parallel current is assumed to be
purely Alfvénic (corresponding to when the ablation flow has just started to cross the local field
lines), and in panel (b) the parallel current is assumed to be purely ohmic (corresponding to
long after the ablation flow started to cross the local field lines). The solid lines correspond to
performing the time integral of the drift velocity to t = ∞, as in (2.35), the dashed lines are
obtained by integrating only to 130 μs.

flow has started to cross the local field lines.3 He concluded that the drift displacement is
likely to be substantial compared with the plasma minor radius for pure hydrogen pellets,
but will be strongly reduced in the presence of even a small amount of neon. Here, we
attempt to reproduce this result in the corresponding limit, and then extend it by calculating
the drift displacement after a long time, including the effect of ohmic currents.

Figure 3 shows the drift displacement for cold clouds (30 eV for pure hydrogen, 5 eV
otherwise). This is calculated by integrating (A2) (leading to (A4) if we integrate up to
infinity), as a function of the background plasma temperature and pellet composition, with
different integration times and assumptions regarding the ohmic currents. In panel (a) we
consider the case when the ablation flow has just started to cross the local field lines,
i.e. with the parallel current consisting only of the Alfvén current, and panel (b) shows
the results for long after the ablation flow started to cross the local field lines, i.e. with the
parallel current being purely ohmic.

The dashed lines in panel (a) are calculated with the assumption that the parallel
current is purely Alfvénic, as was assumed by Matsuyama (2022), and the results
are similar to those shown in figure 11 in Matsuyama (2022) within an order-unity
factor, especially at high background-plasma temperatures. The variation with both the
background temperature and pellet composition agrees reasonably well. We see, however,
that when we extend the integration time to infinity (solid lines), the drift displacement
increases significantly at high background plasma temperatures, so that even clouds
with 100 % neon would drift several metres in the absence of ohmic currents, although
the drift displacement is not strongly affected for temperatures �1 keV. This can be
understood by considering that the pressure equilibration time becomes longer at high
background-plasma temperatures (see (3.10)), so that the cloud can drift a significant
distance after the first 130 μs. Moreover, in the absence of ohmic currents, the acceleration
time scale is typically longer than 130 μs, so that the cloud continues to gain speed

3The effect of the rotational transform does not make a substantial difference during the first 130 μs in a large device
such as ITER where tpol typically ranges from a few hundred microseconds to a millisecond.
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even after this time frame. For low background plasma temperatures, on the other hand,
the pressure equilibration time becomes shorter than 130 μs so the cloud does not drift
significantly after this time.

In panel (b), where the parallel current is purely ohmic, we see that the drift
displacement is reduced by approximately one order of magnitude when integrating up
to 130 μs (compare with panel a), and approximately two orders of magnitude when
integrating to infinity. The scaling with the background-plasma temperature is also
weaker, as anticipated above, because the resistivity determining the parallel current now
scales with the background plasma temperature as Reff ∼ T−3/2

bg , which mostly cancels
the temperature scaling of the ablation rate G ∼ T5/3

bg (there is some dependence on the
background temperature left at lower background temperatures where the ratio of the
cloud pressure and the background pressure is lower). Moreover, the effect of increasing
the integration time beyond 130 μs is now much smaller than in the absence of ohmic
currents. This follows as the acceleration time scale tacc is much shorter, so that the cloud
decelerates rather than accelerates after the first 130 μs.

For neon-doped pellets, the drift displacement now ranges from a few cm up to ∼20 cm
at the highest relevant temperatures, which is small compared with both the plasma minor
radius and the plume of shards in case of a SPI in an ITER-like scenario. The pure
deuterium pellets, on the other hand, still have a drift displacement of tens of cm, which is
a sizeable fraction of the plasma minor radius and comparable to the radial extent of the
shard plume in case of an SPI. This result corroborates the conclusion made by Matsuyama
(2022).

We now compare the results for the same plasma scenario as above using the expressions
obtained with different limits and model assumptions. As we have seen in § 2.1.1, for hot
clouds (e.g. pure deuterium pellets), the N → ∞ limit of Reff can be used while we keep
N finite in the expression of PA. For cold clouds (e.g. neon-doped pellets), in the long-time
limit (as the potential reaches its quasi-stationary value), the Alfvén part of the current can
be neglected (PA = 0).

In figure 4, the full solution, which contains both the I‖,A and I‖,ohm contributions
obtained by numerically integrating (A1), is shown by a black curve for a pure deuterium
pellet (panel a) and a 2 % neon-doped one (panel b). We also consider the cases
representing the long and short-time limits, in terms of the time passed after the ablation
flow first started to cross the local field lines. In the short-time limit (green long-dashed
curve) I‖,ohm is neglected, and it is calculated by replacing Reff by RA in (A4). The long-time
limit (blue dashed curve) physically means that I‖,A is neglected, and it is calculated
using (A4). (Note that in the case of a cold cloud with a fast magnetic field diffusion
time scale compared with the drift motion, in the long-time limit, the I‖,A = 0 limit is
expected to be accurate, as discussed at the end of § 2.1.1.) In addition, we also show
results calculated using the simplified expression (A6) (red dash-dotted), that represents
the high-background-temperature asymptotic behaviour of the long-time limit.

We see that for both the pure deuterium and the neon-doped pellet, figure 4(a,b), the
long-time limit gives similar drift displacement to the general expression (compare dashed
and solid), especially at high background-plasma temperatures. There is a discrepancy
of � 50 % at background temperatures of Tbg ∼ 100 eV where the ohmic conductivity
is rather low, but at these temperatures the displacement, and therefore the discrepancy,
remains moderate. The overall good agreement reflects that the number of connections
N continuously increases with time in a hot cloud, so that the Alfvén conductivity is
replaced by ohmic conductivity over a short period of time compared with the total drift
time.
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(a) (b)

FIGURE 4. Comparison of the drift displacement obtained with different limits and model
assumptions, for a pellet consisting of (a) 100 % deuterium and (b) a mixture with 98 % neon and
2 % deuterium. Solid black: I‖,A + I‖,ohm, numerical integration of (A1). Dashed blue: I‖,A = 0,
using (A4). Dash-dotted red: I‖,A = 0 and taking Tbg → ∞ asymptotic behaviour, using (A6).
Long dashed green: I‖,ohm = 0, using (A4), but with Reff replaced by RA.

In the case of a pure deuterium pellet, figure 4(a), we see that the high-background-
temperature asymptotic form of the long-time limit (dash-dotted) approaches the more
accurate expression (A4) at Tbg � 1 keV, but the approach is much slower in the
doped-pellet case, figure 4(b). This difference is due to the higher cloud temperature
for a pure deuterium cloud, leading to a longer pressure equilibration time tpe while
the acceleration time tacc remains only weakly affected by the background temperature,
making the approximation tacc/tpe ≈ 0 accurate at lower temperatures.

Finally, we find that the short-time limit (long-dashed curves in figure 4) typically gives
unphysically large drift displacements, unlike the general expression and the long-time
limit. Only at Tbg � 100 eV does the short-time-limit expression become comparable to or
smaller than the long-time limit; then the ohmic conductivity of the background plasma
becomes so low that the Alfvén conductivity starts to dominate. We note that at sufficiently
low values of Tbg, the short-time limit result starts to asymptotically approach the general
expression (black curve), but that happens at very small, inconsequential, values of the
drift displacement 	r.

4. Discussion and conclusion

We have derived a semi-analytical model for the cross-field drift of an ionised cloud
following a pellet injection in a tokamak. The model gives the radial drift velocity in
terms of the background plasma and cloud properties, assuming the latter to be constant
along the field lines inside the cloud. The main phenomena included in the model are
the ∇B current causing the charge separation inside the cloud and the resulting E × B
drift, the rotational transform, pressure equilibration and the currents limiting the charge
separation; the latter including the polarisation current and the currents exiting through
the ends of the cloud parallel to the field lines, consisting of an Alfvénic and an ohmic
contribution. In particular, we have developed a statistical model for the length of the field
lines connecting the two ends of the cloud, and the corresponding effective resistivity for
the Ohmic current flowing along those field lines.

We then derive semi-analytical expressions for the final drift displacement, combining
our model for the cross-field drift with a simple analytical model for the cloud properties.
We evaluate the resulting expressions in an ITER-like scenario similar to those studied
by Matsuyama (2022), including a wide range of background-plasma temperatures
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and different neon–deuterium mixtures for the pellet composition. Our results are in
reasonable agreement with those obtained by Matsuyama (2022) in the corresponding
limit, integrating only up to 130 μs after the cloud is detached from the pellet source and
neglecting the ohmic part of the parallel current (corresponding to a cold cloud shortly
after the pellet material has started to flow across a given field line). We then investigate
the effect of adding the ohmic part of the parallel current and integrating to longer times.
Without ohmic currents, the final drift displacement becomes unreasonably long, up to
several tens (or even hundreds) of metres, while adding the ohmic current reduces the
drift displacement by typically 1–2 orders of magnitude.

Our results suggest that a pure deuterium pellet injection in an ITER-like scenario is
likely to be significantly affected by the radial drift displacement, and that a substantial
part of the injected material may be expelled from the plasma. On the other hand,
a neon-doped pellet injection will likely be significantly less affected by the drift
displacement. This result corroborates the conclusion made by Matsuyama (2022).

Note, however, that even a relatively small drift displacement can have a significant
effect on the ablation and density profile Vallhagen (2021). The reason is that even a
small drift means that the pellet will not feel its own cooling effect on the background
plasma, which otherwise provides a self-regulating feedback mechanism which decreases
the ablation rate. Even a small drift therefore makes the pellet, or pellet shards, ablate
faster, so that they deposit more of their material earlier along their trajectories. This
applies especially to injections from the low field side, as in that case the drift will
displace the ablated material behind the ablating source. On the other hand, an injection
from the high-field side will displace the ablated material in front of the pellet or
pellet shard, so that it feels the effect of its own cooling along its trajectory. The
importance of this effect also depends on the magnetic field strength, which regulates
the transverse dimension of the pellet cloud, and on the injection velocity of the pellet.
The effect in question is most important if the field is strong and the pellet velocity
is small.

In the case of an SPI in an ITER-like scenario, the plume of shards typically extends
over several decimetres. Thus, in the case of a neon-doped pellet, our results indicate that
the shards will still feel the cooling of the background plasma from most shards ahead
of them, even for an injection from the low-field side. For a pure deuterium SPI, on the
other hand, the drift displacement will likely be longer than the extent of the plume of
shards, which might increase the ablation significantly, especially for an injection from the
low-field side. A quantitative assessment of the effect of the drift displacements calculated
by the model presented here would require coupling to a model for the full injection
dynamics and response of the background plasma, which is outside the scope of the present
work.

The accuracy of the results presented in this paper is also limited by a number of
simplifications, primarily in the model for the parallel expansion and cloud properties.
In particular, the cloud properties are assumed to be constant along the field lines inside
the cloud, and the energy balance and temperature evolution is modelled using only a
constant, representative value for the cloud temperature. While the cloud temperature
remains rather low and constant for a neon-doped pellet due to the high radiated power,
the temperature will vary significantly during the drift motion for a pure deuterium pellet;
indeed, the discrepancy compared with the results obtained by Matsuyama (2022) is larger
for a pure deuterium pellet. The quantitative accuracy of the present model could therefore
be significantly improved by combining the present model for the cross-field drift with a
more advanced model for the cloud properties, which is outside the scope of the present
work.
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Appendix A. Expression for the drift displacement in relevant limits

It is convenient to introduce the expansion time scale texp = Lc/(2cs) and the time tpol it
takes the cloud to expand a poloidal angle of one radian. We also introduce the normalised
time variable t′ = t/tacc and normalise the other time scales accordingly, also denoted with
a prime, and introduce the shifted normalised time variable t′′ = t′ + texp/tacc. In terms of
these variables, the electric field inside the cloud can be expressed as

Ey = Ey0e−G(t′) + 2(1 + 〈Z〉)BTq
〈mi〉cs

× e−G(t′)
∫ min(t′,t′pe)

0
eG(t̃′)

(
1
t̃′′

− 1
t′pe

)
sin

(
t̃′′

t′pol

)
dt̃′

= Ey0e−G(t′) + 2(1 + 〈Z〉)BTq
〈mi〉cs

E
(

t′pe, t′exp, t′pol,
Reff

RA
, t′
)

, (A1)

where t̃′′ = t̃′ + texp/tacc and E is a dimensionless function of the time variable t′ with four
dimensionless parameters. However, not all four parameters are relevant in all cases. If, for
instance the ohmic currents dominate over the Alfvén current (such as for a hot background
plasma or for a cold cloud long after the ablation flow started to cross the local field line),
we can set Reff/RA = 0. In this case, E can be expressed in closed form as

E (t′pe, t′exp, t′pol, 0, t′
)

= e−t′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−texpEi

[(
1 + i

t′pol

)
t′′
]

− 1
t′pe

et′
sin

(
t′′

t′pol

)
− 1

t′pol
cos

(
t′′

t′pol

)

1 + t′−2
pol

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

min(t′,t′pe)

0

= e−t′ (ε (t′pe, t′exp, t′pol, min(t′, t′pe)
)− ε

(
t′pe, t′exp, t′pol, 0)

))
, (A2)

https://doi.org/10.1017/S0022377823000466 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000466


20 O. Vallhagen, I. Pusztai, P. Helander, S.L. Newton and T. Fülöp

with

Ei[x] = 1
2i

[
Ei(x) − Ei(x∗)

]
, (A3)

where Ei is the exponential integral function, i is the imaginary unit, an asterisk superscript
denotes complex conjugate, and we defined the expression within the curly bracket in (A2)
as ε. Integrating equation (A2), we get the following expression for the drift displacement:

	r = Ey0

B
tacc + 2(1 + 〈Z〉)Tq

〈mi〉cs
tacc

∫ ∞

0
E (t′pe, t′exp, t′pol, 0, t′

)
dt′

= v0tacc + 4n̄TReffq
B2cs

{
ε
(
t′pe, t′exp, t′pol, t′pe

)
e−t′pe − ε

(
t′pe, t′exp, t′pol, 0

)

+e−t′exp

[
e−t′

{
et′′Ei

[
i

t′′

t′pol

]
− Ei

[(
1 + i

1
t′pol

)
t′′
]}]t′pe

0

+ 1
t′pe

1
1 + t′−2

pol

[
t′pol cos

(
t′′

t′pol

)
+ sin

(
t′′

t′pol

)]t′pe

0

⎫⎬
⎭ , (A4)

where v0 = Ey0/B is the speed of the pellet. In some relevant cases, E can be simplified
further; for high background temperatures, tacc/tpe ≈ 0. Moreover, the cloud length
typically becomes much longer than the initial length Lc in a very short amount of time, so
that we can approximate Lc/(cstacc) ≈ 0. In that case, E only depends on a single parameter
tpol/tacc, and can be expressed as

E (∞, 0, t′pol, 0, t′
) = e−t′

{
Ei

[(
1 + i

1
t′pol

)
t′
]}t′

0

= e−t′

{
Ei

[(
1 + i

1
t′pol

)
t′
]

− tan−1 1
t′pol

}
. (A5)

The corresponding expression for the drift displacement becomes

	r = Ey0

B
tacc + 2(1 + 〈Z〉)Tq

〈mi〉cs
tacc

∫ ∞

0
E (∞, 0, t′pol, 0, t′

)
dt′

= v0tacc + πn̄TReffq
B2cs

. (A6)

Equations (A2)–(A6) apply also to a cold cloud shortly after the ablation flow has started
to cross the local field line, but with Reff replaced with RA, in accordance with the
corresponding change in the expression for tacc, (2.33).

Note that an increased acceleration time scale leads to a longer drift displacement, which
might seem surprising as that means that it takes longer for the cloud to get up to speed.
This is, however, compensated by the increased inertia, preventing the cloud from slowing
down when the acceleration changes sign due to the sign change of the net ∇B current,
when the sine factor in (2.27) becomes negative.
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